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ON THE ILL-POSEDNESS OF THE PRANDTL EQUATION

DAVID GÉRARD-VARET AND EMMANUEL DORMY

1. Introduction

One challenging open problem of fluid dynamics is to understand the inviscid
limit of the Navier-Stokes equations

(1.1)

⎧⎪⎨
⎪⎩

∂tu
ν + uν · ∇uν +∇pν − ν∆uν = 0, x ∈ Ω,

∇ · uν = 0, x ∈ Ω,

uν |∂Ω = 0,

in a domain Ω with boundaries, endowed with a no-slip boundary condition. Math-
ematically, the main difficulty is the lack of uniform bounds on the vorticity field,
as the viscosity ν goes to zero. In terms of fluid dynamics, this corresponds to a
boundary layer phenomenon near ∂Ω.

A natural approach to describe this boundary layer is to look for a double-scale
asymptotics, with a parabolic scaling in the normal direction. Consider the case
Ω ⊂ R2. At least locally, any point x in a neighborhood of ∂Ω has a unique
decomposition

x = y n(x) + x̃(x), x̃ ∈ ∂Ω,

where y > 0, x is an arc length parametrization of the boundary, and n is the
inward unit normal vector at ∂Ω. The velocity field can be written

uν(t,x) = uν(t, x, y) τ (x) + vν(t, x, y)n(x),

where (τ ,n) is the Frénet frame. It is then natural to consider an approximation
of the type:

(1.2)
uν(t, x, y) ≈ u0(t, x, y) + uBL(t, x, y/

√
ν),

vν(t, x, y) ≈ v0(t, x, y) +
√
ν vBL(t, x, y/

√
ν),

where

u0(t, x, y) = u0(t, x, y) τ (x) + v0(t, x, y)n(x)

satisfies the Euler equation with the no penetration condition, and

(uBL, vBL) = (uBL, vBL)(t, x, Y )

describes a boundary layer corrector with typical scale
√
ν in the normal direction.

It is slightly more convenient to introduce

u(t, x, Y ) := u0(t, x, 0)+ uBL(t, x, Y ), v(t, x, Y ) := Y ∂yv
0(t, x, 0)+ vBL(t, x, Y ).
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592 DAVID GÉRARD-VARET AND EMMANUEL DORMY

Indeed, inserting this Ansatz in the Navier-Stokes equations, we get formally

(1.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu+ u∂xu+ v∂Y u− ∂2
Y u =

(
∂tu

0 + u0∂xu
0
)
|y=0, Y > 0,

∂xu+ ∂Y v = 0, Y > 0,

(u, v) = 0, Y = 0,

lim
Y→+∞

u = u0|y=0.

These are the so-called Prandtl equations, derived by Ludwig Prandtl [12]. Note
that the curvature of the boundary does not appear explicitly in the system. It
is however involved in (1.3) through the Euler field, and through the interval of
definition of the arc length parametrization x. Up to our knowledge, all studies deal
with one of the following three cases: x ∈ R, x ∈ T, or 0 < x < L, supplemented
with a condition on u at x = 0. The first and second choices are convenient to
describe phenomena that are local in x. The case x ∈ T may also model the
outside of a bounded convex obstacle. Finally, the third configuration is adapted
to the spreading of a flow around a thin obstacle, where x = 0 corresponds to the
tip of the obstacle.

Although this formal asymptotics is very natural, its validity is not clear. As
emphasized by physicists, including Prantdl himself, it may not hold uniformly in
space and time. One reason is the so-called boundary layer separation, which is
observed for flows around obstacles; see [7]. Nevertheless, the description (1.2)
fits with many experiments, upstream from the separation zone. In any case, to
understand the relevance and limitations of the Prandtl model is a crucial issue.

From the mathematical point of view, one must address two problems:

(1) the well-posedness of the Prandtl equation;
(2) the justification of the expansion (1.2).

These two problems depend crucially on the choice of the underlying functional
spaces, especially on the regularity that is required in the tangential variable x.
Indeed, the main mathematical difficulty is the lack of control of the x derivatives.
For example, v is recovered in (1.3) through the divergence condition, and in terms
of x-regularity, behaves broadly like ∂xu. This loss of one derivative is not balanced
by any horizontal diffusion term, so that standard energy estimates do not apply.

Within spaces of functions that are analytic in x ∈ R, Y ∈ R+, Sammartino
and Caflisch have overcome these problems, justifying locally in time the boundary
layer asymptotics [13, 14]. But for more “realistic” functional settings, the way so-
lutions of (1.1) behave is still poorly understood. Various instability mechanisms,
which are filtered out in an analytic framework, become a huge source of trouble.
For example, when the viscosity is small, the Navier-Stokes equation admits expo-
nentially growing solutions which are both small-scale and isotropic in x, y. Their
evolution is lost in the anisotropic Prandtl description.

This remark was used by Emmanuel Grenier in [6], who relied on the so-called
Rayleigh instability for inviscid flows to show that the asymptotics (1.2) does not
(always) hold in the Sobolev space H1 (see [6] for a precise statement). However,
the relevance of this asymptotics in Lp, or its relevance in the absence of Rayleigh
instabilities, is still an open issue.

Above all, the local in time well-posedness of the Prandtl equation for smooth
(say Sobolev) initial data has been so far an open problem. Up to our knowledge,
the Cauchy problem has only been solved in two settings:
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ON THE ILL-POSEDNESS OF THE PRANDTL EQUATION 593

i) x ∈ R, with data that are analytic in x : see [13, 10] for more;
ii) 0 < x < L, with data that are monotonic in y : see [11, 15] for more.

One may also cite article [4], in which the blowup in time of some smooth solutions
is exhibited. Finally, let us mention the interesting work [8], in which the inviscid
version of (1.3) is analyzed (no ∂2

Y u in the equation). Interestingly, for a smooth
initial data, this equation turns out to have an explicit solution through the method
of characteristics. In particular, starting from a smooth data, one recovers locally
in time a smooth data. More precisely, there is only a finite loss of x-derivatives,
so that the Cauchy problem is (weakly) well-posed. We refer to [8] for all details.
See also papers [5, 1] on the hydrostatic equations, which share some features with
Prandtl equations. For more on Prandtl equations, see the review [3].

