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ON THE IMAGE OF THE l-ADIC ABEL-JACOBI MAP
FOR A VARIETY OVER THE ALGEBRAIC CLOSURE

OF A FINITE FIELD

CHAD SCHOEN

0. Introduction

Let k0 be a finite field of characteristic p whose algebraic closure we denote by
k̄. Let Y be a smooth projective k0-variety. For each prime l 6= p there is an l-adic
Abel-Jacobi map

arY,l : CHr
hom(Yk̄)→ H2r−1(Yk̄,Zl(r)) ⊗Ql/Zl,

which is a potentially useful tool for studying the Chow group of nullhomologous
cycles on Yk̄. In this paper we investigate when arY,l is surjective. The first two
results are conditional, because they depend on assuming the truth of the Tate
conjecture (0.7).

(0.1) Theorem. Suppose that (0.7) holds. If p > 2 and the dimension of Y is at
most 4, then the set of prime numbers

LY := {l prime : l 6= p and arY,l is not surjective for some r}
is finite.

In order to extend (0.1) to varieties of arbitrary dimension we find it necessary
to make an assumption which goes beyond the Tate conjecture. Since such an
assumption is easily formulated, we include it in §9.6 as Hypothesis H. With this
hypothesis the same arguments which prove (0.1) yield immediately a result which
is independent of the dimension of Y :

(0.2) Theorem. Suppose that (0.7) and Hypothesis H hold. If p > 2, then LY is
a finite set.

To obtain results which don’t depend on conjectures, we restrict attention to
varieties of a special form. Let π : Y → X be a non-isotrivial, semi-stable, elliptic
surface with a section defined over a finite field k0 of characteristic p > 2. Write mπ

for the least common multiple of all m such that π has a singular fiber of Kodaira
type Im. Let W be the non-singular variety obtained by blowing up Y ×X Y along
the singular locus.

(0.3) Theorem. If l - 2 · 5 · p ·mπ, then a2
W,l is surjective.
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796 CHAD SCHOEN

An application of (0.3) and a theorem of Soulé [So] is the following extension of
[Sch, 14.2]:

(0.4) Theorem. Let E ⊂ P2 be the Fermat cubic curve. If l - 2 · 3 · p, then a2
E3,l

gives rise to an isomorphism

CH2
hom(E3

F̄p
)⊗ Zl → H3(E3

F̄p
,Ql/Zl(2)).

This last result may be reformulated in terms of the coniveau filtration on the
third cohomology. The interesting piece of this filtration is

NH3(Yk̄,Ql/Zl(2)) := Ker [H3(Yk̄,Ql/Zl(2))→ H3(k̄(Y ),Ql/Zl(2))].

From work of Bloch and Merkuriev and Suslin one knows that

CH2
hom(Yk̄)tors ⊗ Zl ' NH3(Yk̄,Ql/Zl(2)),

when H4(Yk̄,Zl(2)) is torsion free (cf. [Ras, 3.6]). Thus (0.4) is equivalent to

NH3(E3
F̄p
,Ql/Zl(2)) = H3(E3

F̄p
,Ql/Zl(2))(0.5)

for l - 2 · 3 · p.
It is interesting to speculate if (0.5) still holds when E3 is replaced by any smooth,

projective Y and l is allowed to be any prime different from p. A necessary condition
for this to happen would be the surjectivity of a2

Y,l ∀ l 6= p. However, this would
not be sufficient. In addition one would have to show that the torsion subgroup of
CH2

hom(Yk̄) is large. Soulé showed that CH2
hom(Yk̄) is a torsion group when Yk̄ is

a three-dimensional Abelian variety [So, 3.3]. One might hope that this result will
eventually be extended to all smooth, projective varieties Yk̄, although substantial
progress in this direction is not known to the author. The group CH2

hom(Yk̄)tors,
for certain special varieties Yk̄, is the subject of [Sch-T].

All the main results of this paper depend strongly on the assumption that the
base field, k̄, is the algebraic closure of a finite field. Analogous assertions about
smooth, projective varieties over other algebraically closed fields are often false.
For example, Bloch and Esnault considered the case of a variety, Y , defined over
a number field with good, ordinary reduction at a place above l and satisfying
H0(Y,Ω3

Y ) 6= 0. They proved that

NH3(YQ̄,Ql/Zl(2)) 6= H3(YQ̄,Ql/Zl(2))(0.6)

whenever certain technical hypotheses hold [Bl-Es]. In particular, (0.6) holds if
l ≡ 1 mod 3 and YQ̄ = E3

Q̄, where E is the Fermat cubic curve. This provides an
interesting contrast with (0.5).

Further contrasts become evident when one compares the results described above
with theorems and conjectures concerning the Hodge theoretic Abel-Jacobi map,
arY : CHr

hom(YC) → Jr(YC), for varieties defined over C. This map is known not
to be surjective when F r+1H2r−1(Y (C),C) 6= 0 [Gri, 13.2]. In fact, Green [Gre]
and Voisin (unpublished) show that the image of a2

V is torsion for a sufficiently
general hypersurface, VC ⊂ P4

C, of high degree. Combining this with the work of
Bloch and Esnault [Bl-Es, 4.1] leads one to speculate that a2

V might be the zero
map. A conjecture of Nori may be viewed as going even further to suggest that
CH2

hom(VC) = 0 [No, 7.2.5].
Before outlining the organization of the paper we state the Tate conjecture in

the form required for (0.1) and (0.2):
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(0.7) Conjecture. Let k0 ⊂ k be an arbitrary finite extension and let V/k be an
arbitrary smooth, projective variety. Then

(0.7.1) the Frobenius element φ ∈ Gk acts semi-simply on
⊕

j≥0H
j(Vk̄,Ql) and

(0.7.2) the cycle class map CHs(V ) ⊗ Ql → H2s(Vk̄,Ql(s))Gk is surjective for
all s.

We now describe the organization of the paper and the contents of the individual
sections. The first section is devoted to definitions and basic properties of the l-adic
intermediate Jacobian and the l-adic Abel-Jacobi map, arY,l. We also consider a
mod l version of arY,l which is easier to compute, but may still be used to show that
arY,l is surjective.

The proofs of (0.1) and (0.2) make use of the theory of Lefschetz pencils. Central
to the argument is the study of cycles supported in the fibers of such a pencil.
Thus in §2 we consider a modified l-adic Abel-Jacobi map which is suitable for
studying cycles supported in the fibers of a morphism from a variety to a curve.
The point here is to reduce the problem of evaluating arY,l at a nullhomologous
cycle to considerations involving only constructible sheaves on the curve. In fact
this variant of the l-adic Abel-Jacobi map may be evaluated on Tate classes in the
cohomology of the fibers, even if these are not known to correspond to algebraic
cycles. We define a mod l version of this map and observe that evaluating it on a
Tate class corresponds to computing a coboundary map associated with the relative
cohomology sequence for a certain constructible sheaf, M, of Fl-vector spaces on
the curve.

Sections 3 through 7 are devoted to the study of this coboundary map. The
challenge here is to identify a finite field extension, k0 ⊂ k, and a k rational point,
x ∈ Xk, such that the coboundary map

H2
x(Xk̄,M)Gk → H1(Gk, H1(Xk̄,M))

is injective. Furthermore the domain of this map should contain a non-zero element
which comes from a Tate class. Requiring that H2

x(Xk̄,M)Gk be one-dimensional
turns out to be helpful here. The main technical result is Theorem (3.4).

The proof of Theorem (3.4) is begun in §4. We first pass to a finite Galois
cover of the base curve in order to trivialize the sheaf M. Write Γ for the Galois
group of this cover. The original coboundary map may now be replaced with a
Fl[Γ]-linear coboundary map involving the cohomology of a constant sheaf on the
covering curve.

Sections 5 and 6 are devoted to the detailed study of the cohomology of the
covering curve as a module over Fl[Γ]. The proof of Theorem (3.4) is completed in
§7.

The next section contains a criterion for the existence of many Tate classes in
the cohomology of the fibers of a morphism from a variety to a curve. In (8.2.2)
the connection between H2

x(Xk̄,M)Gk being one-dimensional and Tate classes is
discussed.

Section 9 is devoted to showing that the machinery developed in previous sections
to evaluate the mod l Abel-Jacobi map at Tate classes in fibers applies to certain
Lefschetz pencils. In particular we check that there are plenty of Tate classes in the
fibers and that the hypotheses of Theorem (3.4) are fullfilled whenM is constructed
from the vanishing cohomology.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



798 CHAD SCHOEN

The proofs of (0.1) and (0.2) are given in §10. We start with the case of curves,
where the results are well known, and proceed by induction on the dimension. A
given variety Y will be blown up along the base locus of a Lefschetz pencil to obtain
a variety W which maps to a curve. If the dimension of Y is odd, the techniques
developed in the first part of the paper enable us to study the l-adic Abel-Jacobi
map for the middle dimensional cohomology. By induction and the Tate conjecture
this is the crucial case.

Theorem (0.3) is a generalization of [Sch, 0.4]. It is proved in §11 by recalling
facts about elliptic surfaces and complex multiplication cycles and then applying
Theorem (3.4). Now Theorem (0.4) follows from (0.3) much as [Sch, 14.2] followed
from [Sch, 10.2]. The reader interested only in the proofs of (0.3) and (0.4) may
skip §8, §9 and §10.

I wish to thank M.S.R.I., the Max-Planck-Institut für Mathematik in Bonn and
the I.H.E.S. for their hospitality while various parts of this work were being done.
I also thank the referee for his or her comments.

Notational conventions. For a fieldK, K̄ denotes a separable closure and GK :=
Gal(K̄/K).

Variety means a geometrically integral, separated scheme of finite type over a
field. A curve is a variety of dimension 1.
k0 ⊂ k1 ⊂ k are finite fields.
l is an odd prime number, which is distinct from the characteristic of the base

field. Fl is a field with l elements.
If H is an Abelian group, H/t denotes the quotient of H by its torsion subgroup

and H [n] denotes the kernel of multiplication by n.
Zr(W ) denotes the group of codimension r algebraic cycles on a variety W .
If W is smooth over a field K of characteristic p ≥ 0, define

Zrhom(W ) := Ker[Zr(W )→
∏
l6=p

H2r(WK̄ ,Zl(r))].

For V a closed subscheme of a variety W and F on W ,

H i
V (W,F)0 := Ker[Hi

V (W,F)→ H i(W,F)].

If ∗ is a short exact sequence of Gk-modules, then the first coboundary map in
the associated long exact Gk-cohomology sequence will be denoted δ∗.

If M is a group representation, the contragredient representation will be denoted
M∨.

1. The l-adic intermediate Jacobian and the l-adic Abel-Jacobi map

1.1. The l-adic intermediate Jacobian. Let W be a variety which is proper
and smooth over a field K0 which is finitely generated over the prime field. Fix a
separable closure K̄ of K0 and let l be a prime distinct from the characteristic of
K0. For an Abelian group H , H/t denotes the quotient by the torsion subgroup.
We define the l-adic intermediate Jacobian

Jrl (W ) := lim−→K H1(GK , H2r−1(WK̄ ,Zl(r))/t),(1.1.1)

where the direct limit is taken over subfields K ⊂ K̄ which are finite extensions of
K0. In this paper we shall be exclusively concerned with the case in which K0 = k0

is a finite field. In this situation the structure of Jrl (W ) turns out to be especially
simple.
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THE IMAGE OF THE l-ADIC ABEL-JACOBI MAP 799

It is useful to introduce the more general notion of the l-adic intermediate Ja-
cobian of a Galois module. Let H be a finitely generated Zl-module on which the
absolute Galois group Gk0 acts continuously. Suppose further that no eigenvalue
for the operation of the Frobenius element φ ∈ Gk0 on H ⊗ Ql is a root of unity.
Such Gk0 -modules form a category and we may consider the functor to the category
of Abelian groups defined by

J(H) := lim−→ kH
1(Gk, H/t),(1.1.2)

where the limit is over intermediate fields k0 ⊂ k ⊂ k̄ of finite degree over k0.

(1.1.3) Lemma. (i) J(H2r−1(Wk̄,Zl(r))) is defined and is isomorphic to Jrl (W ).
(ii) J(H) ' H ⊗Ql/Zl as Gk0-modules.
(iii) For each finite extension k0 ⊂ k, J(H)Gk is a finite group.

Proof. (i) By Deligne’s theorem [De1] the eigenvalues of the arithmetic Frobenius,
φ, acting on H2r−1(Wk̄,Zl(r)) ⊗ Ql are algebraic numbers with complex absolute
value different from 1. The first step in the proof of (ii) is to apply Gk-cohomology
to the short exact sequence

0→ H/t → H ⊗ Ql → H ⊗Ql/Zl → 0.(1.1.4)

A topological generator of Gk is a power, φm, of φ. Since no root of unity is an
eigenvalue of φ, both

H0(Gk, H ⊗Ql) = Ker (IdH⊗Ql
− φm)

and

H1(Gk, H ⊗Ql) = Coker (IdH⊗Ql
− φm)

are zero. Now assertion (ii) follows by taking direct limits. For (iii) observe that
(H ⊗ Ql/Zl)Gk is finite, since 1 is not an eigenvalue for the action of φm on H ⊗
Ql.

For future reference we record four additional facts related to the functor J .

(1.1.5) Lemma. (i) Let h : H → H ′ be a homomorphism of finitely generated
Zl-modules. Then h⊗ Id : H ⊗Ql → H ′⊗Ql is surjective iff h⊗ Id : H⊗Ql/Zl →
H ′ ⊗Ql/Zl is.

(ii) For any finite extension k/k0, the natural map H1(Gk, H/t) → J(H)Gk is
an isomorphism.

(iii) If H is torsion free, then there is a canonical isomorphism, J(H)Gk/l →
H1(Gk, H/l).

(iv) Let h : H → H ′ be a homomorphism of finitely generated Zl-modules and
let A ⊂ H ⊗ Ql/Zl be a subgroup. If the Tate module of A tensored with Ql maps
surjectively to H ′ ⊗Ql, then A maps surjectively to H ′ ⊗Ql/Zl.

Proof. (i) follows from (1.1.4). (ii) follows from (1.1.3)(ii) and (1.1.4). For (iii)
apply Gk-cohomology to

0→ H ⊗ 1
lZl/Zl → H ⊗Ql/Zl

l−−−−→ H ⊗Ql/Zl → 0.

For (iv) note that A is the direct sum of its maximal divisible subgroup and a finite
group. The former may be written H ′′ ⊗Ql/Zl where H ′′ is a Zl-submodule of H .
Now the tautological map H ′′ ⊗ Ql/Zl → H ′ ⊗ Ql/Zl is surjective if and only if
H ′′ ⊗Ql → H ′ ⊗Ql is surjective.
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800 CHAD SCHOEN

1.2. The definition of the l-adic Abel-Jacobi map. For each finite extension
k/k0 there is an l-adic Abel-Jacobi map

αrl,k : Zrhom(Wk)→ Jrl (W )Gk .(1.2.1)

To evaluate αrl,k on a cycle z write

bzc ∈ H2r
|z|(Wk̄,Zl(r))0 := Ker[H2r

|z|(Wk̄,Zl(r))→ H2r(Wk̄,Zl(r))](1.2.2)

for the fundamental class of z. By purity [Mi, VI.5.1], H2r−1
|z| (Wk̄,Zl(r)) = 0. Thus

there is a short exact sequence of Gk-modules,

0→ H2r−1(Wk̄,Zl(r))→ H2r−1((W − |z|)k̄,Zl(r))→ H2r
|z|(Wk̄,Zl(r))0 → 0.

(1.2.3)

Applying the first coboundary map

δ1.2.3 : H2r
|z|(Wk̄,Zl(r))

Gk
0 → H1(Gk, H2r−1(Wk̄,Zl(r)))

to bzc and then taking the image under the tautological map

H1(Gk, H2r−1(Wk̄,Zl(r)))→ H1(Gk, H2r−1(Wk̄,Zl(r))/t) ' Jrl (W )Gk

gives αrl,k(z). Define

arW,l : Zrhom(Wk̄)→ Jrl (W ), arW,l := lim−→ k α
r
l,k.(1.2.4)

(1.2.5) Proposition. The map αrl,k factors through CHr
hom(W ). Both αrl,k and

arW,l factor through CHr
hom(Wk̄) and are functorial with respect to correspondences.

Proof. [Ja, 9.8] or [Sch, 1.10].

For a more detailed discussion of l-adic Abel-Jacobi maps, the reader is referred
to [Ja] and [Sch, §1].

(1.2.6) Definition. The mod l Abel-Jacobi map, denoted ᾱrl,k, is the composition
of αrl,k with the tautological map Jrl (W )Gk → Jrl (W )Gk/l.