On the basis of the inviscid result, it seems reasonable to bet for well-posedness
of the Prandtl equation (1.3) in Sobolev type spaces. The aim of this paper is to
show that it is actually linearly ill-posed in this framework. As we shall see later
on, the reason for ill-posedness is a strong destabilization mechanism due to two
ingredients: viscosity, and critical points in the base velocity profile. In particular,
it does not contradict the positive results obtained in the inviscid case and for
monotonic data.

We now describe our results. We consider the domain (x, Y ) ∈ T × R
+ and

restrict to Euler fields with constant slip at the boundary: u0(t, x, 0) = (u, 0), for
some real constant u. To lighten notation, we write y instead of Y . The Prandtl
equation comes down to

(1.4)

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ u∂xu+ v∂yu− ∂2
yu = 0, in T× R

+,

∂xu+ ∂yv = 0, in T× R
+,

(u, v)|y=0 = (0, 0), lim
y→+∞

u = u.

Let us = us(t, y) be a smooth solution of the heat equation

(1.5) ∂tus − ∂2
yus = 0, us|y=0 = 0, lim

y→+∞
us = u, us|t=0 = Us.

Clearly, the shear velocity profile (us, vs) = (us(t, y), 0) satisfies the system (1.4).
We consider the linearization around (us, vs), that is,

(1.6)

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ us∂xu+ v∂yus − ∂2
yu = 0, in T× R

+,

∂xu+ ∂yv = 0, in T× R
+,

(u, v)|y=0 = (0, 0), lim
y→+∞

u = 0.

We wish to study well-posedness properties of (1.6), for a certain class of velocities
us. In this view, we introduce the following functional spaces:

W s,∞
α (R+) :=

{
f = f(y), eαyf ∈ W s,∞(R+)

}
, ∀α, s ≥ 0,

with ‖f‖W s,∞
α

:= ‖eαyf‖W s,∞ , and

Eα,β :=

{
u = u(x, y) =

∑
k∈Z

ûk(y)eikx, ‖ûk‖W 0,∞
α

≤ Cα,β e−β|k|, ∀k
}
, ∀α, β > 0,

with ‖u‖Eα,β
:= supk eβ|k| ‖ûk‖W 0,∞

α
.
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594 DAVID GÉRARD-VARET AND EMMANUEL DORMY

Note that the functions of Eα,β have analytic regularity in x. They have only
L∞-regularity in y, with an exponential weight. More regularity in y could be
considered as well. Let α, β > 0. We prove in the appendix the following result:

Proposition 1 (Well-posedness in the analytic setting). Let us − u ∈ C0
(
R+;

W 1,∞
α (R+)

)
. There exists ρ > 0 such that: for all T with β − ρT > 0, and all

u0 ∈ Eα,β, the linear equation (1.6) has a unique solution

u ∈ C ([0, T ); Eα,β−ρT ) , u(t, ·) ∈ Eα,β−ρt, u|t=0 = u0.

In short, the Cauchy problem for (1.6) is locally well-posed in the analytic setting.
We shall denote

T (t, s)u0 := u(t, ·),
where u is the solution of (1.6) with u|t=s = u0. As the spaces Eα,β are dense in
the spaces

Hm := Hm(Tx,W
0,∞
α (R+

y )), m ≥ 0,

this makes sense to introduce the following notation: for all T ∈ L(Eα,β , Eα,β′),

‖T‖L(Hm1 ,Hm2 ) = sup
u0∈Eα,β

‖Tu0‖Hm2

‖u0‖Hm1

,

which belongs to R+ ∪ {+∞}. In particular, it is infinite when T does not extend
to a bounded operator from Hm1 to Hm2 . The main result of our paper is

Theorem 1 (Ill-posedness in the Sobolev setting).

i) Let us − u ∈ C0
(
R+; W

4,∞
α (R+)

)
∩ C1

(
R+; W

2,∞
α (R+)

)
. Assume that the

initial velocity has a nondegenerate critical point over R+. Then, there
exists σ > 0, such that for all δ > 0,

sup
0≤s≤t≤δ

‖e−σ(t−s)
√

|∂x| T (t, s)‖L(Hm,Hm−µ) = +∞, ∀m ≥ 0, µ ∈ [0, 1/2).

ii) Moreover, one can find solutions us of (1.5) and σ > 0 such that: for all
δ > 0,

sup
0≤s≤t≤δ

‖e−σ(t−s)
√

|∂x| T (t, s)‖L(Hm1 ,Hm2 ) = +∞, ∀m1,m2 ≥ 0.

This theorem expresses strong linear ill-posedness of the Prandtl equation in the
Sobolev framework. It is a consequence of an instability process, which holds at
high tangential frequencies. We will show that some perturbations with tangential

frequency k 
 1 grow in the linear régime like e
√
kt. The extension of our instability

result to the nonlinear setting is still an open issue. In particular, we are not able to
apply Grenier’s method to go from linear to nonlinear instability: indeed, it requires
upper bounds on T (t, s) that we do not have. However, we believe this difficulty
to be purely technical: in our view, it is very unlikely that this destabilization
phenomenon can be cancelled by nonlinear interactions.

The outline of the paper is as follows. Section 2 gives a formal description of
the instability mechanism. It relies on an asymptotic analysis of (1.6), in the high
tangential frequency limit. Thanks to this analysis, we show that ill-posedness for
the PDE (1.6) comes down to a “spectral condition” for a reduced ODE, namely:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE ILL-POSEDNESS OF THE PRANDTL EQUATION 595

(SC) There exists τ ∈ C with Imτ < 0, and a solution W = W (z) of

(1.7) (τ − z2)2
d

dz
W + i

d3

dz3
(
(τ − z2)W

)
= 0,

such that lim
z→−∞

W = 0, lim
z→+∞

W = 1.

This spectral condition is studied in section 3 and shown to be satisfied. On these
grounds, we prove Theorem 1; cf. section 4. We end the paper with numerical
computations, which emphasize that our instability mechanism is effective.

2. The instability mechanism

In this section, we describe the destabilization of system (1.6), leading to the
ill-posedness theorem. As we shall see, it takes place at high tangential frequencies,
say O(1/ε), and has a typical time O(

√
ε). At this timescale, the time dependence

of the base velocity (us(t, y), 0) will not play an important role. Thus, to understand
the instability mechanism, we can consider the simpler equation

(2.1)

⎧⎪⎨
⎪⎩

∂tu+ Us∂xu+ vU ′
s − ∂2

yu = 0, in T× R
+,

∂xu+ ∂yv = 0, in T× R
+,

(u, v)|y=0 = (0, 0).

Handling of the real equation, that is with us instead of Us, will require minor
modifications, to be made in section 4.

System (1.6) has constant coefficients in t and x, so that we can perform a Fourier
analysis: we look for solutions in the form

(2.2) u(t, y) = eik(ω(k)t+x)ûk(y), v = k eik(ω(k)t+x)v̂k(y), k > 0.

As we are interested in high tangential frequencies, we denote ε := 1/k � 1, and
write ω(ε) instead of ω(k), uε(y), vε(y) instead of ûk(y), v̂k(y). The divergence
condition yields v′ε(y) = −iuε(y). Using this relation in the first equation in (2.1),
one ends up with

(2.3)

{
(ω(ε) + Us) v

′
ε − U ′

svε + i εv(3)ε = 0, y > 0,

vε|y=0 = v′ε|y=0 = 0.

Thus, the high frequency limit ε → 0 in the variable x yields a singular perturbation
problem in the variable y. To investigate this problem, one must first consider the
inviscid case ε = 0.

2.1. The inviscid case. When ε = 0, one can a priori only retain the imperme-
ability condition. The appropriate problem is

(2.4) (ω + Us) v
′ − U ′

sv = 0, y > 0, v|y=0 = 0.

This spectral problem, as well as the corresponding evolution equation, has been
studied exhaustively in [8]. Clearly, there are nontrivial solutions if and only if ω
belongs to the range of −Us. Moreover, the couples

ωa = −Us(a), va = H(y − a) (Us − Us(a)) , a > 0,

where H is the Heaviside function, satisfy (2.4). Note that the regularity of va
depends on the choice of a. When a is a critical point, it belongs to W 2,∞

α (R+)
with a discontinuous second derivative. Otherwise, it is only in W 1,∞

α (R+), with a
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596 DAVID GÉRARD-VARET AND EMMANUEL DORMY

discontinuous first derivative. Luckily enough, the additional boundary condition
v′a|y=0 = 0 is also satisfied.

2.2. The viscous perturbation. When ε is not 0, the inviscid eigenelements
ωa, va do not solve (2.3). All boundary conditions are satisfied, cf. the above
remark, but the equation is not. First, there is an O(ε) remaining term for y > a.
More importantly, va is not smooth at y = a, whereas a solution of this parabolic
equation should be.

Nevertheless, at least if a is a nondegenerate critical point, there is an approxi-
mate solution near (ωa, va). We shall establish this rigorously in section 4. We just
give here a formal expansion. It reads

(2.5)

⎧⎪⎨
⎪⎩

ω(ε) ∼ ωa + ε1/2τ,

vε(y) ∼ va + ε1/2τ H(y − a) + ε1/2 V

(
y − a

ε1/4

)
,

where τ ∈ C, and V = V (z) quickly tends to zero as z → ±∞. Note that the
approximation of vε has two parts: the “regular” part

vregε (y) = H(y − a)
(
Us(y) − Us(a) + ε1/2τ

)
and the “shear layer part”

vslε (y) = ε1/2 V

(
y − a

ε1/4

)
.

For ω(ε) = −Us(a) + ε1/2τ , the function vregε solves (2.3) up to O(ε), away from
the critical point y = a. However, it has a jump at y = a, together with its second
derivative. The role of the shear layer vslε , which concentrates near y = a, is to
cancel these discontinuities. Still formally, we obtain the system satisfied by the
profile V :

(2.6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
τ + U ′′

s (a)
z2

2

)
V ′ − U ′′

s (a) z V + i V (3) = 0, z �= 0,

[V ]|z=0
= −τ, [V ′]|z=0

= 0, [V ′′]|z=0
= −U ′′(a),

lim
±∞

V = 0.

Let us point out that this system is a priori overdetermined, as jump and boundary
conditions provide too many constraints. This justifies the introduction of the
parameter τ in the Ansatz (2.5). As we shall see below, there is a τ for which
system (2.6) has a solution. Moreover, Imτ is negative. Hence, back to the Fourier

representation (2.2), the k-th mode will grow in time like e−Imτ
√
kt. This is the

key of the instability mechanism.
To see how the condition (SC) of the introduction steps in, we need a few rewrit-

ings. First, τ + U ′′
s (a)

z2

2 satisfies the equation in (2.6). We therefore introduce

Ṽ (z) = V (z) + 1R+

(
τ + U ′′

s (a)
z2

2

)
,
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which leads to⎧⎪⎪⎨
⎪⎪⎩

(
τ + U ′′

s (a)
z2

2

)
Ṽ ′ − U ′′

s (a) z Ṽ + i Ṽ (3) = 0, z ∈ R,

lim
−∞

Ṽ = 0, Ṽ ∼+∞ τ + U ′′
s (a)

z2

2
.

Then, we introduce W such that

Ṽ =
(
τ + U ′′

s (a) z
2/2

)
W.

We get: ⎧⎪⎨
⎪⎩

(
τ + U ′′

s (a) z
2/2

)2 d

dz
W + i

d3

dz3
((
τ + U ′′

s (a) z
2/2

)
W

)
= 0,

lim
−∞

W = 0, lim
+∞

W = 1.