1.3. The mod l Abel-Jacobi map for curves. Let C/k be a smooth complete
curve and let c0 be a degree one point. Consider the following diagram:

C̆
ĭ0−−−−→ Pic0(C)ym̆l

yml

C
i0−−−−→ Pic0(C),

(1.3.1)

where i0(c) = OC(c − deg(c)c0), ml is multiplication by l, C̆ is the fiber product
and ĭ0 and m̆l are the canonical projections. For a fixed degree one point c distinct
from c0 define

δ1.3.2 : H2
{c,c0}(Ck̄, µl)

Gk
0 → H1(Gk, H1(Ck̄, µl))

to be the first coboundary map associated to the short exact sequence of Gk-
modules,

0→ H1(Ck̄, µl)→ H1((C − {c, c0})k̄, µl)→ H2
{c,c0}(Ck̄, µl)0 → 0.(1.3.2)
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(1.3.3) Lemma. Suppose that Gk acts trivially on H1(Ck̄, µl). Then
(i) Ker(ml) consists of degree one points.
(ii) k(C̆)/k(C) is Galois, in fact Abelian.
(iii) There are canonical isomorphisms

H1(Gk, H1(Ck̄, µl)) ' Hom(Gk, H1(Ck̄, µl))

' H1(Ck̄, µl) ' Ker(ml)(k) ' Gal(k(C̆)/k(C)).

Proof. (i) follows from the canonical identification Ker(ml) ' H1(Ck̄, µl). (ii)
follows from (i) as does (iii) once one notes that the second isomorphism in (iii) is
obtained by evaluating a homomorphism at the Frobenius element φ ∈ Gk.

(1.3.4) Proposition. (i) The isomorphism (1.1.5)(iii) identifies δ1.3.2(c− c0) with
the mod l Abel-Jacobi map ᾱrl,k for C evaluated at c− c0.

(ii) The isomorphism in (1.3.3)(iii) identifies δ1.3.2(c − c0) with the Frobenius
element Frobc ∈ Gal(k(C̆)/k(C)).

Proof. (i) is straightforward. (ii) is a special case of [Sch, 1.14]. (The sign in loc.
cit. is different since Frobw in loc. cit. was inadvertently defined to be the inverse
of the usual Frobenius. The sign is irrelevant in the sequel.)

1.4. A strategy for proving surjectivity of the l-adic Abel-Jacobi map.
The following lemma gives a strategy for proving surjectivity of l-adic Abel-Jacobi
maps which involves only computations mod l.

(1.4.1) Lemma. Let k1 ⊂ k2 ⊂ k3 ⊂ ... be a sequence of finite extensions of k0

such that
⋃
n∈N kn = k̄ and the composition

ᾱrl,kn
: Zrhom(Wkn)

αr
l,kn−−−−→ Jrl (W )Gkn −−−−→ Jrl (W )Gkn /l

is surjective for each n. Then arW,l : Zrhom(Wk̄)→ Jrl (W ) is surjective.

Proof. Since Jrl (W )Gkn is a finite Abelian l-group, αrl,kn
is surjective if and only if

ᾱrl,kn
is. The lemma follows, since arW,l is the direct limit of the αrl,kn

’s.

In practice it is useful to break the l-adic intermediate Jacobian up into pieces
and to prove surjectivity for each individual piece separately using an argument
similar to (1.4.1). In order to carry out this program it is necessary to discuss some
variants of the l-adic Abel-Jacobi map.

2. Variants of the l-adic Abel-Jacobi map

2.1. Cycles supported in fibers and the Leray spectral sequence. Let
k0 ⊂ k be an extension of finite fields. Assume the following

(2.1.1) Geometric situation. f : W → X is a flat, generically smooth morphism
of smooth proper varieties over k0. X is a curve, W has dimension 2m+1 ≥ 3, and
the geometric fibers of f are connected. The inclusion of the largest open subset
over which f is smooth is denoted j : Ẋ → X . The inclusion of the generic point
is denoted g : η → X . After base changing to k we have a diagram in which all
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squares are Cartesian:

W ′ −−−−→ Wk ←−−−− Ẇk
iV←−−−− V

f ′
y f

y ḟ

y y
X ′ −−−−→ Xk

j←−−−− Ẋk
ix←−−−− x

Here ix is a k-rational point and X ′ is the complement of the image of x in Xk.

Given the geometric situation (2.1.1) and a cycle z ∈ Zm+1
hom (Wk) supported on

V there is a restriction map from (1.2.3) (with r = m+ 1) to

(2.1.2) 0→ H2m+1(Wk̄,Zl(m+ 1))
iV ∗(H2m+1

V (Wk̄,Zl(m+ 1)))
→ H2m+1(W ′̄

k,Zl(m+ 1))

→ H2m+2
V (Wk̄,Zl(m+ 1))0 → 0.

Let L• denote the filtration on H2m+1(Wk̄,Zl(m + 1)) and (L′)• the filtration
on H2m+1(W ′̄

k
,Zl(m + 1))) resulting from the Leray spectral sequence for f (re-

spectively f ′). From the commutative diagram

H2m+1
V (Wk̄,Zl(m+ 1)) iV ∗−−−−→ H2m+1(Wk̄,Zl(m+ 1))x x

H2
x(Xk̄, R

2m−1f∗Zl(m+ 1)) −−−−→ H2(Xk̄, R
2m−1f∗Zl(m+ 1)),

(2.1.3)

in which the left-hand arrow is an isomorphism by purity and the bottom arrow is
surjective, it follows that

iV ∗(H2m+1
V (Wk̄,Zl(m+ 1))) = L2.(2.1.4)

Thus

0→ L1/L2 → (L′)1 → H2m+2
V (Wk̄,Zl(m+ 1))0 → 0(2.1.5)

may be identified with an exact subsequence of (2.1.2). We may rewrite (2.1.5) in
terms of the cohomology of H := R2mf∗Zl(m+ 1) on the curve X . In the spectral
sequences for f and f ′, E1,1

2 = E1,1∞ . Also (L′)2 = 0. One deduces that (2.1.5) is
isomorphic to

0→ H1(Xk̄,H)→ H1(X ′̄
k
,H)→ H2

x(Xk̄,H)0 → 0.(2.1.6)

Write bzcV for the image of bzc in H2m+2
V (Wk̄,Zl(m + 1))Gk

0 and bzcx for the
image of bzcV in H2

x(Xk̄,H)Gk
0 . Throughout this paper δ∗ will denote the first

coboundary map on Gk-cohomology associated to a short exact sequence (*). With
this notation δ2.1.5(bzcV ) maps to δ2.1.6(bzcx). Since δ1.2.3(bzc) (with r = m + 1)
maps to δ2.1.5(bzcV ), we conclude that the coboundary map δ2.1.6 gives information
concerning the value of the l-adic Abel-Jacobi map at a cycle supported in a smooth
fiber of f .

2.2. Cycles supported in fibers and a criterion for surjectivity of the
l-adic Abel-Jacobi map. Assume the geometric situation (2.1.1). Denote by
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Zm(f−1(x))0 the inverse image of Zm+1
hom (Wk) under the canonical injection

Zm(f−1(x))→ Zm+1(Wk). Define

Zm+1
f (Wk) := im[

⊕
x∈Ẋk(k)

Zm(f−1(x))0 → Zm+1
hom (Wk)]

and Zm+1
f (Wk̄) = lim−→Zm+1

f (Wk), where the limit is over finite intermediate fields
k0 ⊂ k ⊂ k̄. Clearly Zm+1

f (Wk̄) may be regarded as the subgroup of Zm+1
hom (Wk̄)

generated by cycles supported on the smooth fibers. There is a canonical map

af : Zm+1
f (Wk̄)→ J(L1/L2)(2.2.1)

whose value at a cycle z is computed as follows: First note that z is defined over
a finite extension k ⊃ k0 and is supported in a fiber V . Thus z ∈ Zm(Vk)0. Then
af (z) is given by the image of δ2.1.5(bzcV ) ∈ H1(Gk, L1/L2) in J(L1/L2)Gk . The

image of af (z) under the natural map J(L1/L2)
ζ1→ J(L0/L2) coincides with the

image of am+1
W,l (z) under the natural map Jm+1

l (W )
ζ2→ J(L0/L2).

Write LiJm+1
l (W ) for the image of J(Li) in Jm+1

l (W ).

(2.2.2) Lemma. am+1
W,l (Zm+1

f (Wk̄)) ⊂ L1Jm+1
l (W ).

Proof. By (1.1.3)(ii) J is a right exact functor. Thus the rows in the commutative
diagram

0 −−−−→ L1Jm+1
l (W ) −−−−→ Jm+1

l (W ) −−−−→ J(L0/L1) −−−−→ 0

ζ2

y ∥∥∥
J(L1/L2)

ζ1−−−−→ J(L0/L2) −−−−→ J(L0/L1) −−−−→ 0

are exact. One deduces that L1Jm+1
l (W ) = ζ−1

2 (ζ1(J(L1/L2))) and the assertion
follows.

(2.2.3) Proposition. In order to show that am+1
W,l : Zm+1

hom (Wk̄) → Jm+1
l (W ) is

surjective it suffices to verify that the following three conditions hold:
(i) amV,l : Zmhom(Vk̄)→ Jml (V ) is surjective.
(ii) af is surjective.
(iii) The composition of am+1

W,l with the tautological map Jm+1
l (W ) t→ J(L0/L1)

is surjective.

Proof. Assume (i). The canonical isomorphism

H2m−1(Vk̄,Zl(m)) ' H2m+1
V (Wk̄,Zl(m+ 1))

and (2.1.4) imply that L2Jm+1
l (W ) is in the image of am+1

W,l . Since iV ∗(Zmhom(Vk̄)) ⊂
Zm+1
f (Wk̄), this shows that L2Jm+1

l (W ) ⊂ am+1
W,l (Zm+1

f (Wk̄)). Assume (ii). Then

ζ2(am+1
W,l (Zm+1

f (Wk̄))) = ζ1(J(L1/L2)).

Since L2Jm+1
l (W ) = Ker(ζ2), (i) and the proof of (2.2.2) imply am+1

W,l (Zm+1
f (Wk̄)) =

L1Jm+1
l (W ). Finally assume (iii). Then the surjectivity of am+1

W,l follows from
L1Jm+1

l (W ) = Ker(t).
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2.3. A variant of the l-adic Abel-Jacobi map associated to a subsheaf.
Keep the notations of 2.2. In practice it often happens that the inverse system
H(−1) = {R2mf∗Z/ln(m)}n∈N contains a direct factor E := {En}n∈N which satis-
fies:

(i) ∀ x ∈ Ẋ(k̄), Ex := lim←−(En)x is torsion free, and

(ii) H2
x(Xk̄, E(1)) = H2

x(Xk̄, E(1))0.(2.3.1)

It is in this context that we wish to define the l-adic Abel-Jacobi map on Tate
cycles. One application will be to the situation where f comes from a Lefschetz
pencil of hyperplane sections and E comes from the vanishing cohomology (cf. §9).

For each x ∈ Ẋ(k̄) an open subgroup of Gk acts on Ex ' H2
x(Xk̄, E(1)). Write g

for the l-adic Lie algebra of the image. The subgroup annihilated by g, Eg
x , is the

subgroup of Tate cycles. Define Z(E) =
⊕

x∈Ẋ(k̄) Eg
x . There is an abstract l-adic

Abel-Jacobi map

aE : Z(E)→ J(H1(Xk̄, E(1))),(2.3.2)

which may be evaluated on a Tate class z ∈ Eg
x as follows: Choose a finite extension

field k ⊃ k0 such that z ∈ EGk
x and let δ2.3.3 be the first coboundary map associated

to the short exact sequence of Gk-modules

0→ H1(Xk̄, E(1))→ H1(X ′̄
k
, E(1))→ H2

x(Xk̄, E(1))0 → 0.(2.3.3)

Now aE(z) is defined to be the image of δ2.3.3(z) under the natural map

H1(Gk, H1(Xk̄, E(1)))→ J(H1(Xk̄, E(1))).

It is clear that aE (z) does not depend on the choice of k.
A choice of projection q : H(−1)→ E gives rise to a map

q#x : Zm(f−1(x))0 → H2m+2
f−1(x)(Wk̄,Zl(m+ 1))g ' Hx(−1)g qx→ Eg

x ,

and hence to a map

q# :=
⊕

x∈Ẋ(k̄)

q#x : Zm+1
f (Wk̄)→ Z(E).(2.3.4)

There is also a map

q∗ : J(L1/L2) ' J(H1(Xk̄,H))
J(H1(q))−−−−−−→ J(H1(Xk̄, E(1))).

(2.3.5) Lemma. q∗ ◦ af = aE ◦ q#.

Proof. Straightforward.

2.4. A criterion for the surjectivity of aE using only computations mod l.
We first introduce a mod l version of the map aE , which will be easier to compute
than aE itself. Suppose that the inverse system {En}n is a constructible l-adic sheaf
in the sense of [Mi, p. 163] and that En is flat over Z/ln for all n.

(2.4.1) Lemma. (i) Suppose that H0(Xk̄, E1(1)) = 0. Then H1(Xk̄, E(1)) is tor-
sion free.

(ii) Suppose that j∗En is locally constant for all n and H0(Ẋk̄, E∨1 ) = 0. Then
H1(Xk̄, E(1))/l ' H1(Xk̄, E1(1)).

(iii) If (i) and (ii) hold, then

J(H1(Xk̄, E(1)))Gk/l ' H1(Gk, H1(Xk̄, E1(1))).
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Proof. (i) This follows from [Mi, V.1.11]. (ii) [Mi, V.1.11] also implies that

0→ H1(Xk̄, E(1))/l → H1(Xk̄, E1(1))→ H2(Xk̄, E(1))[l]→ 0

is exact. It suffices to show that H2(Xk̄, En(1)) = 0 for all n. This follows from
Poincaré duality,

H2(Xk̄, En(1)) ' H2(Xk̄, j∗j
∗En(1)) ' H0(Xk̄, j∗j

∗E∨n )∨ ' H0(Ẋk̄, E∨n )∨,

and induction on n using the exactness of

0→ H0(Ẋk̄, E∨n )→ H0(Ẋk̄, E∨n+1)→ H0(Ẋk̄, E∨1 ).

(iii) This follows from the above and (1.1.5)(iii).

Reduction mod l gives a map from (2.3.3) to

0→ H1(Xk̄, E1(1))→ H1(X ′̄
k
, E1(1))→ H2

x(Xk̄, E1(1))0 → 0.(2.4.2)

Given z ∈ EGk
x , write z̄ ∈ H2(Xk̄, E1(1))Gk

0 for the class of z mod l. The isomor-
phism in (2.4.1)(iii) sends the reduction of aE(z) mod l to δ2.4.2(z̄).

Let k0 ⊂ k1 be a finite extension so that Gk1 acts trivially on H1(Xk̄, E1(1)).
When k1 ⊂ k, we may regard δ2.4.2(z̄) as an element of H1(Xk̄, E1(1)) via

H1(Gk, H1(Xk̄, E1(1))) ' Hom(Gk, H1(Xk̄, E1(1))) ' H1(Xk̄, E1(1)),

where the last isomorphism sends a homomorphism to its value on the Frobenius
element.

(2.4.3) Proposition. Assume
(i) the hypotheses of (2.4.1) hold and
(ii) for each non-zero ε ∈ H1(Xk̄, E1(1)) and each finite extension k1 ⊂ k, there

exist x ∈ Ẋ(k) and z ∈ EGk
x such that δ2.4.2(z̄) is a non-zero multiple of ε.

Then the map aE : Z(E)→ J(H1(Xk̄, E(1))) is surjective.

Proof. As in the proof of (1.4.1) it suffices to show that the composition⊕
x∈Ẋ(k) EGk

x
aE−−−−→ J(H1(Xk̄, E(1)))Gk −−−−→ J(H1(Xk̄, E(1)))Gk/l

is surjective for each k. Since the identification of J(H1(Xk̄, E(1)))Gk/l with
H1(Xk̄, E1(1)) takes aE (z) mod l to δ2.4.2(z̄), this is an immediate consequence
of the hypotheses.

In order to apply Proposition (2.4.3) to prove surjectivity of Abel-Jacobi maps
in situations where the Tate conjecture holds for the fibers of f , it is necessary to
understand more about the coboundary map δ2.4.2. In the next section we take up
this problem under the assumption that the étale sheaf E1 is the direct image of a
sheaf on the generic point of X .

3. The coboundary map associated to a constructible sheaf

on a curve

3.1. The set up. Let Ẍ ⊂ X be a non-empty open affine subset of a smooth
projective curve over a finite field k0 of characteristic p > 2. Let k0 ⊂ k be a finite
extension. Fix x ∈ Xk(k) and let g : η → X denote the inclusion of the generic
point. Let M be a finite-dimensional Fl-vector space and let

κ : Gal(k(X)/k(X))→ AutFl
(M)
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be a continuous representation, whose image will be denoted by Γ. The resulting
étale sheaf on η will be denoted M . Set M = g∗M . There is an exact sequence of
Gk-modules

0→ H1(Xk̄,M)→ H1(X ′̄
k
,M)→ H2

x(Xk̄,M)0 → 0,(3.1.1)

whereX ′ := X−x. We may drop the subscript 0 from the right-hand term precisely
when the isomorphic groups

H2(Xk̄,M) ' H0(Xk̄,M∨(−1)) ' (M∨(−1))Γ(3.1.2)

are 0 [Mi, V.2.2(b)]. The coboundary map associated to (3.1.1) will be denoted

δ3.1.1 : H2
x(Xk̄,M)Gk

0 → H1(Gk, H1(Xk̄,M)).

We now begin the task of analyzing the map δ3.1.1 under suitable hypotheses.
Eventually the results will be applied whenM = E1(1), in which case (3.1.1) is just
(2.4.2).

3.2. Hypotheses on the base field. We make the following assumptions on the
finite base field k:

(3.2.1) k is algebraically closed in the fixed field of Kerκ.
(3.2.2) k contains l distinct l-th roots of unity.
By (3.2.1) there is a smooth, projective curve C defined over k such that k(C)

is the fixed field of Kerκ. We write ρ : C → Xk for the corresponding morphism.
Assume

(3.2.3) There is a degree one point x0 of X such that each point in the fiber,
ρ−1(x0), has degree one.

(3.2.4) For any two points c0, b0 ∈ ρ−1(x0) the class c0 − b0 ∈ Pic0(C)(k) is
divisible by l.

(3.2.5) Gk acts trivially on H1(Ck̄, µl).
In order to state our final hypothesis on the base field k, we fix a degree one

point c0 ∈ ρ−1(x0) and recall the curve C̆ and the map ĭ0 from (1.3).

Lemma. k(C̆)/k(X) is Galois.

Proof. Since k(C̆)/k(C) is Galois, by (3.2.5) it suffices to show that each γ ∈
Γ = Gal(k(C)/k(X)) is the image of some γ̆ ∈ Aut(k(C̆)/k(X)). Write γ∗ ∈
Aut(Pic0(C)) for the group automorphism induced by γ. Define γ′ ∈ Aut(Pic0(C))
by γ′(d) = γ∗(d) + γ(c0) − c0. This is an automorphism of Pic0(C) as a principal
homogeneous space. Now γ′ induces the automorphism γ on the curve i0(C). By
(3.2.4) there is a degree one point dγ ∈ Pic0(C) such that ldγ ∼rat γ(c0) − c0.
Define γ̆ ∈ Aut(Pic0(C)) by

γ̆(d) = γ∗(d) + dγ , ∀d ∈ Pic0(C).

Since lγ̆(d) = γ′(ld), γ̆ stabilizes ĭ0(C̆) and thus gives an element of Aut(k(C̆)/k(X))
which lifts γ.

Let Σ ⊂ X denote the branch locus of ρ : C → X . The final assumption on k is:
(3.2.6) For every conjugacy class F ⊂ Gal(k(C̆)/k(X)) there is a k-rational point

x ∈ (Ẍ ∩X − Σ)(k) with the property that Frobx = F.
No matter how M was chosen, one can always arrange that (3.2.1–6) hold by

taking k to be a suitable finite extension of k0. In fact there is a finite extension
k0 ⊂ k1 such that (3.2.1–6) hold for every finite extension k of k1. In the case of
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(3.2.6) this assertion is a variant of the Tchebotarev density theorem (cf. [Lan] or
[Sch, 9.9]).

3.3. Hypotheses on the monodromy representation. We need some assump-
tions on the structure of M as an Fl[Γ]-module. Before stating these we note the
following conventions: All Fl[Γ]-modules in this paper are finitely generated left
Fl[Γ]-modules. If L is such a module, we denote by L∨ := HomZ(L,Fl) the dual
module, and by PL the projective cover [Al, §20]. There is, up to isomorphism, a
unique way to write L as a product of indecompossible Fl[Γ]-modules [Al, p. 23].
Thus one can speak of the multiplicity with which an indecomposible factor occurs
in L.

We assume
(3.3.1) κ : Gal(k(X)/k(X))→ AutFl

(M) is tamely ramified.
(3.3.2) (M∨)Γ = 0.
(3.3.3) M is an absolutely irreducible Fl[Γ]-module.
(3.3.4) H1(Γ,M) = 0.
(3.3.5) H1(Γ,M∨) = 0.
(3.3.6) There exists ξ ∈ Γ of order prime to l such that M 〈ξ〉 ' Fl.

(3.3.7) Remark. Very often M comes equipped with a Γ-invariant, non-degenerate
bilinear form. In this case (3.3.4) and (3.3.5) are equivalent.

(3.4) Theorem. Suppose that (3.2.1–6) and (3.3.1–6) hold. Then H1(Xk̄,M) is
a trivial Gk-module and for each

ε ∈ H1(Gk, H1(Xk̄,M)) ' Hom(Gk, H1(Xk̄,M)) ' H1(Xk̄,M),

there is a degree one point x of Ẍ ∩X − Σ such that

H2
x(Xk̄,M)Gk

0 ' Fl(3.4.1)

and

ε ∈ δ3.1.1(H2
x(Xk̄,M)Gk

0 ).(3.4.2)

The proof of the theorem occupies the next four sections. A rough overview of
the main steps follows.

Step 1. Define a functor

Λ : Finite Fl[Γ]-modules −→ Fl-vector spaces; Λ(N) = (N ⊗Z M)Γ
(3.4.3)

and interpret (3.1.1) as Λ applied to

0→ H1(Ck̄, µl)→ H1((C − ρ−1(x))k̄, µl)→ H2
ρ−1(x)(Ck̄, µl)0 → 0.(3.4.4)

Show δ3.1.1 = Λ(δ3.4.4).
Step 2. Determine the multiplicity of PM∨ as a direct factor in the Fl[Γ]-modules

H2
ρ−1(x)(Ck̄, µl)

Gk
0 and H1(Ck̄, µl). Show that for a suitable choice of x there exists

an Fl[Γ]-linear map, δ : H2
ρ−1(x)(Ck̄, µl)

Gk
0 → H1(Ck̄, µl), with the property that

the image of Λ(δ) may be identified with Flε.
Step 3. Recall from (1.3.4) that the map δ3.4.4 is controlled by Frobenius conju-

gacy classes in Gal(k(C̆)/k(C)) associated to certain degree zero divisors supported
on ρ−1(x). Describe explicitly a conjugacy class F ⊂ Gal(k(C̆)/k(X)) with the
property that Frobx = F implies dimFl

(H2
x(Xk̄,M)Gk

0 ) = 1 and that Flε may be
identified with the image of Λ(δ3.4.4).
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4. Cohomology on a finite cover

We keep the notation of the previous section. Assume that (3.2.1–2) and (3.3.1–
2) hold. Let gC : ηC → C denote the inclusion of the generic point. Set MC :=
gC∗(M |ηC ). This is a constant sheaf. Let Ξ ⊂ X be a finite set of closed points,
which are disjoint from the branch locus Σ of ρ. Denote the stabilizer of a closed
point c ∈ Ck̄ by Γc ⊂ Γ and the stalk of a sheaf F at c by Fc.
(4.1) Proposition. (i) There is a commutative diagram with exact rows:

0→ H1(Xk̄,M) −−−−→ H1((X − Ξ)k̄,M) −−−−→ H2
Ξ(Xk̄,M)→ 0

β

y β′
y β•

y'
0→ H1(Ck̄,MC)Γ −−−−→ H1((C − ρ−1(Ξ))k̄,MC)Γ −−−−→ H2

ρ−1(Ξ)(Ck̄,MC)Γ → 0.

(ii) If H1(Γ,M) ' 0, then β and β′ are injective.
(iii) If H2(Γ,M) ' 0 and H1(Γc, (MC)c) ' 0 for all closed points c ∈ Ck̄, then

β and β′ are surjective.

Proof. By (3.3.2) H2(Xk̄,M) ' 0. Thus the top row in the diagram is exact. The
group Γ acts on M |ηC

and hence onMC . It follows that Γ acts on ρ∗(MC). The
subsheaf of Γ-invariant sections will be denoted ρΓ

∗ (MC). One verifies directly that
M' ρΓ

∗ (MC). The vertical arrows in the diagram may be constructed by applying
cohomology to the map of sheaves on Xk̄,

ρΓ
∗ (MC)→ ρ∗(MC),

and then taking Γ-invariants. The injectivity and surjectivity of β may be analyzed
with the help of the left exact functor,

T : {étale sheaves on Ck̄ with Γ-action} → Abelian Groups,

T (F) = H0(Ck̄,F)Γ.

Writing T as a composition of two left exact functors in two different ways gives
rise to two spectral sequences [Gro, 5.2.5],

Epq2 = Hp(Xk̄, R
qρΓ
∗F)⇒ Rp+qT (F),

Epq2 = Hp(Γ, Hq(Ck̄,F))⇒ Rp+qT (F).

When F =MC , the corresponding 5-term exact sequences begin with

0→ H1(Xk̄,M)→ R1T (MC)→ H0(Xk̄, R
1ρΓ
∗ (MC)) and

0→ H1(Γ, H0(Ck̄,MC))→ R1T (MC)→ H1(Ck̄,MC)Γ → H2(Γ, H0(Ck̄,MC)).

Furthermore one can check that for each closed point x ∈ Xk̄

R1ρΓ
∗ (MC)x ' H1(Γc, (MC)c),

where c is any point in the fiber ρ−1(x) (cf. [Gro, 5.3.1]). Since M = H0(Ck̄,MC),
assertions (ii) and (iii) follow for the first vertical arrow. An analogous argument
with X − Ξ replacing X gives the assertions for β′.

To deal with β• we introduce a functor TΞ analogous to T defined by

TΞ(F) = H0
ρ−1(Ξ)(Ck̄,F)Γ ' H0

Ξ(Xk̄, ρ
Γ
∗F).
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There are spectral sequences

Epq2 = Hp
Ξ(Xk̄, R

qρΓ
∗F)⇒ Rp+qTΞ(F),

Epq2 = Hp(Γ, Hq
ρ−1(Ξ)(Ck̄,F))⇒ Rp+qTΞ(F).

The sheaves RqρΓ
∗F are supported on the branch locus of ρ for q > 0 [Gro, 5.3.1].

Since this closed subset does not meet Ξ, the first spectral sequence yields

Hn
Ξ(Xk̄, ρ

Γ
∗F) ' RnTΞ(F).

By purity [Mi, VI.5.1], Hn
ρ−1(Ξ)(Ck̄,MC) ' 0 for n 6= 2. Consequently the natural

maps

H2
Ξ(Xk̄, ρ

Γ
∗MC)→ R2TΞ(MC)→ H2

ρ−1(Ξ)(Ck̄,MC)Γ

are isomorphisms.
Finally the exactness of the bottom row in the diagram follows from the fact

that β• is an isomorphism.

4.2. Recall the definition of the functor Λ from (3.4.3). Since MC is the constant
sheaf associated with M ,

Hi(Ck̄,MC) ' Hi(Ck̄,Z/l)⊗Z M,

and similar isomorphisms hold when C is replaced by C − ρ−1(Ξ) or cohomology
is replaced by cohomology with support. Fix a degree one point x ∈ Xk − Σ.

(4.2.1) Lemma. Assume that (3.2.1–2) and (3.3.1–4) hold. Then (4.1) gives rise
to a commutative diagram of Gk-modules with exact rows:

0→ H1(Xk̄ ,M) −−−−−→ H1((X − x)k̄,M) −−−−−→ H2
x(Xk̄,M)→ 0

β

y β′
y β•

y'
0→ Λ(H1(Ck̄ , Z/l)) −−−−−→ Λ(H1((C − ρ−1(x))k̄ , Z/l)) −−−−−→ Λ(H2

ρ−1(x)
(Ck̄ , Z/l)0)→ 0.

(4.2.2)

The maps β and β′ are injective. Write δ4.2.2 for the first coboundary map in the
long exact Gk-cohomology sequence associated to the bottom row of (4.2.2). Then
there is a natural identification of δ3.1.1 with δ4.2.2.

Proof. Observe that Λ applied to

i : H2
ρ−1(x)(Ck̄,Z/l)0 → H2

ρ−1(x)(Ck̄,Z/l)

is an isomorphism since i is injective, Λ is left exact, the cokernel of i isH2(Ck̄,Z/l),
and Λ(H2(Ck̄,Z/l)) ' MΓ = 0 by (3.3.2–3). The first assertion follows. The
injectivity of β and β′ follows from (3.3.4) and (4.1)(ii). The final assertion is a
consequence of δ4.2.2 ◦ β• = β ◦ δ3.1.1.

4.3. To complete the first step in the proof of (3.4) we need to compare δ4.2.2
and Λ(δ3.4.4). The following commutative diagram, in which the columns are short
exact sequences, shows that

Gal(k(X)/k(X))/Gal(k(X)/k̄(C)) ' Γ×Gk
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and in particular that the action ofGal(k(X)/k(X)) onH1(Ck̄,Z/l) factors through
Γ×Gk:

1 −−−−→ Gal(k(X)/k̄(C)) −−−−→ Gal(k(X)/k(C))y y
1 −−−−→ Gal(k(X)/k̄(X)) −−−−→ Gal(k(X)/k(X)) −−−−→ Gk −−−−→ 1y yκ

Γ Γ.
Now δ4.2.2 may be identified with Λ(δ3.4.4) as the following abstract argument shows:

(4.3.1) Lemma. Let

0→ A0 → A1
ς→ A2 → 0(4.3.2)

be a short exact sequence of continuous Fl[Γ×Gk]-modules which are finite dimen-
sional Fl-vector spaces. Then

(i) Hj(Gk, Ai) is canonically an Fl[Γ]-module for each i.
(ii) The coboundary map for Gk-cohomology

δ4.3.2 : AGk
2 → H1(Gk, A0)

is Fl[Γ]-linear.
(iii) If the map Λ(ς) in

0→ Λ(A0)→ Λ(A1)
Λ(ς)→ Λ(A2)(4.3.3)

is surjective, then the coboundary δ4.3.3 is defined and may be identified with Λ(δ4.3.2).

Proof. The assertions (i) and (ii) are clear since the actions of Γ and Gk commute.
Since M is a trivial Gk-module, the coboundary δ4.3.4 associated to

0→ A0 ⊗Z M → A1 ⊗Z M → A2 ⊗Z M → 0(4.3.4)

may be identified with the composition

(A2 ⊗Z M)Gk ' AGk
2 ⊗Z M

δ4.3.2⊗IdM−−−−−−−→ H1(Gk, A0)⊗Z M ' H1(Gk, A0 ⊗Z M).

When Λ(ς) is surjective, δ4.3.3 may be identified with the restriction of δ4.3.4 to
the Γ-invariants. But this is (δ4.3.2 ⊗ IdM ) restricted to the Γ-invariants, which is
Λ(δ4.3.2).

This completes the first step in the proof of Theorem (3.4).

5. The structure of H1(Ck̄,Z/l) as an Fl[Γ]-module

5.1. The conventions concerning Fl[Γ]-modules introduced in §3.3 remain in force.
To these we add the notations soc(L) for the socle of L and P0 for the projective
cover of the trivial Fl[Γ]-module, Fl. The following facts will be used without
further comment: P is projective as an Fl[Γ]-module if and only if it is injective
[Al, p. 41]. If it is projective, then so is P∨. If L is absolutely simple, then PL is
indecomposible [Al, p. 31], soc(PL) ' L, and PL∨ ' P∨L [Al, Theorem 6 p. 43].
We shall also use

(5.1.1) Lemma. For each Fl[Γ]-module L, Hi(Γ, L) ' ExtiFl[Γ](Fl, L).
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Proof. Let Q• → Z be a resolution by finitely generated, free Z[Γ]-modules [Se3,
VII.3]. By the snake lemma applied to

0→ Q• l→ Q• → Q•/l→ 0,(5.1.2)

Q•/l→ Fl is a free resolution in the category of Fl[Γ]-modules. Apply HomZ[Γ]( , L)
to (5.1.2). Since HomZ[Γ](Qi/l, L) ' HomFl[Γ](Qi/l, L) and multiplication by l an-
nihilates HomZ[Γ](Qi, L), the complexes HomZ[Γ](Q•, L) and HomFl[Γ](Q•/l, L) are
isomorphic. The lemma now follows from the definitions.

Assume (3.3.3). Recall the functor Λ defined in (3.4.3):

Λ(L) = (L⊗Z M)Γ ' HomFl[Γ](L∨,M) ' HomFl[Γ](M∨, L) ' Fsl ,(5.1.3)

where s is the multiplicity with whichM occurs in the maximal semi-simple quotient
of L∨ or equivalently the multiplicity of M∨ in soc(L) [Al, p. 47].

5.2. The information which we need concerning the structure of H1(Ck̄,Z/l) as an
Fl[Γ]-module is stated in the next proposition. Let ϕ∨ : P∨ → H1(Ck̄,Z/l) denote
the inclusion of a maximal projective submodule.

(5.2.1) Proposition. Suppose that (3.2.1–2) and (3.3.1–5) hold. Then

β : H1(Xk̄,M)→ Λ(H1(Ck̄,Z/l)) and Λ(ϕ∨) : Λ(P∨)→ Λ(H1(Ck̄,Z/l))
are injective maps with the same image.

Proof. Let j : Ẋ → X denote the inclusion of an open affine subset of X − Σ. Set
Ċ = ρ−1(Ẋk). Consider the commutative diagram with exact rows and columns:

H2(Γ, M)xe

0 −−−−−→ Λ(H1(Ck̄ , Z/l))
r−−−−−→ Λ(H1(Ċk̄ , Z/l))

χ−−−−−→ Λ(H2
C−Ċ

(Ck̄ , Z/l))

β

x xγ

xγ′

H1
X−Ẋ

(Xk̄ ,M) −−−−−→ H1(Xk̄,M)
j∗−−−−−→ H1(Ẋk̄,M)

r′−−−−−→ H2
X−Ẋ

(Xk̄,M).