Finally, we perform the change of variables

τ =
1√
2
|U ′′

s (a)|1/2 τ̃ , z = 21/4 |U ′′
s (a)|−1/4z̃.

Dropping the tildes leaves us with the reduced ODE⎧⎪⎨
⎪⎩

(
τ + sign(U ′′

s (a)) z
2
)2 d

dz
W + i

d3

dz3
((
τ + sign(U ′′

s (a)) z
2
)
W

)
= 0,

lim
−∞

W = 0, lim
+∞

W = 1.

If U ′′
s (a) < 0, it is exactly the system in (SC). If on the contrary U ′′

s (a) > 0, and
if (τ,W ) satisfies the system in (SC), then (τ := −τ , W := W ) satisfies the above
system. In both cases, back to the original system (2.6), condition (SC) gives a
solution (τ, V ) with Imτ < 0. In particular, this

√
ε correction to the eigenvalue

is a source of strong instability, leading to ill-posedness.
The proof of Theorem 1, which is based on this formal shear layer phenomenon,

is postponed to section 4. In the next paragraph, we focus on condition (SC) and
prove that it is satisfied.

3. The spectral condition (SC)

We need to study the existence of heteroclinic orbits for the ODE (1.7). Note
that W = 1 is a solution. Equation (1.7) can be written as a second order equation
in X = W ′:

(3.1) i(τ − z2)X ′′ − 6i z X ′ +
(
(τ − z2)2 − 6i

)
X = 0.

To show that (SC) holds, we proceed in three steps.

Step 1. We consider an auxiliary eigenvalue problem:

(3.2) Au :=
1

z2 + 1
u′′ +

6z

(z2 + 1)2
u′ +

6

(z2 + 1)2
u = αu.

For its study, we introduce the weighted spaces

L2 :=

{
u ∈ L2

loc,

∫
R

(z2 + 1)4|u|2 < +∞
}
,

H1 :=

{
u ∈ H1

loc

∫
R

(z2 + 1)4|u|2 +

∫
R

(z2 + 1)3|u′|2 < +∞
}

↪→ L2,
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with their obvious Hilbert norms. We see A as an operator from D(A) :=
{
u ∈ H1 ,

Au ∈ L2
}
into L2. Our goal is to show that A has a positive eigenvalue.

By standard arguments, the domain D(A) is dense in L2. Moreover, for any u in
D(A), there is a sequence un of smooth functions with compact support, such that
un → u in H1 and Aun → Au in L2. Integration by parts and use of this density
property give easily that A is symmetric, i.e.

(3.3) ∀u, v ∈ D(A), (Au | v)L2 = (Av |u)L2 ,

and that for λ large enough,
(3.4)

((λ−A)u |u)L2 = λ

∫
R

(z2+1)4|u|2−6

∫
R

(z2+1)2|u|2 +
∫
R

(z2+1)3|u′|2 ≥ 1

2
‖u‖2H1 .

Then, the coercivity condition (3.4) allows us to apply the Lax-Milgram lemma. It
implies the invertibility of λ−A, with

‖ (λ−A)
−1

f‖L2 ≤ ‖ (λ−A)
−1

f‖H1 ≤ C ‖f‖L2 .

Moreover, from (3.3), (λ−A)−1 is selfadjoint, and so is A.
We now prove that A has positive spectrum. To do so, we claim that it is enough

to find u ∈ D(A) with (Au |u)L2 > 0. Indeed, suppose a contrario that σ(A) is
contained in R−. Then, by the spectral theorem,

∀α > 0, ‖(A− α)−1‖ =
1

d(α, σ(A))
≤ α−1.

We deduce: for all u ∈ D(A),

‖u‖2L2 ≤ α−2 ‖(A− α)u‖2L2 .

Expanding the scalar products, we obtain

0 ≤ α−2 ‖Au‖2L2 − 2α−1(Au |u)L2 .

In the limit α → +∞, we get (Au |u)L2 ≤ 0 for all u ∈ D(A). This proves our

claim. From there, we simply take u = e−2z2

. A straightforward computation gives

(Au |u) =
439

512

√
π > 0,

and so σ(A) has a positive subset.
It remains to exhibit a positive eigenvalue inside this positive subset of the spec-

trum. We remark that the operator A can be split into

A = A1 + A2, A1u :=
1

z2 + 1
u′′ +

6z

(z2 + 1)2
u′, A2u :=

6

(z2 + 1)2
u.

On the one hand, the operator A1 is negative, and by the Lax-Milgram Lemma,
A1−λ is invertible for any λ > 0. Thus, σ(A1) ⊂ R−. On the other hand, let un be
a sequence with un and A1un bounded in L2. This implies that un is bounded in
H1, and so has a convergent subsequence in L2

loc. Moreover, |un|2 is equi-integrable
over R. Finally, it implies that A2un has a convergent subsequence in L2, which
means that A2 is A1-compact. Hence, the essential spectra of A and A1 are the
same; see [9]. In particular, the positive part of σ(A) is made of isolated eigenvalues
with finite multiplicity. Eventually, we state: there exists α > 0, and u in D(A)
satisfying (3.2).
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Step 2. We wish to convert the eigenelements (α, u) of the previous step into an
appropriate solution (τ,X) of (3.1). We set τ̃ = −α1/2, and z̃ = α−1/4z, Y (z̃) =
u(z). Dropping the tildes, we obtain a solution of

(3.5) (τ − z2)Y ′′ − 6 z Y ′ +
(
(τ − z2)2 − 6

)
Y = 0.

By a classical bootstrap argument, Y is smooth. Moreover, it inherits from u its
integrability properties at infinity. Actually, the behaviour of Y can be further
specified, as shown in:

Proposition 2. The function Y admits a unique extension, still denoted by Y ,
that is holomorphic in z and satisfies (3.5) in the simply connected domain

Uτ := C \
([

−i∞, −i|τ |1/2
]
∪

[
i|τ |1/2, +i∞

])
.