(5.2.2)

The maps β and γ are injective since H1(Γ,M) = 0 (3.3.4). Let $ be a left inverse
of γ.

(5.2.3) Lemma. r ◦ β : H1(Xk̄,M)→ Ker(e) ∩Ker(r′ ◦$) is an isomorphism.

Proof. $ maps Ker(e) ∩Ker(r′ ◦$) isomorphically to Ker(r′) and $ ◦ r ◦ β = j∗.
Now j∗ is injective because r ◦ β is. The lemma follows from the equality im(j∗) =
Ker(r′).

Now (5.2.1) is a consequence of (5.2.3) and the following two lemmas:

(5.2.4) Lemma. The image of r ◦ Λ(ϕ∨) : Λ(P∨) → Λ(H1(Ċk̄,Z/l)) lies in
Ker(e) ∩Ker(r′ ◦$).

(5.2.5) Lemma. dim(Λ(P∨)) ≥ h1(Xk̄,M).

Since r◦Λ(ϕ∨) is clearly injective, the previous lemmas imply that dim(Λ(P∨)) =
h1(Xk̄,M).

The remainder of this section is devoted to the proofs of (5.2.4) and (5.2.5).
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5.3. This subsection is devoted to the proof of (5.2.4). Define

N = H1(Ck̄,Z/l)∨ = π1(Ck̄)ab/lπ1(Ck̄)ab,

Ṅ = H1(Ċk̄,Z/l)∨ = π1(Ċk̄)ab/lπ1(Ċk̄)ab.

As in (1.3.1) we write C̆k̄ → Ck̄ for the maximal abelian, unramified, exponent
l cover. The maximal abelian, exponent l-cover which is unramified over Ċk̄ will
be denoted C̀k̄ → Ck̄. Define θ = Gal(C̆k̄/Xk̄) and θ̇ = Gal(C̀k̄/Xk̄). There is a
commutative diagram with exact rows and surjective vertical maps:

0 −−−−→ Ṅ
ζ̇−−−−→ θ̇ −−−−→ Γ −−−−→ 1

λN

y yλ ∥∥∥
0 −−−−→ N

ζ−−−−→ θ −−−−→ Γ −−−−→ 1

ϕ

y yψ ∥∥∥
0 −−−−→ P

ζ̄−−−−→ θ̄ −−−−→ Γ −−−−→ 1,

(5.3.1)

where θ̄ := θ/ζ(Ker(ϕ)).
Since H1(Γ,M) = 0, the Hochschild-Serre spectral sequence applied to (5.3.1)

yields

0 −−−−→ H1(θ̇,M)
ζ̇∗−−−−→ HomFl[Γ](Ṅ ,M) e−−−−→ H2(Γ,M)

λ∗
x λ∗N

x ∥∥∥
0 −−−−→ H1(θ,M)

ζ∗−−−−→ HomFl[Γ](N,M) −−−−→ H2(Γ,M)

ψ∗
x ϕ∗

x ∥∥∥
0 −−−−→ H1(θ̄,M)

ζ̄∗−−−−→ HomFl[Γ](P,M) e′−−−−→ H2(Γ,M).

Since P is an injective Fl[Γ]-module, H2(Γ, P ) ' Ext2Fl[Γ](Fl, P ) = 0. Thus the
bottom row in (5.3.1) admits a splitting s : Γ → θ̄ [Br, IV.3] and e′ is the zero
map. Clearly the image of λ∗N ◦ϕ∗ is contained in Ker(e). Since λ∗N ◦ϕ∗ is precisely
r ◦ Λ(ϕ∨) this proves one assertion in (5.2.4).

To prove that the image of r ◦Λ(ϕ∨) is contained in Ker(r′ ◦$), we consider the
inertia group κ : İ → θ̇ of a point c̀ ∈ C̀k̄ above x ∈ (X − Ẋ)k̄. Write

rx : H2
X−Ẋ(Xk̄,M)→ H2

x((Ẋ ∪ {x})k̄,M) ' H2
x(Xk̄,M)

for the restriction map.

(5.3.2) Lemma. There is a left inverse υ̇ of ζ̇∗ and a commutative diagram:

Λ(H1(Ck̄,Z/l))
rx◦r′◦$◦r−−−−−−−→ H2

x(Xk̄,M)

'
x x'

HomFl[Γ](N,M)
κ∗◦υ̇◦λ∗N−−−−−−→ H1(İ ,M)

Proof. That the left-hand arrow is an isomorphism is a direct consequence of the
definitions. To describe the map on the right fix a place of the separable closure,
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k(X), of k̄(C̀) above c̀. Let I ⊂ Gal(k(X)/k̄(X)) denote the decomposition (=iner-

tia) group at this place. This determines a field K = k(X)
I
and a discrete valuation

ring A ⊂ K, which is a henselization of OXk̄,x. Let a denote the closed point of
Spec(A). There are isomorphisms

H2
x(Xk̄,M) ' H2

a(Spec(A),M) ' H1(Spec(K),M) ' H1(I,M).(5.3.3)

(5.3.4) Sublemma. The restriction map H1(İ ,M) → H1(I,M) is an isomor-
phism.

Proof. The tame inertia group It is a product of an l-procyclic group Il and a
procyclic group Il′ whose quotients have no l-torsion. There is a corresponding
decomposition İ = İl × İl′ . The Hochschild-Serre spectral sequence gives isomor-
phisms

H1(I,M) ' H1(It,M) ' H1(Il,M ′) and H1(İ ,M) ' H1(İl,M ′),(5.3.5)

where M ′ := M İl′ = M Il′ . Write I for the image of İ in Γ and Il for its l-primary
subgroup. Define d by ld = |Il| and write I

(j)
l for the quotient of Il with ld+j

elements. In particular İl = I
(1)
l . Write σ for a topological generator of Il. Now

H1(Il,M ′) ' lim−→ j H
1(I(j)

l ,M ′)

and the restriction map

H1(İl,M ′)→ H1(I(j)
l ,M ′)

corresponds to the obvious inclusion

Ker(1 + σ + ...+ σl
d+1−1)

im(σ − 1)
→ Ker(1 + σ + ...+ σl

d+j−1)
im(σ − 1)

.(5.3.6)

Decompose the Fl[σ]-module M ′ as a direct sum of indecomposable factors isomor-
phic to

(σ − 1)iFl[σ]/(σ − 1)l
d

Fl[σ]

with 0 ≤ i < ld. Use the identity 1 + σ+ ...+ σl
d+j−1 = (σ− 1)l

d+j−1 to check that
both numerators in (5.3.6) are isomorphic to M ′, so (5.3.6) is an isomorphism for
all j and (5.3.4) follows.

The commutative diagram of Galois groups,

I −−−−→ π1(Ẋk̄, η̄)y y
İ −−−−→ θ̇,
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gives a commutative diagram on cohomology,

H1(Ẋk̄,M) rx◦r′−−−−→ H2
x(Xk̄,M)

'
y y'

H1(π1(Ẋk̄, η̄),M) −−−−→ H1(I,M)x x
H1(θ̇,M) κ∗−−−−→ H1(İ ,M).

The vertical arrows are isomorphisms by [Sch, 7.3] and (5.3.4). There is a commu-
tative diagram:

Λ(H1(Ck̄,Z/l))
r−−−−→ Λ(H1(Ċk̄,Z/l))

γ←−−−− H1(Ẋk̄,M) rx◦r′−−−−→ H2
x(Xk̄,M)

'
x '

x '
x '

x
HomFl[Γ](N,M)

λ∗N−−−−→ HomFl[Γ](Ṅ ,M)
ζ̇∗←−−−− H1(θ̇,M) κ∗−−−−→ H1(İ ,M)

We may reverse the arrows in the middle by choosing a left inverse $ of γ and the
corresponding left inverse υ̇ of ζ̇∗. This proves (5.3.2).

(5.3.7) Lemma. The map κ∗ ◦ υ̇ ◦ λ∗N ◦ ϕ∗ : HomFl[Γ](P,M)→ H1(İ ,M) is zero.

Proof. Since C̆ → C is unramified, the image λ ◦ κ(İ) ⊂ θ is a lifting of the inertia
group I ⊂ Γ. Since P is a projective Fl[I]-module, H1(I, P ) = 0 and any two
liftings of I to θ̄ are related by conjugation by an element of P [Br, IV.2]. Thus
after modifying the section s : Γ→ θ̄ by conjugation by an appropriate element of
P we have ψ ◦ λ ◦ κ(İ) ⊂ s(Γ). Given any f ∈ HomFl[Γ](P,M) define a map

F : θ̄ →M, F (p · s(γ)) = f(p).

It is straightforward to verify that F is a crossed homomorphism and that the class
of F in H1(θ̄,M) maps via the isomorphism ζ̄∗ to f . Since the map F ◦ ψ ◦ λ ◦ κ :
İ →M is identically zero and represents the class

κ∗ ◦ λ∗ ◦ ψ∗ ◦ (ζ̄∗)−1(f) = κ∗ ◦ υ̇ ◦ λ∗N ◦ ϕ∗(f) ∈ H1(İ ,M),

the lemma follows.

Now (5.3.2) and (5.3.7) show that λ∗N ◦ϕ∗(HomFl[Γ](P,M)) = r ◦Λ(ϕ∨)(Λ(P∨))
lies in the kernel of rx ◦ r′ ◦$. Since this is true for every x ∈ (X − Ẋ)k̄, (5.2.4)
follows.

5.4. This subsection is devoted to the proof of (5.2.5). Let ϕ̇∨ : Ṗ∨ → H1(Ċk̄,Z/l)
denote the inclusion of a maximal projective submodule.

(5.4.1) Lemma. dim(Λ(Ṗ∨)) = h1(Ẋk̄,M).

Proof. There is a short exact sequence [Sch2, §8], [Se5, §8]

0→ P0/soc(P0)→ P0 ⊕ Fl[Γ]h
1(Ẋk̄)−1 → H1(Ċk̄,Z/l)→ 0.(5.4.2)

Since M is absolutely irreducible, the multiplicity of PM∨ in the middle term is

dimFl
(M)(h1(Ẋk̄)− 1) = −dimFl

(M)e(Ẋk̄) = −e(M|Ẋk̄
) = h1(Ẋk̄,M),(5.4.3)
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where e denotes the euler characteristic and the last equality follows from MΓ =
0 (3.3.2–3). The multiplicity with which PM∨ appears as a direct summand of
H1(Ċk̄,Z/l) is dim(Λ(Ṗ∨)). By (5.4.3) this multiplicity may also be expressed as
h1(Ẋk̄,M) − dim(Λ(P0/soc(P0))). The isomorphism rad(P0)∨ ' P0/soc(P0) and
(5.1.3) allow us to write

Λ(P0/soc(P0)) = HomFl[Γ](rad(P0),M) ' Ext1Fl[Γ](Fl,M) ' H1(Γ,M).

Since the right-hand term is zero by (3.3.4), (5.4.1) follows.

For x ∈ (X−Ẋ)k̄ we denote by Ix ⊂ Γ the inertia group at some point c ∈ ρ−1(x).
The fact that changing the choice of c ∈ ρ−1(x) changes Ix by conjugation will be
of no consequence in what follows.

(5.4.4) Lemma. h1(Xk̄,M) = h1(Ẋk̄,M)−∑
x∈(X−Ẋ)k̄

dim(M Ix).

Proof. In the exact sequence

H1(Xk̄,M)
j∗−−−−→ H1(Ẋk̄,M)→ H2

X−Ẋ(Xk̄,M)→ H2(Xk̄,M)(5.4.5)

the map j∗ is injective by the proof of (5.2.3). Recall that (M∨)Γ = 0 (3.3.2), which
implies H2(Xk̄,M) = 0 (Poincaré duality [Mi, V.2.2(b)]). Thus we need only verify

h2
x(Xk̄,M) = dim(M Ix)

for each x ∈ (X − Ẋ)k̄. This follows from

dim(M Ix) = dim((M ′)Il) = dim(M ′/im(σ − 1)) = h1(İl,M ′) = h2
x(Xk̄,M),

(5.4.6)

where the last two equalities follow from (5.3.3) and the proof of (5.3.4).

(5.4.7) Lemma. dim(Λ(P∨)) ≥ dim(Λ(Ṗ∨))−∑
x∈(X−Ẋ)k̄

dim(M Ix).

Proof. Consider the exact sequence of Fl[Γ]-modules

0→ H1(Ck̄,Z/l)→ H1(Ċk̄,Z/l)→ H2
C−Ċ(Ck̄,Z/l)

℘→ H2(Ck̄,Z/l)→ 0.(5.4.8)

By (5.4.2)H1(Ċk̄,Z/l) ' Ṗ∨⊕Ω−2
0 , where Ω−2

0 denotes the cokernel of the inclusion
of P0/soc(P0) in its injective hull [Al, §20]. Write

H2
C−Ċ(Ck̄,Z/l)0 := Ker(℘) ' Q⊕ U,(5.4.9)

where Q is a maximal projective submodule. The surjection

H1(Ċk̄,Z/l)→ H2
C−Ċ(Ck̄,Z/l)0

prQ−−−−→ Q

induces a split surjection Ṗ∨ → Q. Choose a submodule P ′ ⊂ Ṗ∨ such that
Ṗ∨ ' Q⊕ P ′. Modding out Q from the middle terms in (5.4.8) gives a short exact
sequence

0→ H1(Ck̄,Z/l)→ P ′ ⊕ Ω−2
0

h+g−−−−→ U → 0,

which defines the maps h : P ′ → U and g : Ω−2
0 → U . Let N0 denote the image of

g(Ω−2
0 ) in U/rad(U) := Ū . Choose a submodule N1 ⊂ Ū for which Ū = N0 ⊕N1.

Choose a submodule P1 ⊂ P ′ such that the composition P1
h→ U → Ū identifies

P1 with a projective cover of N1. Since h(P1) + g(Ω−2
0 ) maps surjectively to Ū ,

h(P1) + g(Ω−2
0 ) = U . Choose a submodule P2 ⊂ P ′ such that P ′ = P2 ⊕ P1 and
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set hi := h|Pi . Since P2 is projective, there is a lifting h̃2 of h2 which makes the
diagram

P1 ⊕ Ω−2
0

h1+g−−−−→ Uxh̃2

xh2

P2 P2

commute. Denote the image of

P2 → P2 ⊕ P1 ⊕ Ω−2
0 , p 7→ (p,−h̃2(p))

by P ′2. Then P ′ ⊕ Ω−2
0 ' P ′2 ⊕ P1 ⊕ Ω−2

0 and

P ′2 ⊂ Ker(h+ g) ' H1(Ck̄,Z/l).

Thus P ′2 is isomorphic to a submodule of P∨ and we have

dim(Λ(P∨)) ≥ dim(Λ(P ′2)) = dim(Λ(Ṗ∨))− dim(Λ(Q⊕ P1)).(5.4.10)

(5.4.11) Sublemma. (i) dim(Λ(Q⊕ PU )) ≥ dim(Λ(Q⊕ P1)).
(ii) dim(Λ(Q⊕ PU )) = dim(HomFl[Γ](H2

C−Ċ(Ck̄,Z/l),M∨)).

(iii) As Fl[Γ]-modules, H2
C−Ċ(Ck̄,Z/l) '

⊕
x∈(X−Ẋ)k̄

IndΓ
Ix

Fl.
(iv) HomFl[Γ](IndΓ

Ix
Fl,M∨) ' (M∨)Ix .

(v) dim(M Ix) = dim((M∨)Ix).

Proof. (i) Q⊕ P1 is isomorphic to a direct factor of Q⊕ PU .
(ii) Λ(Q ⊕ PU ) ' HomFl[Γ](M∨, Q ⊕ PU ). Since M∨ is absolutely irreducible,

this is isomorphic to

HomFl[Γ](Q⊕ PU ,M∨) ' HomFl[Γ](Q⊕ U,M∨) ' HomFl[Γ](H2
C−Ċ(Ck̄,Z/l)0,M∨)

by [Al, p. 43 Theorem 6]. Now apply HomFl[Γ]( ,M∨) to

0→ H2
C−Ċ(Ck̄,Z/l)0 → H2

C−Ċ(Ck̄,Z/l)→ Fl → 0

and observe that HomFl[Γ](Fl,M∨) = 0 and Ext1Fl[Γ](Fl,M∨) ' H1(Γ,M∨) = 0
(3.3.5).

(iii) H2
C−Ċ(Ck̄,Z/l) ' H2

C−Ċ(Ck̄, µl) may be interpreted as divisors supported

on (C − Ċ)k̄ with Z/l-coefficients. The isomorphism is then a standard fact about
permutation modules [Se, 3.3, Ex. 2].

(iv) [Al, p. 58, Lemma 6 (1)].
(v) Let σ be a generator of the cyclic group Ix. The kernel and cokernel of

σ − 1 : M →M have the same dimension. (M∨)Ix is the dual of the cokernel.

Combining (5.4.10) and (5.4.11)(i) gives

dim(Λ(P∨)) ≥ dim(Λ(Ṗ∨))− dim(Λ(Q⊕ PU )).

By (5.4.11)(ii)–(v) the right-hand side is equal to

dim(Λ(Ṗ∨))−
∑

x∈(X−Ẋ)k̄

dim(M Ix).

This completes the proof of (5.4.7).