Moreover, in the sectors arg z ∈ (−π/4+δ, π/4−δ) and arg z ∈ (3π/4+δ, 5π/4−δ),
δ > 0, it satisfies the inequality

|Y (z)| ≤ Cδ exp(−z2/4).

Proof. This proposition follows from the general theory of ODE’s with holomorphic
coefficients. The existence of a holomorphic solution is well known, because the
coefficient τ − z2 does not vanish on Uτ . As regards the inequality, we rewrite
equation (3.1) as the first order system:

(3.6)
d

dz
Y = zA(z)Y , Y =

(
Y

z−1 d
dzY

)
, A(z) =

( 0 1
6−(τ−z2)2

z2(τ−z2)
6

τ−z2
− 1

z2

)
.

In particular, A is holomorphic at infinity, with A(∞) = ( 0 1
1 0 ). It has two distinct

eigenvalues ±1, with eigenvectors
(

1
±1

)
.

Hence, we can apply [2, Theorem 5.1, p. 163]: in any closed sector S inside which
�z2 does not cancel, there exist solutions Y± (depending a priori on S) with the
following asymptotic behaviour as |z| → +∞:

(3.7) Y± ∼

⎛
⎝∑

i≥0

Yi
± zα±−i

⎞
⎠ eP±(z),

where α± is a complex constant, and P±(z) is a polynomial of degree 2. Moreover,

the leading term of P± is ± z2

2 . Following the same scheme of proof, we get in the
present case:

(3.8) Y0
± =

(
1
±1

)
, α± = −1

2
(±τ + 7) , P± = ±z2/2.

As our solution Y is integrable over R, it is necessarily proportional to the decaying
solution. The bounds in Proposition 2 follow.

Now, as Y is defined on Uτ , we can perform the complex change of variables:

z̃ := eiπ/8z, τ̃ := eiπ/4τ

Note that τ̃ has a negative imaginary part. Moreover, for z̃ real, the original variable
z belongs to the sectors arg z ∈ (−π/4+ δ, π/4− δ) or arg z ∈ (3π/4+ δ, 5π/4− δ),
with δ = 1/16. By Proposition 2, the function X(z̃) = Y (z) satisfies the estimate
|X(z̃)| ≤ C exp(−z̃2/4). Finally, dropping the tildes yields a solution τ,X of (3.1),
where X decays at infinity. This concludes Step 2.
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Step 3. To deduce from the previous step that (SC) holds, it is enough that∫
R
X(z)dz be nonzero. If so, one can consider

W (z) :=

(∫
R

X(z′)dz′
)−1 ∫ z

−∞
X(z′) dz′,

which clearly satisfies all the requirements.

Let us assume a contrario that
∫
R
X(z)dz = 0. Then, the function

V (z) := (τ − z2)

∫ z

−∞
X(z′) dz′

is a solution of (
τ − z2

)
V ′ + 2 z V + i V (3) = 0,

which decays exponentially as z goes to ±∞, together with all its derivatives.
Differentiation of the equation gives(

τ − z2
)
V ′′ + 2V + i V (4) = 0.

Then, we multiply by V ′′, which is the complex conjugate of V ′′, and integrate over
R. Simple integrations by parts yield:∫

R

(τ − z2)|V ′′|2 − 2

∫
R

|V ′|2 − i

∫
R

|V (3)|2 = 0.

The imaginary part of this identity yields

Imτ

∫
R

|V ′′|2 =

∫
R

|V (3)|2,

which contradicts the fact that Imτ < 0. Thus, the condition (SC) is satisfied. �

4. Proof of ill-posedness

Theorem 1 will be deduced from the formal analysis of section 2. This analysis
was performed on (2.1), in which possible time variations of uswere neglected. To
account for the original system (1.6) will require a few modifications, notably in
the choice of the approximation (2.5). We will distinguish between the parts i) and
ii) of the theorem.

4.1. Ill-posedness for general us. Let us satisfy the assumptions of part i). Let
a be the nondegenerate critical point of us|t=0 = Us. For the sake of brevity, we
consider the case U ′′

s (a) < 0, the other one being strictly similar. The differential
equation

∂t∂yus(t, a(t)) + ∂2
yus(t, a(t)) a

′(t) = 0, a(0) = a

defines for small time t < t0 a nondegenerate critical point a(t) of us(t, ·). Then let
τ,W be given by condition (SC). We set

V := (τ − z2)W − 1R+

(
τ − z2

)
.

In light of section 2, we introduce, for ε > 0 and t < t0:

ω(ε, t) := −us(t, a(t)) +
ε1/2√

2
|∂2

yus(t, a(t))|1/2τ

as well as the “regular” velocity

vregε (t, y) := H(y − a(t))

(
us(t, y)− us(t, a(t)) +

ε1/2√
2
|∂2

yus(t, a(t))|1/2τ
)
,
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and the shear layer velocity

vslε (t, y) :=
ε1/2√

2
ϕ(y − a(t)) |∂2

yus(t, a(t))|1/2 V
(
|∂2

yus(t, a(t))|1/4
(y − a(t))

(2ε)1/4

)
,

where ϕ is a smooth truncation function near 0. We then consider the following
velocity field:

uε(t, x, y) := eiε
−1xUε(t, y), Uε(t, y) = i eiε

−1
∫ t
0
ω(ε,s)ds ∂y

(
vregε (t, y) + vslε (t, y)

)
,

vε(t, x, y) := eiε
−1xVε(t, y), Vε(t, y) = ε−1 eiε

−1
∫ t
0
ω(ε,s)ds

(
vregε (t, y) + vslε (t, y)

)
.

In order to have a field that is 2π-periodic in x and growing in time, we take ε := 1
n ,

with n ∈ N∗. One verifies easily that uε = eiε
−1x Uε(t, y) is analytic in x, and W 2,∞

in t, y. Moreover, we have the bounds

(4.1) c e
σ0t√

ε ≤ ‖Uε(t, ·)‖W 2,∞
α

≤ C e
σ0t√

ε ,

for positive constants c, C and σ0 that do not depend on ε.
Inserting the expression for uε, vε into the linearized Prandtl equation (1.6), we

obtain

(4.2)

⎧⎪⎨
⎪⎩

∂tuε + us∂xuε + vε∂yus − ∂2
yuε = rε, in T× R

+,

∂xuε + ∂yvε = 0, in T× R
+,

(u, v)|y=0 = (0, 0).

The remainder term rε reads rε = eiε
−1xRε(t, y), with

Rε(t, y)=eiε
−1

∫ t
0
ω(ε,s)ds

(
− ε−1

(
us(t, y) − us(t, a(t)) − ∂2

yus(t, a(t))
y2

2

)
∂yv

sl
ε (t, y)

+ ε−1
(
∂yus(t, a(t)) − ∂2

yus(t, a(t))y
)
vslε (t, y)

− i ε ∂3
yv

reg
ε (t, y) + i ∂t∂y

(
vregε (t, y) + vslε (t, y)

)
+O(ε∞e

σ0t√
ε )
)
.

The O(ε∞) gathers terms with derivatives of ϕ: as the shear layer profile V de-
creases exponentially, and the derivatives of ϕ(· − a) are supported away from a,
their contribution is indeed exponentially small. Straightforwardly,

(4.3) ‖Rε(t, ·)‖W 0,∞
α

≤ Ce
σ0t√

ε ,

with the same σ0 as in (4.1).
We are now in a position to prove part i) of Theorem 1. Let us assume a contrario

that for all σ > 0, there exists m ≥ 0, µ ∈ [0, 1/2) and δ > 0 such that

sup
0≤s≤t≤δ

‖e−σ(t−s)
√

|∂x| T (t, s)‖L(Hm,Hm−µ) < +∞.

Let

Tε(t, s) : W
0,∞
α (R+) �→ W 0,∞

α (R+)

be the restriction of T (t, s) to the tangential Fourier mode ε−1, namely,

T (t, s)
(
eiε

−1x U0

)
= eiε

−1x Tε(t, s)U0.
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Similarly, we denote Lε = e−iε−1x Leiε
−1x, where L is the linearized Prandtl

operator around us. We have, for all 0 ≤ s ≤ t ≤ δ,

‖T (t, s)‖L(W 0,∞
α ) ≤ C ε−µ e

σ(t−s)√
ε .

Let U = U(t, y) be the solution of ∂tU + LεU = 0 that coincides initially with the
approximation Uε. On the one hand, we get

(4.4) ‖U(t, ·)‖W 0,∞
α

≤ C ε−µ e
σt√
ε ‖U(0, ·)‖W 0,∞

α
≤ C ′ ε−µ e

σt√
ε .

On the other hand, the difference Ũ = U − Uε satisfies, for all t < δ,

Ũ(t, ·) =

∫ t

0

Tε(t, s)Rε(s)ds.

Estimate (4.3) implies that

‖Ũ(t, ·)‖W 0,∞
α

≤ C ε−µ

∫ t

0

e
σ(t−s)√

ε e
σ0s√

ε ds ≤ C ′ ε1/2−µ e
σ0t√
|ε| ,

as soon as σ < σ0. Combining this with the estimate (4.1), we obtain the lower
bound

‖U(t, ·)‖W 0,∞
α

≥ ‖Uε(t, ·)‖W 0,∞
α

− ‖Ũ(t, ·)‖W 0,∞
α

≥ c e
σ0t√

ε − Cεµ−1/2 e
σ0t√

ε .

For ε small enough, we get

‖U(t, ·)‖W 0,∞
α

≥ c′ e
σ0t√

ε ,

which contradicts the upper bound (4.4), as soon as σ < σ0 and t 
 µ
σ0−σ | ln(ε)|

√
ε.

This achieves the proof of part i).

4.2. Stronger ill-posedness for specific us. It remains to handle part ii) of

Theorem 1. Roughly, we must find some us for which e−σ
√

|∂x|(t−s) T (t, s) fails to
be bounded from Hm to Hm−µ, µ ≥ 0 arbitrary. Using the notation of the previous
paragraph, the key point is to build, for any N , a growing solution Uε,N of

∂tUε,N + LεUε,N = Rε,N , where ‖Rε,N (t, ·)‖W 0,∞
α

≤ CN

(
εN + t2N

)
e

σ0t√
ε .

Indeed, we can then take N +1/2 > µ and conclude along the same lines as above.
So far, we have not managed to improve the approximation of the previous

paragraph for general us. This explains the technical restriction µ ∈ [0, 1/2) of part
i). In order to obtain a refined approximation, we consider some special profiles: we
assume that us(0, y) = Us(y), where Us converges exponentially to u and satisfies
in the neighborhood of a > 0:

Us(y) = U ′′
s (a)

(y − a)2

2
, U ′′

s (a) < 0.

Notice that a is a nondegenerate critical point of Us. For such profiles, the approx-
imation of the previous paragraph reads

Uε(t, y) = i eiε
−1

∫
t
0
ω(ε,s) ds ∂y

(
vregε (t, y) + vslε (t, y)

)
, ε =

1

n
, n ∈ N∗.
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Using that Us is quadratic near y = a, one can improve this approximation through
an expansion of the type

Uε,N (t, y) = Uε(t, y) + i eiε
−1

∫ t
0
ω(ε,s) ds ∂y

N∑
i=1

εi vi,regε (t, y),

with additional terms vi,regε . Let us briefly explain the construction of these extra
terms. The error terms due to Uε can be divided into three categories:

(1) Shear layer terms involving derivatives of ϕ. As mentioned before, they are

O
(
ε∞e

σ0t√
ε

)
and require no correction.

(2) Terms that come from the replacement of us by its Taylor expansion in the
shear layer equation. They read

Rε,1 := −ε−1eiε
−1

∫ t
0
ω(ε,s) ds

(
us(t, y) − us(t, a(t)) − ∂2

yus(t, a(t))
y2

2

)
∂yv

sl
ε (t, y),

Rε,2 := ε−1eiε
−1

∫ t
0
ω(ε,s) ds

(
∂yus(t, a(t)) − ∂2

yus(t, a(t))y
)
vslε (t, y).