Now (5.2.5) follows by combining (5.4.7), (5.4.1), and (5.4.4).
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6. The structure of H2
ρ−1(x)(Ck̄, µl)

Gk
0 as an Fl[Γ]-module

(6.1) Proposition. Assume (3.2.1–4) and (3.3.1–3). Let x ∈ X(k) be disjoint
from the branch locus of ρ. Let ξ ∈ Γ be the Frobenius element at a point c ∈
ρ−1(x). Let c ∈ ρ−1(x)k̄ lie above c. Write e for the order of ξ and define ς =
1 + ξ + ...+ ξe−1 ∈ Fl[Γ].

(i) There are isomorphisms of Fl[Γ]-modules

H2
ρ−1(x)(Ck̄, µl)

Gk ' Fl[Γ]ςc ' IndΓ
〈ξ〉 Fl.

(ii) The natural map

H2
ρ−1({x,x0})(Ck̄, µl)

Gk
0 /H2

ρ−1(x0)
(Ck̄, µl)

Gk
0 → H2

ρ−1(x)(Ck̄, µl)
Gk(6.1.1)

is an isomorphism for x0 as in (3.2.3).
(iii) The coboundary map δ3.4.4 has a natural extension to an Fl[Γ]-linear map

δ6.1.2 : H2
ρ−1(x)(Ck̄, µl)

Gk → H1(Gk, H1(Ck̄, µl)).(6.1.2)

Assume now that gcd(e, l) = 1. Define dξ = dimFl
M 〈ξ〉. Then

(iv) H2
ρ−1(x)(Ck̄, µl)

Gk ' (P∨M )dξ ⊕P0⊕Q′ where Q′ is a projective Fl[Γ]-module
such that HomFl[Γ](Q′,M∨ ⊕ Fl) = 0.

(v) H2
ρ−1(x)(Ck̄, µl)

Gk
0 ' (P∨M )dξ ⊕ rad(P0)⊕Q′.

(vi) The natural inclusion

Λ(H2
ρ−1(x)(Ck̄, µl)

Gk
0 )→ Λ(H2

ρ−1(x)(Ck̄, µl)
Gk)

is an isomorphism.

Proof. (i) Let d denote the group of divisors on Ck̄ with support in ρ−1(x)k̄. The
cycle class map gives a Γ×Gk-equivariant isomorphism d/l ' H2

ρ−1(x)(Ck̄, µl). Now
(d/l)Gk is canonically identified with the Fl-vector space with basis ρ−1(x). (The
elements of ρ−1(x) are the Galois orbits in ρ−1(x)k̄.) For c ∈ Ck̄ a point above
c, ςc ∈ (d/l)Gk . Since ρ−1(x) ' Γ/〈ξ〉, (i) is a standard fact about permutation
modules [Se, 3.3, Ex. 2].

(ii) It suffices to show that the natural map

H1(Gk, H2
ρ−1(x0)

(Ck̄, µl)0)→ H1(Gk, H2
ρ−1({x,x0})(Ck̄, µl)0)

is injective. From the direct sum decomposition

H2
ρ−1({x,x0})(Ck̄, µl) ' H2

ρ−1(x)(Ck̄, µl)⊕H2
ρ−1(x0)

(Ck̄, µl)

and the fact that ρ−1(x0) supports a k-rational divisor of degree prime to l (3.2.3)
it is easy to show that H2

ρ−1(x0)
(Ck̄, µl)0 is a direct summand of the Gk-module

H2
ρ−1({x,x0})(Ck̄, µl)0.
(iii) By (1.3.4) and (3.2.4) the coboundary map δ6.1.3 associated to

0→ H1(Ck̄, µl)→ H1((C − ρ−1({x, x0}))k̄, µl)→ H2
ρ−1({x,x0})(Ck̄, µl)0 → 0

(6.1.3)

annihilates the submodule

H2
ρ−1(x0)

(Ck̄, µl)
Gk
0 ⊂ H2

ρ−1({x,x0})(Ck̄, µl)
Gk
0 .

By (ii) δ6.1.3 induces a map having all the properties desired of δ6.1.2. To check
that this map extends δ3.4.4 one applies the natural restriction map from the exact
sequence (3.4.4) to (6.1.3).
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(iv) Since gcd(l, e) = 1, Fl is a projective Fl[〈ξ〉]-module. Thus IndΓ
〈ξ〉 Fl is a

projective Fl[Γ]-module. The multiplicity with which P∨M occurs in this module is
given by the dimension of

HomFl[Γ](IndΓ
〈ξ〉 Fl,M∨) ' HomFl[〈ξ〉](Fl,M

∨) ' (M∨)〈ξ〉.

By (5.4.11)(iv) dim(M∨)〈ξ〉 = dim(M 〈ξ〉). An analogous calculation shows that P0

occurs with multiplicity 1.
(v) The cokernel of the inclusion

H2
ρ−1(x)(Ck̄, µl)0 → H2

ρ−1(x)(Ck̄, µl)

is isomorphic to the trivial module, Fl. Since ρ−1(x) supports a Gk-invariant divisor
of degree prime to l, part (v) follows from (iv).

(vi) This was shown in the proof of (4.2.1).

7. Proof of Theorem (3.4)

7.1. By (3.3.6) there is an element ξ ∈ Γ of order e prime to l for which M 〈ξ〉 ' Fl.
Write τ : C → 〈ξ〉\C =: C̄ for the canonical quotient morphism. Choose points
x0 ∈ Xk and c0 ∈ C with residue fields k as in (3.2.3–4). Define c̄0 = τ(c0). Define
a curve C̃ by the Cartesian diagram

C̃ −−−−→ Pic0(C̄)y yml

C̄
ī0−−−−→ Pic0(C̄),

where ī0(c̄) = OC̄(c̄ − deg(c̄)c̄0) and ml is multiplication by l. Since gcd(e, l) = 1,
the map

τ∗ : H1(C̄k̄, µl)→ (1 + ξ + ...+ ξe−1)∗H1(Ck̄, µl)(7.1.1)

is an isomorphism. By (3.2.5) and (1.3.3)(iii) there are canonical isomorphisms

H1(Gk, H1(C̄k̄, µl)) ' H1(C̄k̄, µl) ' Gal(k(C̃)/k(C̄)).(7.1.2)

Now Theorem (3.4) is an immediate consequence of the following more precise
result:

(7.2) Proposition. Let ε ∈ H1(Gk, H1(Xk̄,M)) be non-zero. Assume that the
hypotheses (3.2.1–6) and (3.3.1–6) hold. Then

(i) there is a canonical isomorphism H1(Gk, H1(Xk̄,M)) ' H1(Xk̄,M);
(ii) there is an element p ∈ (1+ξ+...+ξe−1)∗H1(Ck̄,Z/l) such that the submodule

Fl[Γ]p ⊂ H1(Ck̄,Z/l) is isomorphic to P∨M and the image of Flε under the map
β : H1(Xk̄,M)→ Λ(H1(Ck̄,Z/l)) of (4.1) coincides with the image of the induced
map Λ(P∨M )→ Λ(H1(Ck̄,Z/l));

(iii) there is an element f ∈ Gal(k(C̆)/k(C̄)) such that the image of f in
Gal(k(C)/k(C̄)) is ξ and the image of f in Gal(k(C̃)/k(C̄)) may be identified via
(7.1.1–2) with an element of (Z/l)∗p ⊂ (1 + ξ + ...+ ξe−1)∗H1(Ck̄, µl);

(iv) there is a degree one point x ∈ Ẍ ∩ (X − Σ) with the property that f is
contained in the Frobenius conjugacy class Frobx ⊂ Gal(k(C̆)/k(X)). For such an
x, δ3.1.1 gives an isomorphism, H2

x(Xk̄,M)Gk → Flε.
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Proof. (i) The map β : H1(Xk̄,M) → Λ(H1(Ck̄,Z/l)) is injective by (5.2.1). Gk
acts trivially on the image by (3.2.5) and (3.2.2). Thus

H1(Gk, H1(Xk̄,M)) ' Hom(Gk, H1(Xk̄,M)) ' H1(Xk̄,M),

where the second isomorphism is obtained by evaluating a homomorphism at the
Frobenius element.

(ii) Let h := dim(H1(Xk̄,M)). By (5.2.1) there is an injective homomorphism
ι : (PhM )∨ → H1(Ck̄,Z/l) which gives rise to an isomorphism im(β) ' Λ((P hM )∨).
Applying β to Flε gives a one-dimensional subspace of Λ((PhM )∨). Any such
subspace may be obtained as the image of Λ(ε) : Λ(P∨M ) → Λ((P hM )∨), where
ε : P∨M → (P hM )∨ is an appropriate injective Fl[Γ]-module homomorphism.

Since PM∨ ' P∨M , it remains only to show that PM∨ has a generator contained in
(1+ξ+...+ξe−1)PM∨ . We need only check that (1+ξ+...+ξe−1)PM∨ 6⊂ rad(PM∨ ).
For this note that M 〈ξ〉 6= 0 implies (M∨)〈ξ〉 6= 0, since M is a semi-simple Fl[〈ξ〉]-
module. Now gcd(e, l) = 1 implies that the second map in the composition

(1 + ξ + ...+ ξe−1)PM∨ → (1 + ξ + ...+ ξe−1)(PM∨/rad(PM∨ ))→ (M∨)〈ξ〉

is an isomorphism, so the composition is surjective.
For the remainder of the proof we fix an identification Z/l ' µl. This is per-

missable by (3.2.2).
(iii) Define Ĉ := C ×C̄ C̃. Now Ĉ, being a quotient of C̆, is geometrically

irreducible. Clearly there is an isomorphism

Gal(k(Ĉ)/k(C̄)) ' Gal(k(C)/k(C̄))×Gal(k(C̃)/k(C̄)).(7.2.1)

Now (iii) follows from (7.1.1–2).
(iv) By (3.2.6) there is a point c̆ ∈ C̆ whose image x ∈ Xk lies in Ẍk ∩ (Xk −Σ)

and has residue field k and such that f ∈ Gal(k(C̆)/k(X)) is the Frobenius at
c̆. The Frobenius at the image c ∈ C of c̆ is ξ. Since dim(M 〈ξ〉) = 1, (6.1)(iv)
implies that Λ(H2

ρ−1(x)(Ck̄, µl)
Gk) ' Fl. The isomorphism β• of (4.2.1) shows that

H2
x(Xk̄,M)Gk has dimension one.
Set c̄ = τ(c). Since c̄ has degree one, the zero cycle c̄ − c̄0 has degree zero.

Let δ7.2.2 be the first coboundary map associated to the short exact sequence of
Gk-modules

0→ H1(C̄, µl)→ H1((C̄ − {c̄, c̄0})k̄, µl)→ H2
{c̄,c̄0}(C̄k̄, µl)0 → 0.(7.2.2)

By (iii) and (1.3.4)

δ6.1.3(τ∗(c̄− c̄0)) = τ∗(δ7.2.2(c̄− c̄0)) ∈ (Z/l)∗p ⊂ (1 + ξ + ...+ ξe−1)H1(Ck̄, µl).
(7.2.3)

Recall from (6.1)(iii) that δ6.1.3 induces an Fl[Γ]-linear map

δ6.1.2 : H2
ρ−1(x)(Ck̄, µl)

Gk → H1(Gk, H1(Ck̄, µl)) ' H1(Ck̄, µl).

By (6.1)(i) H2
ρ−1(x)(Ck̄, µl)

Gk is a cyclic Fl[Γ]-module generated by the image of
τ∗(c̄− c̄0) under (6.1.1). Thus (7.2.3) implies that the image of δ6.1.2 is Fl[Γ]p. Now
(ii) identifies the image of

Λ(δ6.1.2) : Λ(H2
ρ−1(x)(Ck̄, µl)

Gk)→ Λ(H1(Ck̄, µl))
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with β(Flε). By (6.1)(iii) and (vi) the images of Λ(δ6.1.2) and Λ(δ3.4.4) coincide.
Since Λ(δ3.4.4) may be identified with δ3.1.1 by (4.3.1)(iii), the proposition follows.

8. Tate classes

In this section we construct Tate classes in the fibers of certain proper, flat
morphisms from odd dimensional varieties to curves.

8.1. Preliminaries on orthogonal groups. Let E be a vector space of odd
dimension 2s + 1 over a field K of characteristic different from 2. Let ( , ) : E ⊗
E→ K be a non-degenerate symmetric bilinear pairing. Write O(E) (respectively
SO(E)) for the orthogonal (respectively special orthogonal) group of ( , ).

(8.1.1) Lemma. Let F ∈ O(E). The eigenvalues λ0, λ1, ..., λ2s ∈ K̄ of F may be
indexed so that

λ0 ∈ {±1} and λiλs+i = 1 for 1 ≤ i ≤ s.(8.1.2)

In particular if F ∈ SO(E), then λ0 = 1.

Proof. Extend scalars to the algebraic closure and let F s.s. denote the semi-simple
part in the Jordan decomposition of F [Hu, 15.2–3]. Let {vi}0≤i≤2s be an eigen-
vector basis for F s.s. with corresponding eigenvalues {λi}0≤i≤2s. Since ( , ) is
non-degenerate, for each index i ∈ {0, 1, ..., 2s} there exists an index i′ such that
(vi, vi′) 6= 0. Now

λiλi′(vi, vi′) = (F s.s.vi, F s.s.vi′ ) = (vi, vi′)⇒ λiλi′ = 1.

If for every i we have i = i′, then λ2
i = 1 for all i and the assertion follows. This

applies in particular when s = 0. If there is some index i with (vi, vi) = 0, then
i′ 6= i and

E ' Span{vi, vi′} ⊕ Span{vi, vi′}⊥.
The lemma follows by induction on s.

Let l be an odd prime and let E be a free Zl-module of odd rank 2s+1 endowed
with a symmetric bilinear pairing

〈 , 〉 : E ⊗ E → Zl,

which induces an isomorphism E → Hom(E,Zl). The orthogonal (respectively
special orthogonal group) of 〈 , 〉 will be denoted O(E) (respectively SO(E)).
Write

( , ) : E/l ⊗ E/l→ Z/l
for the induced non-degenerate pairing.

(8.1.3) Lemma. Let F ∈ O(E) and write ξ ∈ GL(E/l) for the image of F under
reduction mod l. If the order of ξ is prime to l and dimFl

(E/l)〈ξ〉 = 1, then
F ∈ SO(E), E〈F 〉 ' Zl and the natural map E〈F 〉/l→ (E/l)〈ξ〉 is an isomorphism.

Proof. Write Q(T ) ∈ Zl[T ] for the characteristic polynomial of F . Its roots are
integral over Zl and satisfy (8.1.2). Reduction mod l gives Q̄(T ) ∈ Z/l[T ] with
roots

λ̄0 ∈ {±1} and λ̄iλ̄s+i = 1 for 1 ≤ i ≤ s.
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These are the eigenvalues of ξ. The hypotheses on ξ imply that it is semi-simple
and that 1 is an eigenvalue with multiplicity one. Thus λ̄0 = 1 and λ̄j 6= 1 for j ≥ 1.
Consequently, λ0 = 1 and λj 6= 1 for j ≥ 1. Clearly F ∈ SO(E) and E〈F 〉 ' Zl is
a saturated subgroup of E. Thus E〈F 〉/l → (E/l)〈ξ〉 is injective which proves the
lemma.

8.2. Existence of Tate classes. Recall the geometric situation (2.1.1). Suppose
E is a torsion free, Galois invariant, orthogonal direct factor of H2m(f−1(η̄),Zl(m))
with respect to the cup product pairing. Let 〈 , 〉 denote (−1)m+1 times this pairing.
By Poincaré duality it induces an isomorphism E → Hom(E,Zl). The image of the
corresponding Galois representation lies in the orthogonal group:

κ̃ : π1(Ẋ, η̄)→ O(E).(8.2.1)

Associated to this Galois module is an l-adic sheaf on the generic point η whose
direct image under g : η → X will be denoted E = {Er}r∈N. In particular, E1
is the direct image of the sheaf on η corresponding to the Galois module E/l.
Suppose we are given x ∈ Ẋ(k) and a geometric point x̄ above x. The Galois group
Gk ' π1(x, x̄) acts on the stalks Erx̄, r ∈ N, and hence on Ex̄ := lim←− r Erx̄. Suppose
that E has odd rank and that dimFl

H2
x(Xk̄, E1(1))Gk = 1.

(8.2.2) Lemma. EGk
x̄ ' Zl and EGk

x̄ /l ' H2
x(Xk̄, E1(1))Gk .

Proof. Since EGk
1x̄ ' H2

x(Xk̄, E1(1))Gk and Gk is topologically generated by a single
element, this follows from (8.1.3).

Set V = f−1(x). The Tate conjecture implies that there is an algebraic cycle in
Zm(V ) whose cohomology class is a non-zero element of EGk

x̄ . We would actually
like to have a cycle whose cohomology class generates EGk

x̄ . When this happens,
reduction mod l gives a generator z̄ ∈ H2

x(Xk̄, E1(1))Gk which plays a crucial role in
our analysis of the l-adic Abel-Jacobi map (cf. §2.4). The following lemma, which
I learned from S. Bloch, shows that the Tate conjecture implies the existence of an
algebraic cycle with the properties we want when m = 1.