We write

|Rε,1| = ε−1e
σ0t√

ε

∣∣∣∣∣
∫ y

a(t)

(z − a(t))2

2
∂3
yus(t, z) dz

∣∣∣∣∣ ∣∣∂yvslε (t, y)
∣∣

≤ ε−1e
σ0t√

ε

∫ y

a(t)

(z − a(t))2

2

2N−1∑
k=0

tk

k!

∣∣∂k
t ∂

3
yus(0, z)

∣∣ dz ∣∣∂yvslε (t, y)
∣∣ + O(t2N )e

σ0t√
ε

≤ ε−1e
σ0t√

ε

∫ y

a(t)

(z − a(t))2

2

2N−1∑
k=0

tk

k!

∣∣∂3+2k
y Us(z)

∣∣ dz ∣∣∂yvslε (t, y)
∣∣ + O(t2N )e

σ0t√
ε .

The second inequality stems from a Taylor expansion of us with respect to
t. As us satisfies the heat equation, each time derivative can be replaced
by two space derivatives, hence the third line. Because Us is quadratic
in a vicinity of a(t) (for short times), and vslε and its derivatives decay
exponentially fast, we end up with

|Rε,1| ≤ C
(
t2N + εN

)
e

σ0t√
ε .

A similar bound holds for Rε,2. Hence, these remainders do not require
correction.

(3) Terms that come from the time derivative and the diffusion. We focus here
on the time derivative, as the diffusion term is simpler and has smaller
amplitude. This is

Rε,3 := i eiε
−1

∫ t
0
ω(ε,s) ds ∂t∂y

(
vregε (t, y) + vslε (t, y)

)
.

Proceeding as for Rε,2, that is, with Taylor expansions in t, leads to∣∣∣eiε−1
∫ t
0
ω(ε,s) ds ∂t∂yv

sl
ε (t, y)

∣∣∣ ≤ C
(
t2N + εN

)
e

σ0t√
ε .

As regards the regular part,

eiε
−1

∫ t
0
ω(ε,s) ds ∂t∂yv

reg
ε (t, y) = eiε

−1
∫ t
0
ω(ε,s) ds H(y − a(t)) ∂t∂yus

= eiε
−1

∫ t
0
ω(ε,s) ds H(y − a(t)) F (t, y) +O

(
t2N e

σ0t√
ε

)
,
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where

F (t, y) :=

2N−1∑
k=0

tk

k!
∂3+2k
y Us(y)

comes again from a Taylor expansion in t. The nice thing about this O(1)
term is that it is identically zero in the vicinity of y = a(t) (for short times).
As a result, the Heaviside function H(y−a(t)) in front of it does not create
any discontinuity, and no extra shear layer term is necessary. One takes
care of this source term by the introduction of

v1,regε = H(y − a(t))
(
us(t, y)− ω(ε, t)

)∫ y

a(t)

F (t, z)

(us(t, z)− ω(ε, t))
2 dz,

so that
U1
ε := −i ε eiε

−1
∫ t
0
ω(ε,s) ds∂yv

1,reg
ε

solves

∂tU
1
ε + LεU

1
ε = i eiε

−1
∫ t
0
ω(ε,s) dsH(y − a(t))F (t, y) + O(ε).

Proceeding recursively, we obtain an approximation as accurate as we want.
This ends the proof of the theorem.

5. Numerical study

In this last section, we present numerical illustrations of the instability process.

5.1. Numerical test of (SC). To check (SC) numerically, it is more convenient
to reformulate it with an Evans function. We know from Step 2, section 3, that
there are solutions Y±(z) of (3.6) satisfying (3.7)–(3.8). Back to the ODE (3.1),
this yields independent solutions X+(τ, ·) and X−(τ, ·) respectively growing and
decaying as z goes to +∞. Furthermore, the following asymptotics holds:

X±(τ, z) ∼ z±
iτ
2λ− 7

2 exp(±1

2
λz2),

∂zX±(τ, z) ∼ ±λz±
iτ
2λ− 3

2 exp(±1

2
λz2),

with λ = 1−i√
2
. Thus, the functions

W−(τ, z) :=

∫ +∞

z

X−(τ, s) ds, W+(τ, z) :=

∫ z

0

X+(τ, s) ds, W0(τ, z) = 1,

seen as functions of z, form a basis of solutions of (1.7). They are respectively
decaying, growing and constant at +∞. As (1.7) is preserved by the change of
variable z �→ −z, the functions W−(τ,−z), W+(τ,−z), W0 form a basis as well.
They are respectively decaying, growing and constant at −∞. The existence of the
heteroclinic orbit is the same as the existence of some constants A and B such that

1 = AW−(−z, τ ) + BW−(z, τ )

for all z, or equivalently,(
1
0
0

)
∈ Vect

((
W−(τ,0)

∂zW−(τ,0)

∂2
zW−(τ,0)

)
,

(
W−(τ,0)

−∂zW−(τ,0)

∂2
zW−(τ,0)

))
.

This last condition is easily seen to be equivalent to

W−(τ, 0) �= 0 and ∂2
zW−(τ, 0) = 0.
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Hence, we must find τ with Imτ < 0 such that∫ +∞

0

X−(τ, s) ds �= 0 and ∂zX−(τ, 0) = 0.

Moreover, we know from Step 3, section 3 that for Imτ < 0, the constraint∫ +∞
0

X− �= 0 is satisfied. Finally, the condition (SC) comes down to:

∂zX−(τ, 0) = 0, for some τ with Imτ < 0.