(8.2.3) Lemma. Let V/k be a smooth complete variety over a finite field. The
cokernel of the cycle class map CH1(V )⊗ Zl → H2(Vk̄,Zl(1))Gk is torsion free.

Proof. The cokernel is the Tate module of the Brauer group which is always torsion
free [Ta, 5.10].

It is not clear if the cokernel of the cycle class map should be torsion free in
higher codimension. (See [Sch6] for the case of cycles of dimension 1.)

9. Lefschetz pencils

The purpose of this section is to show that the machinery developed so far can
be applied when the geometric situation (2.1.1) arises from a Lefschetz pencil of
hyperplane sections. The vanishing cohomology will play the role of the Galois
module E of §2.3. The first task is to describe under what conditions the rank of
E is odd, since it is only in this case that the methods of §8 produce Tate cycles
in the stalks of the associated sheaf E . This is easy and is done in §9.2. The
next task is to show that the monodromy representation on M := E/l satisfies the
hypotheses (3.3.1–6) so that Theorem (3.4) may be used to show the surjectivity
of a piece of the mod l Abel-Jacobi map. For this it is necessary to have a rather
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precise description of the monodromy group Γ ⊂ Aut(M). In §9.4 we give an exact
description of Γ when there is a lifting to characteristic zero using the theory of
(symmetric) vanishing lattices developed in [Eb] and [Be]. The verification of the
hypotheses (3.3.1–6) is carried out in §9.5.

9.1. Definition and existence of Lefschetz pencils. Let Y be a smooth pro-
jective variety of dimension 2m + 1 ≥ 3 over a field K of characteristic different
from 2. Let L be a very ample invertible sheaf on Y . Fix a basis for H0(Y, L).
This specifies an embedding Y ⊂ P(H0(Y, L)∨). A one-dimensional linear subspace
X ⊂ PH0(Y, L) determines a family of hyperplanes {Hx}x∈X in P(H0(Y, L)∨)
whose intersection is a codimension 2 linear subspace B. In this paper we say that
X is a Lefschetz pencil if the following five conditions are met:

(i) B meets Y transversely.
(ii) The locus Ẋ ⊂ X of points x such that Hx meets Y transversely is non-

empty.
(iii) Σ := X − Ẋ consists of K-rational points {xi} and the scheme-theoretic

intersectionHxi∩Y is non-singular except for a single ordinary double point [SGA 7,
XVII.1].

(iv) Ẋ(K) 6= ∅.
(v) The dual variety Y ∨ ⊂ P(H0(Y, L)) of Y is a hypersurface.
Associated to a Lefschetz pencil there is a diagram

P −−−−→ By y
V

iV−−−−→ Ẇ −−−−→ W
σ−−−−→ Yy ḟ

y yf
x

ix−−−−→ Ẋ
j−−−−→ X

g←−−−− η,

(9.1.1)

where B is the base locus of the pencil, σ is the blow-up of Y along B, ḟ is smooth,
ix is a K-rational point, g is the inclusion of the generic point, and all squares are
Cartesian.

(9.1.2) Proposition. Let Y and K be as above and suppose that L0 is a very
ample invertible sheaf on Y . Then there is an integer n0 such that for any n ≥ n0

there exist a finite extension K ⊂ Kn and a Lefschetz pencil X ⊂ PH0(YKn , L
⊗n
0 ).

Proof. Most of this is in [SGA 7, XVII.3]. The fact that Y ∨ will be a hypersurface
for n sufficiently large is a consequence of the degree formula in [Fu, 3.2.21].

9.2. The parity of the rank of the vanishing cohomology. We keep the
previous notation and assume that the Lefschetz pencil is defined over the base
field K. In particular V ⊂ Y is a non-singular divisor in the linear system |L| =
|L⊗n0 |. Write sV : V → Y for the inclusion, ΘV/K for the tangent sheaf to V and
E ⊂ H2m(VK̄ ,Zl(m)) for the vanishing cohomology [De2, 4.2.4].

(9.2.1) Lemma. (i) If n is even and h2m(YK̄) is odd, then rank(E) is odd.
(ii) If h2m(Y ′̄

K
) is even and Y → Y ′ is the blow up at a point of odd degree, then

h2m(YK̄) is odd.
(iii) Every smooth projective variety over a finite field has a point of odd degree.
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Proof. (i) By Poincaré duality the topological Euler characteristic, e(V ), is congru-
ent to h2m(VK̄) modulo 2. A standard Chern class computation yields

e(V ) = deg(sV ∗c2m(ΘV/K)) = deg(sV ∗s∗V (z)),

where z is the codimension 2m part of the product of total Chern classes c•(ΘY/K) ·
c•(L−1).

Assume n ≡ 0 mod 2. Since

sV ∗s∗V (z) = nc1(L0) · z,
we find that e(V ) and hence h2m(VK̄) is even. The hard Lefschetz theorem gives
an isomorphism

H2m(VK̄ ,Ql(m)) ' E ⊗Ql ⊕ H2m(YK̄ ,Ql(m)).

Clearly E has odd rank.
(ii) This is standard.
(iii) It suffices to prove this for curves, in which case it follows from the Riemann

hypothesis for the zeta function of the curve.

9.3. Lifting to characteristic zero. In this subsection we discuss lifting Lef-
schetz pencils to characteristic 0 and we compare the monodromy associated to the
original Lefschetz pencil with that of its lift.

(9.3.1). Let k0 be a finite field of characteristic 6= 2 and let Y/k0 be a smooth,
projective variety with an ample invertible sheaf L0. Write R for the Witt vectors of
k0, S := Spec(R), and ε ∈ S for the generic point. Assume that there is a projective,
flat morphism h : Y → S whose special fiber is isomorphic to Y . Assume in addition
that there is an invertible sheaf L0 on Y whose restriction to Y is isomorphic to
L0. We refer to (Y,L0) as a lifting of (Y, L0).

(9.3.2) Lemma. There is an n0 ∈ N such that for all n ≥ n0

(i) L⊗n0 is very ample,
(ii) H i(Y, L⊗n0 ) = 0 for i > 0, and
(iii) after replacing k0 by a finite extension if necessary, there is a Lefschetz

pencil X ⊂ PH0(Y, L⊗n0 ).

Proof. [Ha, II.Ex7.5e, III.5.3].

Fix an n as in (9.3.2) and define L := L⊗n0 and L := L⊗n0 .

(9.3.3) Lemma. (i) Rih∗L = 0 for i > 0.
(ii) h∗L is the sheaf associated to a finitely generated, free R-module L.
(iii) The natural map L⊗ROY → L is surjective and gives rise to an embedding

of S-schemes Y → PL∨.
(iv) Any lift X ⊂ PL of X ⊂ PH0(Y, L) has the property that the generic fiber Xε

gives a Lefschetz pencil on Yε in the sense of §9.1. Furthermore the locus ΣS ⊂ X
where X meets the dual of Y is étale over S.

Proof. (i) follows by upper semi-continuity [Ha, III.12.8-9]. (ii) follows from [Ha,
12.8-9] and the constancy of Euler characteristics in a flat family [Ha, III.9.9].
(iii) The surjectivity is a consequence of L being generated by global sections and
Nakayama’s lemma. The resulting morphism of S-schemes is an embedding because
it is so on the special fiber. (iv) Most of this is proved in [SGA 7, XVII.6]. To
verify condition (9.1)(iv) use Hensel’s Lemma. To show that the dual of Yε is a
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hypersurface recall that the dual of Y is obtained by projecting the projectivized
conormal bundle PY(N∨

Y/PL∨) ⊂ PL × PL∨ to the second factor. Since Y ∨ is a
hypersurface, the irreducibility of PY(N∨

Y/PL∨) implies that the dual variety of Yε
is also a hypersurface.

Let B ⊂ PL∨ be the linear space dual to X . The intersection B∩Y is transverse
since it is transverse along the special fiber. Blowing up Y along B ∩ Y gives rise
to a regular X -scheme F :W → X . Set Ẋ := X − ΣS . Consider the diagram

Ẇ −−−−→ Ẇ −−−−→ W
ḟ

y Ḟ

y F

y
Ẋ −−−−→ Ẋ −−−−→ X ,

in which the squares are Cartesian. Both Ḟ and ḟ are smooth. Let η̄S be a geometric
generic point of Ẋ . Let R̄ be the Witt vectors for k̄, the algebraic closure of k0,
and let ε̄ denote the generic point of S̄ := Spec(R̄).

(9.3.4) Lemma. There is a (non-canonical) identification of the images of the two
representations

π1(Ẋε̄, η̄S)→ Aut({R2mḞ∗Z/lr(m)|η̄S
}r∈N)

and

π1(Ẋk̄, η̄)→ Aut({R2mḟ∗Z/lr(m)|η̄}r∈N),

where the brackets { }r∈N indicate an inverse system.

Proof. Since Ḟ is smooth, the first representation factors through π1(ẊS̄ , η̄S). In
fact there are group homomorphisms

π1(Ẋε̄, η̄S) � π1(ẊS̄ , η̄S) ' π1(ẊS̄ , η̄) i∗←−−−− π1(Ẋk̄, η̄)

and an isomorphism of inverse systems

{R2mḞ∗Z/lr(m)|η̄}r∈N → {R2mḞ∗Z/lr(m)|η̄S
}r∈N

such that the action of π1(ẊS̄ , η̄) on the left corresponds to the action of π1(ẊS̄ , η̄S)
on the right. The integral closure of ẊS̄ in the fixed field of the kernel of

ςr : π1(ẊS̄ , η̄)→ Aut(R2mḞ∗Z/lr(m)|η̄)

is an irreducible étale ẊS̄ -scheme, rĊS̄ . Since XS̄−ẊS̄ is étale over S̄, a theorem of
Fulton [Fu2, 3.3] implies that the closed fiber of rĊS̄ is irreducible. In other words,
ςr and ςr ◦ i∗ have the same image. An application of the base change isomorphism,

R2mḞ∗Z/lr(m)|η̄ ' R2mḟ∗Z/lr(m)|η̄,

completes the proof.

(9.3.5) Corollary. Suppose that there is a direct sum decomposition of inverse
systems of representations of π1(Ẋε̄, η̄S),

{R2mḞ∗Z/lr(m)|η̄S
}r∈N ' {Er}r∈N ⊕ {Ĕr}r∈N.

Then there is a corresponding decomposition of {R2mḟ∗Z/lr(m)|η̄}r∈N as a repre-
sentation of π1(Ẋk̄, η̄).
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9.4. Vanishing lattices and a description of the monodromy group. In
this subsection we temporarily leave the category of schemes and work with com-
plex analytic spaces. The notion of Lefschetz pencil makes sense for closed complex
submanifolds of projective space. We use the same notation (X,Σ, V , etc.) intro-
duced in §9.1 for Lefschetz pencils of varieties to signify the corresponding objects
in the category of complex analytic spaces.

For each homotopy class of paths γ : [0, 1] → X with γ(0) = x, γ(1) ∈ Σ and
γ((0, 1)) ⊂ Ẋ there are associated vanishing cycles±δγ ∈ H2m(V,Z). The subgroup
generated by all vanishing cycles, E, will be viewed as a subgroup of H2m(V,Z) by
Poincaré duality. Fix one vanishing cycle δγ0 ∈ E and let ∆ ⊂ H2m(V,Z) denote
the orbit of δγ0 under the action of π1(Ẋ, x). The following is well known.

(9.4.1) Proposition. (i) For each homotopy class of paths γ1 joining x and a
point in Σ there is g ∈ π1(Ẋ, x) such that g(δγ0) = ±δγ1 .

(ii) The set ∆ consists of vanishing cycles and generates E.
(iii) For each δ ∈ ∆, δ · δ = (−1)m · 2.
(iv) There is an element gγ ∈ π1(Ẋ, x) whose action on H2m(V,Z) is described

by

gγ(ξ) = ξ + (−1)m+1(ξ · δγ)δγ .
Proof. (i) [Lam, 7.3.5]. (ii) follows from (i). (iii) [Lam, 6.3.2]. (iv) [Lam, 6.3.3].

(9.4.2) Definition ([Be, §2], [Eb, §2]). We call a pair (E′,∆′) a vanishing lattice
if

(i) E′ is a free, finite rank Z-module with a symmetric bilinear form 〈 , 〉.
(ii) ∆′ ⊂ E′ is a generating set consisting of elements δ with 〈δ, δ〉 = −2.
(iii) The subgroup Γ∆′ ⊂ GL(E′) generated by the reflections

gδ(ξ) = ξ + 〈ξ, δ〉δ, δ ∈ ∆′,

acts transitively on ∆′.

(9.4.3) Example. (i) Let E′ denote E modulo its torsion subgroup, let ∆′ be the
image of ∆ and define 〈ξ1, ξ2〉 = (−1)m+1ξ1 ·ξ2. Then (E′,∆′) is a vanishing lattice
and 〈 , 〉 is non-degenerate.

(ii) The middle dimensional homology of the Milnor fiber of an isolated singu-
larity on a 2m-dimensional complex analytic space gives rise to a vanishing lattice.
Here again there is a notion of vanishing cycle and intersection product [Be, §1],
[Eb]. We modify the latter by multiplying by (−1)m+1. In the particular case that
the isolated singular point is given by the equation

z3
1 + z3

2 + z4
3 +

2m+1∑
i=4

z2
i = 0, m ≥ 1,(9.4.4)

we write (E′
(m),∆

′
m) for the corresponding vanishing lattice.

For any vanishing lattice it is clear that the group Γ∆′ is contained in the or-
thogonal group O(E′). Assume that 〈 , 〉 is non-degenerate. Define a homomor-
phism σ : O(E′) → {±1} by first embedding E′ in E′ ⊗ R and then mapping to
R∗/(R∗)2 ' {±1} by the product of the determinant and the real spinor norm.
The cokernel of the map E′ → (E′)∨ which sends e 7→ 〈e, 〉 is a finite Abelian
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group which we denote D(E′). Write τ : O(E′) → Aut(D(E′)) for the induced
homomorphism. Define O∗(E′) := Ker(σ) ∩Ker(τ). Since each f ∈ (E′)∨ satisfies

f ◦ g−1
δ (ξ) = f(ξ) + f(δ)〈δ, ξ〉 ∀ δ ∈ ∆′,

one sees easily that Γ∆′ ⊂ O∗(E′).

(9.4.5) Proposition. If (E′,∆′) contains a vanishing sublattice isomorphic to
(E′

(m),∆
′
m) for some m ∈ N, then Γ∆′ = O∗(E′).

Proof. [Be, §2], [Eb, §2].

Write r (respectively d) for the rank (respectively the discriminant) of E′. Fix
an odd prime l and write ( , ) for the induced pairing on E′/l, ∆̄′ ⊂ E′/l for
the image of ∆′ and ν : O(E′/l) → F∗l /(F∗l )2 ' {±1} for the composition of the
spinor norm with the obvious isomorphism. Define ν′ := ν when −2 ∈ (F∗l )2 and
ν′ := ν · det otherwise.

(9.4.6) Proposition. Suppose that (E′,∆′) contains a vanishing sublattice iso-
morphic to (E′

(m),∆
′
m) for some m ∈ N. If r ≥ 5, l - 2 · d and the extension of 〈 , 〉

to E′ ⊗ R is indefinite, then the image Γ∆̄′ ⊂ O(E′/l) of Γ∆′ is equal to Ker(ν′).

Proof. Since l - d, the induced pairing ( , ) on E′/l is non-degenerate. Let
R− ⊂ O(E′) (respectively R̄− ⊂ O(E′/l)) denote the subgroup generated by reflec-
tions in all elements e ∈ E′ satisfying 〈e, e〉 = −2 (respectively elements ē ∈ E′/l
satisfying (ē, ē) = −2 ∈ (Z/l)∗). The fact that (E′,∆′) contains a vanishing sublat-
tice (E′

(m),∆
′
m) for some m ∈ N implies that it is complete in the sense of Ebeling

[Be, §2]. Now an argument of Ebeling [Eb, Theorem 2.3] shows that Γ∆′ = R−.
The affine variety (ē, ē) = −2 is non-singular and has an Fl-rational point. Any
such point lifts to a solution 〈e, e〉 = −2 in E′⊗Zl by Hensel’s Lemma. Since 〈 , 〉 is
indefinite, [Ca, Theorem 1.5, p. 131] implies that each ē ∈ E/l with (ē, ē) = −2 lifts
to some e ∈ E′ with 〈e, e〉 = −2. Thus R− maps surjectively to R̄− and Γ∆̄′ = R̄−.
Now R̄− ⊂ O(E′/l) is a non-trivial, normal subgroup which is not contained in the
kernel of the determinant since it is generated by reflections. On the other hand
R̄− ⊂ Ker(ν′). Since r ≥ 5, the only normal subgroup of the commutator subgroup
of O(E′/l) is {±Id} and this occurs only if r = 0 mod 2 [Di, II.6.2, II.6.5, II.9C].
Furthermore the commutator subgroup is the kernel of the map

O(E′/l)→ {±1} × {±1}, ϑ 7→ (ν(ϑ), det(ϑ))

[Di, II.8]. The proposition follows easily.