To check this, and get a value for τ , one can use a shooting method. For any τ
and any z0 
 1, one can start from the approximation

X−(τ, z0) ≈ z
−iτ
2λ − 7

2
0 exp(−1

2
λz20), ∂zX−(τ, z0) ≈ −λz

−iτ
2λ − 3

2
0 exp(−1

2
λz20),

and integrate (3.1) backwards using a Runge-Kutta scheme. This gives access to
the function ∂zX−(τ, z), for any τ and any z ≤ z0. Then, a Newton-Raphson
procedure allows us to find a zero in {Imτ < 0} for the function τ �→ ∂zX−(τ, 0).
Using such a procedure, we have found

τ ≈ −0.706− 0.706 i.

Note that this value is proportional to 1 + i, as expected from the analysis.

5.2. Simulation of the instability mechanism. To observe the instability mech-
anism described in section 2, we have performed direct simulations of system (2.1).
More precisely, we have considered the velocity

us(t, y) = Us(y) := 2y exp(−y2)

(already studied in [8] in the inviscid case) and solutions of the type

uε(t, x, y) = i eiε
−1x ∂yVε(ε

−1t, y), vε(t, y) = ε−1Vε(ε
−1t, y).

The profiles Vε = Vε(θ, y) satisfy the singular perturbation problem

(∂θ + iUs) ∂yVε − i U ′
sVε − ε ∂3

yVε = 0

on Vε(θ, y). One more differentiation gives the parabolic-like equation

(∂θ + iUs) ∂
2
yVε − i U ′′

s Vε − ε ∂4
yVε = 0,

fulfilled with the boundary conditions

Vε|y=0 = ∂yVε|y=0 = ∂3
yVε|y=0 = 0.

We have discretized this equation in space using finite differences on a stretched
grid, and in time through a Crank-Nicholson scheme. Starting from initial random
data (i.e. with random values at each grid point), we have computed its time
evolution for values of k = ε−1 ranging from 1 to 3 × 107. For sufficiently large
times, one observes that the numerical solution V num

ε behaves like

V num
ε (θ, y) ≈ eiω

num(ε)θvnumε (y)

in the sense that

ωnum(ε) :=
V num
ε (θ +∆θ, y)− V num

ε (θ, y)

∆θ V num
ε (t, y)

becomes independent of θ and y. Computations show a relation of the type

ωnum(ε) ∼ −Us(a) +
√
ε (−0.92− 0.91i);
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Figure 1. The correction to the inviscid eigenvalue. Plot of
1√
ε
(ωnum(ε) + Us(a)), seen as a function of the tangential fre-

quency k = ε−1. Top: real part. Bottom: imaginary part. As
expected from the theory, both approximately converge to −0.9,
as k goes to infinity.

see Figure 1. Here a = 1√
2
is as usual the critical point of Us. This relation is in

very good agreement with the theoretical prediction,

ωth(ε) := −Us(a) + ε1/2
|U”s(a)|1/2τ√

2
≈ −Us(a) +

√
ε (−0.92− 0.92i),

if we take for τ the value −0.706− 0.706i found in the previous subsection. More-
over, with this value of τ , one can compute directly the solution V of the shear
layer equation. After proper rescaling, this allows for comparison between the “nu-
merical” and “theoretical” eigenmodes. More precisely, using the notation of (2.5),
one can compare the functions

vthout(y) :=
1√
ε

(
vregε (y)

vregε (∞)
− va(y)

va(∞)

)
and vnumout (y) =

1√
ε

(
vnumε (y)

vnumε (∞)
− va(y)

va(∞)

)

which should both describe the correction to the inviscid eigenmode outside the
shear layer. As regards the shear layer, one can compare

vthin(z) :=
1√
ε

vslε (ε1/4(z + a))

vregε (∞)

and

vnumin (z) :=
1√
ε

vnumε (ε1/4(z + a))

vnumε (+∞)
− vnumout (ε1/4(z + a)).
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Illustrations of these comparisons are given in Figures 2 and 3. Again, we obtain
an excellent agreement. This confirms that the instability mechanism we have
described is indeed effective and moreover dominates the linear dynamics (1.6).

Figure 2. Plots of vthout (dashed line) and vnumout (full line), seen
as functions of y, at ε = 10−7. The left and right figures corre-
spond respectively to the real and imaginary parts. They match,
as expected, outside the shear layer.

Figure 3. Plots of the shear layer corrections vthin (dashed line)
and vnumin (full line), seen as functions of z, at ε = 10−7. The left
and right figures correspond respectively to the real and imaginary
parts.
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Appendix: Well-posedness in the analytic setting

We start from a simple estimate on the heat equation: For U0 ∈ W 0,∞
α (R+),

F ∈ L1(0, T ; W 0,∞
α (R+)), the solution U of

∂tU − ∂2
yU = F on R× R+, U |t=0 = U0, U |y=0 = 0,

satisfies

(A.1) ‖U‖L∞(W 0,∞
α ) ≤ C

(
‖U0‖W 0,∞

α
+ ‖F‖L1(W 0,∞

α )

)
.

This estimate follows directly from the representation formula

U(t, y) =

∫
R+

S(t, y, z)U0(z) dz +

∫ t

0

∫
R+

S(t− s, y, z)F (s, z) dz ds,

where the heat kernel in the half-plane S(t, y, z) reads

S(t, y, z) := G(t, y − z)−G(t, y + z), G(t, y) :=
1√
4πt

exp(−y2/4t).

The details are left to the reader. This estimate allows us to prove Proposition 1.
Indeed, by decomposing

u(t, x, y) =
∑
k∈Z

eikx Uk(t, y),

the well-posedness is an easy consequence of the a priori estimate

‖Uk(t, ·)‖W 0,∞
α

≤ C eρkt ‖Uk(0, ·)‖W 0,∞
α

for some ρ. Now, the equation satisfied by Uk is

∂tU
k − ∂2

yU
k = i k

(
U ′
s

∫ y

0

Uk(t, z) dz − UsU
k

)
.

Using (A.1), we get

‖Uk(t, ·)‖W 0,∞
α

≤ C‖Uk(0, ·)‖W 0,∞
α

+ Cs k

∫ t

0

‖Uk(s, ·)‖W 0,∞
α

ds,

where Cs depends on us. We conclude by the Gronwall lemma.
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