9.5. The structure of M as an Fl[Γ]-module. In this subsection we are con-
cerned with the following

(9.5.1) Geometric situation. Y is a smooth projective variety of dimension 2m+
1 over a finite field k0, whose algebraic closure we denote by k̄. Assume that the
Betti number h2m(Yk̄) is odd. Let L0 be an ample invertible sheaf on Y . Assume
that the pair (Y, L0) lifts to a pair (Y,L0) over the Witt ring R of k0. Fix a complex
embedding of the fraction field of R. Then Y gives rise to a complex projective
manifold Y an and L0 gives rise to an invertible sheaf Lan0 on Y an.

(9.5.2) Lemma. Let (Y, L0) be as in (9.5.1). After replacing k0 by a finite exten-
sion if necessary there is an n ∈ N so that all of the following conditions hold:
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(i) (9.3.2) holds and the Lefschetz pencil X ⊂ PH0(Y, L⊗n0 ) is actually defined
over k0.

(ii) n = 0 mod 2.
(iii) There is a hypersurface on Y an belonging to the linear system |(Lan0 )⊗n|

which has an isolated singular point given by the local equation (9.4.4) and no other
singularities.

(iv) The rank of the vanishing cohomology E is at least 5.
(v) The signature (a, b) of the intersection product restricted to E satisfies a > 1

and b > 1.

Proof. Only (iii), (iv) and (v) require comment. Since some power of L0 is very
ample, it is not difficult to produce for any large n a section of (Lan0 )⊗n with only
one singular point such that the local equation agrees with (9.4.4) modulo a high
power of the maximal ideal. It follows that the singularity is locally analytically
isomorphic to (9.4.4) [Ar, Corollary 1.6], [Sa, Lemma 2].

To establish (iv) and (v) we appeal to Hodge theory. For V a smooth divisor
belonging to |L⊗n0 | we have

χ(OV )− χ(OY ) = −χ(L−n0 ) = χ(Ω2m+1
Y ⊗ L⊗n0 ),

where the right-hand side is a polynomial in n of degree 2m+1 with positive leading
coefficient. In the decomposition of rational Hodge structures,

H•(V an,Q) ' E ⊗Q ⊕ H•,

the second term is independent of n by the Lefschetz theorems and Poincaré duality.
Thus dim(E0,2m

C ) = χ(OV ) − χ(OY ) increases without bound as n → ∞ and the
same holds for the rank of E.

Since the vanishing cohomology is contained in the primitive cohomology, the
signature, (a, b), of the intersection pairing on E ⊗ R is determined by the Hodge
numbers of E [We, V.5]. To verify that both a and b approach infinity as n does, we
need only show that the dimensions of E0,2m

C and E1,2m−1
C increase without bound.

This follows from the above and

−dim(E1,2m−1
C ) = χ(ΩV )− χ(ΩY ) = −χ(ΩY ⊗ L−n0 ) + χ(L−2n

0 )− χ(L−n0 ),

which is a polynomial in n of degree 2m+ 1 with negative leading coefficient.

Let n be as in (9.5.2). Set L = L⊗n0 and let V an ⊂ Y an be a non-singular divisor
which corresponds to a point x ∈ Ẋan. Let t ⊂ H2m(V an,Z) denote the torsion
subgroup. Write 〈 , 〉 for (−1)m+1 times the intersection form on E/(t ∩ E)
and let d denote the discriminant of 〈 , 〉. Observe that the torsion subgroup of
H2m+1(V an,Z) is isomorphic to t by the universal coefficient theorem and Poincaré
duality. Let l be a prime such that l - 2 ·p ·d · |t|. There are isomorphisms of inverse
systems,

{H2m(V an,Z/lr)}r∈N ' {H2m(V an,Z)/lr}r∈N ' {E/lr}r∈N ⊕ {(E/lr)⊥}r∈N,

(9.5.3)

which give rise to a direct sum decomposition of the local systems {R2mḞ an∗ Z/lr}r∈N.
After fixing a compatible system of roots of unity and applying “Riemann’s exis-
tence theorem” [Mi, III.3.14] we obtain a decomposition of {R2mḞ∗Z/lr(m)|ẊS̄

}r.
By (9.3.5) there is a corresponding decomposition of π1(Ẋk̄, η̄)-modules:

{R2mḟ∗Z/lr(m)|η̄}r∈N ' {Er}r∈N ⊕ {(Er)⊥}r∈N.(9.5.4)
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The fundamental group acts trivially on the second factor in the sum. Using the
purely algebraic notion of vanishing cohomology one can show that the isomorphism
(9.5.4) respects the action of the arithmetic monodromy group π1(Ẋk0 , η̄) [Fr-Ki,
III.7.7]. By ([De2, 4.3])

{R2mf∗Z/lr(m)}r∈N ' {g∗(R2mf∗Z/lr(m)|η)}r∈N.

By the choice of l and (9.5.3) this is an l-adic sheaf in the sense of [Mi, p. 163]
and R2mf∗Z/lr(m) is Z/lr-flat for each r. Set Er = g∗Er and M = E1(1). Let
k0 ⊂ k be a finite field extension such that (3.2.1) and (3.2.2) hold. The image, Γ, of
π1(Ẋk, η̄) → AutFl

(M) may be identified with the image of π1(Ẋan, x) → O(E/l)
by (3.2.1). By (9.4.6) we have Γ = Ker(ν′).

With this precise description of the monodromy group in hand we can now verify
that the hypotheses (3.3.1–3) and (3.3.6) hold:

(9.5.5) Lemma. (i) M 'M∨.
(ii) MΓ = 0 and M is an absolutely irreducible Fl[Γ]-module.
(iii) There exists ξ ∈ Γ of order prime to l such that M 〈ξ〉 ' Fl.
(iv) The inertia subgroup of Γ corresponding to a point above any x ∈ Σ is

isomorphic to Z/2.

Proof. (i) Since both R2mḟ∗Z/lr(m)|η̄ and the trivial representation are self-dual,
this follows from (9.5.4).

(ii) Letm 6= 0 be contained in an F̄l[Γ]-submoduleN ⊂M⊗F̄l. Since the bilinear
form ( , ) induced from 〈 , 〉 is non-degenerate and M is generated by the image ∆̄
of ∆ ⊂ E, there exists δ ∈ ∆̄ such that (m, δ) 6= 0. Since gδ(m) = m+ (m, δ)δ, we
must have δ ∈ N . Since Γ acts transitively on ∆̄, we have ∆̄ ⊂ N . But ∆̄ generates
M , so N = M ⊗ F̄l.

(iii) By (9.5.1–2) and (9.2.1)(i) dimFl
(M) ≡ 1 mod 2. The intersection pairing

gives rise to a non-degenerate symmetric bilinear pairing on M . The only invariant
of a non-degenerate symmetric bilinear form of fixed rank over a finite field of odd
characteristic is the discriminant [Se2, IV.5]. Thus we may regard M as the orthog-
onal direct sum of hyperbolic planes and a single one-dimensional non-degenerate
quadratic space. When l > 3, take for ξ a block diagonal matrix with one block(
λ 0
0 λ−1

)
, λ ∈ (F∗l )2 − {1}, for each hyperbolic plane and with a 1 in the remain-

ing 1 × 1 block. When l = 3, Γ is the kernel of the spinor norm and we may take
ξ = −Id · gm, where gm is the reflection in the hyperplane m⊥ for some m ∈ M
where (m,m) and the discriminant d have the same class in F∗l /(F∗l )2. This works
because the spinor norm of −Id may be expressed as

∏
(mi,mi) ∈ F∗l /(F∗l )2, where

the product is over an orthogonal basis. This is also the discriminant.
(iv) This follows from the Picard-Lefschetz formula for the local monodromy

[SGA 7, XV.3.4].

The next result shows that the hypotheses (3.3.4) and (3.3.5), which are equiv-
alent by (9.5.5)(i), are also satisfied, at least if we avoid a finite set of primes l. To
emphasize that the group Γ depends on the choice of prime l we denote it by Γ(l)

in the remainder of this section.

(9.5.6) Proposition. H1(Γ(l), E/l) = 0 for all except finitely many l.

The proposition will be deduced from rather general facts about the cohomology
of arithmetic groups.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE IMAGE OF THE l-ADIC ABEL-JACOBI MAP 829

Let G be a linear algebraic group over Q and let EQ be a finite-dimensional
Q-vector space. Consider a representation $ : G → GL(EQ). Fix a full lattice
E ⊂ EQ and let Γ ⊂G(Q) be an arithmetic subgroup which stabilizes E. For each
prime l the image of Γ in GL(E/lE) will be denoted Γl. The set of primes l for
which H1(Γl, E/lE) 6= 0 is denoted P.

(9.5.7) Proposition. P is a finite set when the following hypotheses hold:
(i) G is absolutely simple, simply connected and isotropic.
(ii) The Lie algebra of GR is not isomorphic to so(m, 1) for any m and the Lie

algebra of GC is not isomorphic to sl(n,C) for any n.
(iii) The representation EQ of G is non-trivial and absolutely irreducible.

Proof. The hypotheses imply that H1(Γ, EQ) = 0 [Ra1, §3, Corollary 1] and [Ra2,
Theorem 3]. Thus H1(Γ, E) is a torsion group. Since Γ is arithmetic, it has a
torsion free subgroup of finite index. (In fact the intersection with the principal
congruence subgroup of level 3 in GL(E) is torsion free [Min, §1].) We may now
apply [Br, VIII.9.5 and 5.1] to conclude that the Z[Γ]-module Z has a resolution by
finitely generated projective Z[Γ]-modules. Thus Hi(Γ, E) is a finitely generated
Abelian group for each i. It follows from the long exact cohomology sequence
associated to the sequence of Γ-modules

0→ E
l→ E → E/lE → 0

that H1(Γ, E/lE) = 0 for all but finitely many primes l. Now (9.5.7) follows from
the injectivity of the restriction map

H1(Γl, E/lE)→ H1(Γ, E/lE).

Proof of Proposition (9.5.6). We take for E the image of the vanishing cohomology
in H2m(V an,Z)/t, for G the universal cover of SO(EQ), and for Γ the inverse
image of O∗(E) ∩ SO(EQ) in G(Q). G is isotropic because rank(E) ≥ 5 and the
intersection form is indefinite by (9.5.2)(v) [Se4, IV.3, Corollary 2]. The Lie algebra
of G satisfies (9.5.7)(ii) by (9.5.2)(v).

We may assume l - 2 · p · d · |t|. By (9.4.6) there is a short exact sequence of
groups,

1→ Γl → Γ(l)
det→ {±1} → 1,

which yields an exact inflation-restriction sequence,

0→ H1({±1}, (E/l)Γl)→ H1(Γ(l), E/l)→ H1(Γl, E/l){±1}.

The first term is zero because l is odd and the last term is zero for almost all l by
(9.5.7). Proposition (9.5.6) follows.

9.6. Integral Tate classes in the fibers of a Lefschetz pencil. As mentioned
in the introduction, the analog of (0.1) for varieties of dimension > 4 does not
follow from the Tate conjecture. It will however follow from

(9.6.1) Hypothesis H. Let ḟ : Ẇ → Ẋ be as in (9.1.1) and let E be as in §9.5.
There exists a number h(f) ∈ N such that if l - h(f). Then the map introduced in
(2.3.4),

q# : Zm+1
f (Wk̄)→ Z(E),

is surjective.
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(9.6.2) Remarks. (i) In case m = 1, hypothesis H follows from the Tate conjecture;
cf. (8.2.3).

(ii) Hypothesis H is a weak version of an integral analog of the Tate conjecture.
There are known counterexamples to the integral Hodge conjecture and hence to
certain integral analogs of the Tate conjecture. However these counterexamples do
not seem to be helpful in evaluating the plausibility of H.

(iii) The discussion of an integral version of the Tate conjecture in [Sch6] only
concerns one-dimensional cycles and thus has no bearing on H when m ≥ 2.

(iv) It appears to the author that a serious investigation of the plausibility of
hypothesis H will have to wait until more is known about the Tate conjecture.

10. The proof of Theorems (0.1) and (0.2)

10.1. Let Y (respectively Y ′) denote a smooth, projective variety of dimension n
(respectively n′) over a finite field k0.

(10.1.1) Lemma. (i) If Z ∈ Zn′+r−s(Y ′ × Y ) induces a surjection

Z∗ : H2s−1(Y ′̄
k
,Ql(s))→ H2r−1(Yk̄,Ql(r)),

then asY ′ surjective implies arY surjective.
(ii) If n = n′, σ : Y ′ → Y is a dominant morphism and arY ′ : CHr

hom(Y ′̄
k
) →

Jrl (Y
′) is surjective, then arY : CHr

hom(Yk̄)→ Jrl (Y ) is also surjective.
(iii) a1

Y : CH1
hom(Yk̄)→ J1

l (Y ) is surjective.
(iv) anY : CHn

hom(Yk̄)→ Jnl (Y ) is surjective.

Proof. (i) This follows from (1.1.5)(i) and the compatibility of the l-adic Abel-
Jacobi map with correspondences [Sch, 1.10].

(ii) Take Z to be the graph of σ and apply (i).
(iii) By replacing Y by a curve which generates the Picard variety of Y one

is reduced to the case that Y is a curve. This case follows from (1.3.4) and the
variant of the Tchebotarev density theorem described in [Sch, 9.9] and proven in
[Lan]. Alternately, one can prove the assertion by relating a1

Y to the inverse of
the map H1(Yk̄,Ql/Zl(1))→ lim−→ rH

1(Yk̄,Gm)[lr] in Kummer theory [Bu-Sch-Top,
1.12].

(iv) By replacing Y by a curve mapping to Y which generates Alb(Y ) one is
reduced to the case that Y is a curve. Now the argument in (iii) applies.

10.2. Proof of (0.1) and (0.2). The proof is by induction on the dimension n
of Y . By (10.1.1)(iii) and (iv) the theorem is true when n ≤ 2. We assume now
that Y is given of dimension n ≥ 3 and that (0.1) and (0.2) hold for all smooth
projective varieties of dimension ≤ n − 1. Fix r, 0 < r ≤ n

2 , and let T ⊂ Y be a
subvariety of dimension 2r − 1 which is the transverse intersection of non-singular
ample divisors. The Lefschetz hyperplane theorem says that the Gysin map

sT∗ : H2r−1(Tk̄,Ql(r))→ H2n−2r+1(Yk̄,Ql(n− r + 1))

is surjective. Since arT,l is surjective for all except finitely many primes l by the
induction hypothesis, it follows from (10.1.1)(i) that an−r+1

Y,l is surjective for all
except finitely many primes l.

The Tate conjecture for Y × Y (or the somewhat weaker Lefschetz standard
conjecture for Y [Kl, §4]) implies the existence of a cycle z ∈ Z2r−1(Y × Y ) such
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that

z∗ : H2n−2r+1(Yk̄,Ql(n− r + 1))→ H2r−1(Yk̄,Ql(r))

is an isomorphism. By (10.1.1)(i) the surjectivity of an−r+1
Y,l implies the surjectivity

of arY,l. If n is even, this completes the inductive step in the proof of Theorems
(0.1) and (0.2).

Suppose that n = 2m + 1 ≥ 3. To complete the inductive step in this case we
need only check that am+1

Y,l is surjective for almost all l. At this point we would
like to assume that Y together with a Lefschetz pencil lifts to characteristic zero.
Unfortunately, this will not always be the case. So we fix a prime l0 distinct from the
characteristic of k0 and use the Tate conjecture and the assumption that Frobenius
acts semi-simply on H2m+1(Yk̄,Ql0) to construct curves T1,...,T2m+1 defined over
k0 and a cycle z ∈ Z2m+1((

∏2m+1
i=1 Ti)× Y ) such that the induced map

H2m+1(z,Ql0) : H2m+1((
2m+1∏
i=1

Ti)k̄,Ql0)→ H2m+1(Yk̄,Ql0)

is surjective [Sch3, 7.1.2]. The next lemma addresses the issue of “independence of
l” .

(10.2.1) Lemma. If the Tate conjecture holds, then the cycle z induces a surjective
map, H2m+1(z,Ql), for each prime l distinct from the characteristic of k0.

Proof. Katz and Messing [Ka-Me, Theorems 1 and 2] construct motives

H2m+1(
2m+1∏
i=1

Ti) and H2m+1(Y )

with respect to any adequate equivalence relation which is coarser than Ql-coho-
mological equivalence for some prime l 6= char(k0) by taking certain explicit Q-
linear combinations of graphs of powers of Frobenius as projectors. The cycle z
induces a morphism

z# : H2m+1(
∏2m+1
i=1 Ti)→ H2m+1(Y ).

We work with motives for numerical equivalence, so that we may identify the co-
kernel of z# with a submotive (Y, pr) of (Y,∆Y ) [Ja2]. Write Znum(Y × Y )Q
(respectively Zhoml

(Y × Y )Q) for the subspace of Z(Y × Y ) ⊗ Q consisting of
cycles which are numerically (respectively Ql-cohomologically) equivalent to zero.
Certainly Zhoml

(Y × Y )Q ⊂ Znum(Y × Y )Q and the Tate conjecture implies the
opposite inclusion. Thus we may speak of the Ql-cohomology of (Y, pr) and compute
its dimension using the Lefschetz fixed point formula [Kl2, 1.3.6]:

dimQl
pr∗H2m+1(Yk̄,Ql) = −

∑
i

(−1)iTr(pr ◦ pr|Hi(Yk̄,Ql)) = −pr ·t pr,(10.2.2)

where the right-hand side, being the intersection number of two cycles in Y × Y ,
is independent of l. Since the left-hand side of (10.2.2) may be identified with the
dimension of the cokernel of H2m+1(z,Ql), the lemma follows.

Now (10.1.1)(i) allows us to forget about the original variety and to concentrate
on establishing the surjectivity of am+1

l for the product of curves
∏2m+1
i=1 Ti. We

rename this product Y if the 2m-th Betti number is odd. If the 2m-th Betti number
is even, we blow up a point of odd degree and denote the resulting variety by Y .
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(10.2.3) Lemma. There exist an ample invertible sheaf L0 on Y and a lifting of
the pair (Y, L0) to a pair (Y,L0) over the Witt vectors of k0.

Proof. Let di be a divisor of positive degree on Ti. Since Ti is a smooth curve,

Ext2OTi
(ΩTi ,OTi) ' H2(Ti, Hom(ΩTi ,OTi)) = 0

and

Ext2OTi
(OTi ,OTi) ' H2(Ti,OTi) = 0.

Now deformation theory implies that the pair (Ti,OTi(di)) lifts to the Witt vectors
[SGA 1, III.7]. By forming the fiber product over S we obtain a lifting of the pair
(
∏2m+1
i=1 Ti,

⊗2m+1
i=1 pr∗iOTi(di)). If the 2m-th Betti number of the product of curves

is odd, we set L0 =
⊗2m+1

i=1 pr∗iOTi(di) and are done. If the 2m-th Betti number is
even, we denote by q the point of odd degree which gets blown up to produce Y .
By Hensel’s lemma q lifts to an étale multisection of the fiber product over the Witt
ring. Let Y denote the blow up of the fiber product along this multisection. Let
D ⊂ Y denote the special fiber of the exceptional divisor. The pull back of some
high multiple of

⊗2m+1
i=1 pr∗iOTi(di) tensored with OY (−D) is an ample invertible

sheaf [Ha, II.Ex.7.5(b)]. This sheaf, which we denote by L0, clearly lifts to Y.

Fix n as in (9.5.2). If necessary replace k0 by a finite extension to be sure
that a Lefschetz pencil X ⊂ PH0(Y, L⊗n0 ) exists over k0. Set L = L⊗n0 and let
f : W → X be as in (9.1.1). By (10.1.1)(ii) am+1

Y,l will be surjective if am+1
W,l is. The

Leray spectral sequence for f gives rise to a filtration on H2m+1(Wk̄,Ql(m + 1)).
Now (2.2.3) allows us to verify the surjectivity of am+1

W,l by checking surjectivity for
the three simpler Abel-Jacobi maps (2.2.3)(i), (ii), and (iii). Of these, (2.2.3)(i) is
already surjective by the induction hypothesis.

(10.2.4) Lemma. With W as above the map (2.2.3)(iii) is surjective.

Proof. Let L•H2m+1(Wk̄,Ql) denote the filtration which comes from the Leray
spectral sequence for f . Define sV = σ ◦ iV : V → Y as in §9.2. We claim that the
composition

H2m−1(Vk̄,Ql)
sV ∗−−→ H2m+1(Yk̄,Ql)

σ∗−→ H2m+1(Wk̄,Ql)
c−→ H2m+1(Wk̄,Ql)
L1H2m+1(Wk̄,Ql)

,

in which c is the tautological map, is surjective. For this we need only note that
there is a commutative diagram

H2m+1(Wk̄,Ql)/L1H2m+1(Wk̄,Ql) −−−−→ H2m+1(Vk̄,Ql)

c◦σ∗
x xs∗V ◦sV ∗

H2m+1(Yk̄,Ql)
sV ∗←−−−− H2m−1(Vk̄,Ql),

in which the top arrow comes from the Leray spectral sequence and is injective while
the right-hand arrow is an isomorphism by the hard Lefschetz theorem [De2]. Thus

the composition Jml (V ) σ∗◦sV ∗→ Jm+1
l (W ) c→ J(L0/L1) is surjective by (1.1.5)(i).

Since amV,l is surjective by the induction hypothesis, the lemma follows.

According to (2.2.3) the surjectivity of am+1
W,l will follow if the map af : Zm+1

f (Wk̄)
→ J(H1(Xk̄, R

2mf∗Zl(m+1))) is surjective. Recall from §9.5 that the intersection
product on the vanishing cohomologyE ⊂ (R2mF an∗ Z)x has a non-zero discriminant
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d. Since we are allowed to ignore finitely many primes l, we assume l - 2 · d · p · |t|,
where t ⊂ H2m(V an,Z) is the torsion subgroup. As in §9.5 the vanishing coho-
mology gives rise to an orthogonal direct sum decomposition of l-adic sheaves on
X ,

{R2mf∗Z/lr(m+ 1)}r∈N ' {Er}r∈N ⊕ {E⊥r }r∈N,

where the geometric monodromy acts trivially on E⊥r . SinceX ' P1
k0

,H1(Xk̄, E⊥)=
0, J(H1(Xk̄, R

2mf∗Zl(m+1))) ' J(H1(Xk̄, E(1))). Recall the definitions of Zf (Wk̄)
and Z(E) from §2.2 and §2.3. If we assume the Tate conjecture and either that
m = 1 or that hypothesis H holds and l - h(f), then the cycle class map of (2.3.4),
q# : Zm+1

f (Wk̄) → Z(E), is surjective by §9.6. Thus the surjectivity of af will
follow if

aE : Z(E)→ J(H1(Xk̄, E(1)))

is surjective. To verify this we use (2.4.3). To check that the hypotheses of (2.4.3)
hold we recall from §9.5 that Er is flat over Z/lr, j∗Er is locally constant, and
E1(1) = g∗M , where M is a sheaf of Fl-vector spaces on the generic point of X .
By (9.5.5) the associated Galois module, M , satisfies M = M∨ and MΓ = 0. Thus
(2.4.3)(i) is satisfied. To verify (2.4.3)(ii) we apply Theorem (3.4). By (9.5.5)(iv)
the Galois representation on the vanishing cohomology is tamely ramified. We may
thus fix a finite extension field k0 ⊂ k1 such that (3.2.1–6) hold for any base field k
which is a finite extension of k1. In §9.5 we checked that hypotheses (3.3.1–6) hold
for all except finitely many choices of l. Thus Theorem (3.4) tells us that hypothesis
(2.4.4)(ii) holds for almost all choices of l, so aE and hence am+1

W,l are surjective for
almost all primes l. This completes the inductive step in the case that n is odd.

The proof of Theorems (0.1) and (0.2) is complete.

11. The surjectivity of the l-adic Abel-Jacobi map

for desingularized self-fiber products of elliptic surfaces

11.1. Statement of the theorem. Let k0 be a finite field of characteristic p and
let X be a smooth projective curve over k0. Let π : Y → X be a non-isotrivial,
relatively minimal, semi-stable, elliptic surface with a section, s : X → Y . The
inclusion of the non-empty open affine subset over which π is smooth is denoted
j : Ẋ → X . Base change with respect to j is denoted by adding a dot, ˙ , to the
notation. For instance π̇ : Ẏ → Ẋ is an Abelian scheme.

The fiber product Y ×X Y is non-singular away from finitely many ordinary
double points. A point (v1, v2) ∈ Y ×X Y is singular when π fails to be smooth at
both v1 and v2. The blow-up of the ideal sheaf of the reduced singular locus will
be written σ : W → Y ×X Y . W is non-singular and has a tautological morphism
f : W → X .

(11.1.1) Definition. Let mπ denote the least common multiple of all n such that
π has a singular fiber of Kodaira type In.

The main result of this section is

(11.1.2) Theorem. For l - 2 ·5 ·p ·mπ the l-adic Abel-Jacobi map a2
W,l : Z2

hom(Wk̄)
→ J2

l (W ) is surjective.

We prove the theorem by evaluating a2
W,l at complex multiplication cycles whose

definition and properties we now recall.
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11.2. Complex multiplication cycles. Let k0 ⊂ k′ be an algebraic field exten-
sion.

(11.2.1) Definition. A point x ∈ Ẋ(k′) is called a complex multiplication (CM)
point if the geometric fiber π−1(x)k̄ is not a supersingular elliptic curve.

For x ∈ Ẋ(k′) there is a canonical isomorphism f−1(x) ' π−1(x) × π−1(x). If
[k′ : k0] <∞, then the graph of the Frobenius relative to k′ and the diagonal give
two divisors ∆x and Fx ⊂ f−1(x).

(11.2.2) Lemma. (i) The complement Ẍ ⊂ Ẋ of the points where the geometric
fiber of π is supersingular is a non-empty affine open subset.

(ii) If x ∈ Ẋ(k′) is a CM point, then N.S.(f−1(x)) = N.S.(f−1(x)k̄) ' Z4. If
in addition [k′ : k0] <∞, then the subset {π−1(x)× s(x), s(x)× π−1(x),∆x, Fx} ⊂
N.S.(f−1(x)) is linearly independent.

Proof. (i) [Sil, V.3.1(iii)]. (ii) is straightforward.

(11.2.3) Definition. Let x ∈ Ẋ(k′) be a CM point. An element z ∈ Z1(f−1(x))
is called a CM cycle if its image in N.S.(f−1(x)) is a generator of the free rank one
Z-module

Span{π−1(x) × s(x), s(x) × π−1(x),∆x}⊥ ⊂ N.S.(f−1(x)).

The image of the CM cycle z under the natural map Z1(f−1(x)) → Z2(Wk′ )
gives rise to an element of CH2(Wk′ ). The subgroup of CH2(Wk′ ) generated by all
CM cycles in fibers f−1(x), where x ∈ Ẍ(k′) ranges over all CM points, is denoted
CH2

CM (Wk′ ).

(11.2.4) Lemma. Assume l - 2 · p.
(i) The cohomology class of a CM cycle lies in the subgroup

Sym2H1(π−1(x)k̄,Zl)(1) ⊂ H2(f−1(x)k̄,Zl(1)).

(ii) The element of CH2
CM (Wk̄) determined by a CM-cycle z ∈ Z1(f−1(x)) de-

pends only on the cohomology class of z in H2(f−1(x)k̄,Zl(1)).

Proof. (i) This is straightforward. (ii) [Sch, 5.18].

(11.2.5) Lemma. There is a cycle P ∈ Z3(W × W ) ⊗ Z[ 12 ] with the following
properties:

(i) The class of P in CH3(W ×W )⊗ Z[ 12 ] is an idempotent.
(ii) P gives rise to a relative correspondence in CH2(Ẇ ×Ẋ Ẇ )⊗ Z[ 12 ] which is

an idempotent.
(iii) For primes l - 2 · p, P∗R2ḟ∗Zl(2) ' (Sym2R1π̇∗Zl)(2).
(iv) If l - 2 · p ·mπ, then H0(Xk̄, j∗Sym2R1π̇∗Z/ln) = 0 ∀ n.
(v) If l - 2 · p · mπ, P∗H3(Wk̄,Zl(2)) ' H1(Xk̄, j∗(Sym2R1π̇∗Zl)(2)) and this

group is torsion free.
(vi) P acts as the identity on CH2

CM (Wk̄).
(vii) For l - 2 · p the l-adic Abel-Jacobi map induces a surjection

(Id− P )∗CH2
alg(Wk̄)→ (Id− P )∗J2

l (W ).

Proof. (i)–(iii) [Sch, 5.8]. (iv) This is a consequence of [Sch, 5.6]. (v) [Sch, 5.13,
5.14]. (vi) [Sch, 5.8]. (vii) [Sch, 10.8].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE IMAGE OF THE l-ADIC ABEL-JACOBI MAP 835

Define M := j∗(Sym2R1π̇∗Z/l)(2). Let k0 ⊂ k be a finite extension and let
z ∈ Z1(f−1(x)) be a CM cycle for some CM point x ∈ Ẋ(k). The cohomology class
of z in

Sym2H1(π−1(x)k̄,Z/l)(1) ' H2
x(Xk̄,M)

will be denoted [z]. For the next lemma we regard z as an element of Z2(Wk).

(11.2.6) Lemma. Assume l - 2 · p ·mπ.
(i) z ∈ Z2

hom(Wk).
(ii) [z] 6= 0.
(iii) The monodromy group Γ associated to M is isomorphic to SL(2,Fl)/± Id.
(iv) The Galois representation associated toM is tamely ramified. In particular,

(3.3.1) holds.

Proof. (i) [Sch, 5.4]. (ii) [Sch, 5.3]. (iii) [Sch, 5.6]. (iv) Since π is semi-stable, the
Galois representation associated to R1π̇∗Z/l is tamely ramified [Ogg, §II] and (iv)
follows.

Let k0 ⊂ k1 be a finite extension with the property that for any finite extension
k1 ⊂ k the hypotheses (3.2.1–6) hold. The existence of such a k1 was proved at the
end of §3.2.

(11.2.7) Lemma. Assume l - 2 · 5 · p ·mπ. Then hypotheses (3.3.2–6) hold.

Proof. As a representation of Γ ' SL(2,Fl)/ ± Id, M is isomorphic to the second
symmetric power of the tautological representation of SL(2,Fl). We leave the
verification of (3.3.2–3) to the reader. For (3.3.6) we may take ξ ∈ Γ to be the
image of any semi-simple element of SL(2,Fl) other than ±Id. Finally (3.3.4)
and (3.3.5) are equivalent since M ' M∨. We will view (3.3.4) as a statement
about extensions in the category of Fl[Γ]-modules. When Γ ' SL(2,Fl)/± Id, this
category is well understood. There are only finitely many isomorphism classes of
indecomposable modules and the structure of each indecomposable as an extension
of simple modules is known [Al, p. 49]. For our purposes it suffices to know that
there is a non-split exact sequence

0→ Fl → rad(P0)→ S → 0,(11.2.8)

where S is isomorphic to the l−3-rd symmetric power of the tautological represen-
tation of SL(2,Fl). S is absolutely simple and self-dual. There are isomorphisms

H1(Γ,M) ' Ext1Fl[Γ](Fl,M) ' HomFl[Γ](rad(P0),M) ' HomFl[Γ](S,M) = 0,

where the second map comes from HomFl[Γ]( ,M) applied to

0→ rad(P0)→ P0 → Fl → 0

and the final equality is a consequence of the assumption that the odd prime l 6=
5.

11.3. Proof of Theorem (11.1.2). Set E := j∗(Sym2R1π̇∗Zl)(1). By (11.2.5)(v)
P∗J2

l (W ) ' J(H1(Xk̄, E(1))). Recall the map

aE : Z(E)→ J(H1(Xk̄, E(1)))

from (2.3.2). Let k1 be as below (11.2.6) and let k1 ⊂ k be a finite extension. Fix an
element ε ∈ H1(Gk, H1(Xk̄,M)). By Theorem (3.4) there is a CM point x ∈ Ẍ(k)
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such that
(i) H2

x(Xk̄,M)Gk ' Fl.
(ii) The image of δ3.1.1 : H2

x(Xk̄,M)Gk → H1(Gk, H1(Xk̄,M)) is Flε.
Let zx ∈ Z1(f−1(x)) be a CM cycle. By (11.2.6)(ii) the cohomology class [zx] ∈

H2
x(Xk̄,M)Gk is not zero. Thus for any finite extension k1 ⊂ k and any ε ∈

H1(Gk, H1(Xk̄,M)) there is a CM cycle zx such that δ3.1.1([zx]) is a non-zero
multiple of ε. By (2.4.3) this implies that aE is surjective. Since we have only made
use of Tate classes in Z(E) which correspond to CM cycles, we may use (11.2.5)(v)
to conclude that a2

W,l induces a surjective map

CHCM (Wk̄)→ J(P∗H3(Wk̄,Zl(2))) ' P∗J2
l (W ).(11.3.1)

Now (11.2.5)(vii) shows that

a2
W,l : Z2

hom(Wk̄)→ J2
l (W )

is surjective.

(11.3.2) Corollary. For l - 2 · 5 · p · mπ the restriction of the l-adic Abel-Jacobi
map to the subgroup CH2

alg(Wk̄) + CHCM (Wk̄) of CH2
hom(Wk̄) is a surjection to

J2
l (W ).

11.4. The Chow group of the threefold product of the Fermat cubic
curve. We now prove Theorem (0.4) of the introduction. Fix a prime p 6= 3 and
a second prime l - 3 · p. Let E ⊂ P2

Fp
be the Fermat cubic curve. When p ≡ −1

mod 3, E3
F̄p

is supersingular and the proof of [Sch, 14.4(1)] shows that

CH2
alg(E

3
F̄p

)⊗ Zl = CH2
hom(E3

F̄p
)⊗ Zl

a2
E3,l−−−−→ J2

l (E
3)

is an isomorphism. When p ≡ 1 mod 3 and l ≡ −1 mod 3, the proof of [Sch,
14.4(3)] shows that

a2
E3,l : CH2

hom(E3
F̄p

)⊗ Zl → J2
l (E3)(11.4.1)

is an isomorphism. Now (11.3.2) shows that the map [Sch, 14.3] is surjective even
when l ≡ 1 mod 3. The proof of [Sch, 14.4] now gives immediately that (11.4.1) is
an isomorphism for l ≡ 1 mod 3.
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