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ABSTRACT

Thispaper describestwo models ofthe costofdatamovement

inparailelnumericalalgorithms.One model isa generalizationof

an approach due to Hockney, and issuitableforshared memory

multiproeessorswhere each processorhas vectorcapabilities.The

other model is applicableto highlyparallelnonshared memory
MIMD systems. In thissecond model, algorithmperformance is

characterizedin terms of the communication network design.

Techniquesused inVLSIcomplexitytheoryare alsobroughtin,and

algorithmindependent upper bounds on system performance are
derivedforseveralproblems thatare importanttoscientificcom-
putation.

1. In.Lr_duction

The traditionalmodel of parallelalgorithmanalysiswas motivated by a
desireto explorethe potentialof parallelism.Thus the questionwas asked:

given an unlimitednumber ofprocessingelements and an infinitecapacityto

move and permute data,what isthe fastestmethod tosolvethe problem under
consideration?Thishas proven to be a fruitfularea ofresearch and much has

been learned.However, withthe appearance ofthe lUiacIV,the Cray I and the
CDC Cyber 205,itwas quicklyrealizedthatthe designofdatastructuresand the

cost of processorto processorand processorto memory communication are

criticalingredientsinthe designand analysisofpracticalalgorithms.The goal
of thispaper is to highlightthe roleplayed by communication cost in the
analysisofnumericalalgorithms.

Because the spectrum ofparallelarchitecturessuitableforscienLiflccom-

putationisso broad,itisdifficultto deriveone analyticalmodel ofcomputation
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tuteforComputer ApplicationsinScienceand Engineering,NASA LangleyResearch Center,

Hampton, VA 23665. Primary support_orthe firstauthorwas providedby an IBM Faculty
DevelopmentGrant.
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that characterizes the performance of every machine. In this paper we restrict

our attention to three families of machine architectures and describe an analyt-
ical model of performance that is reasonably suited to each. In particular, our
goal for each model is to characterize the effect of communication costs on sys-

tem performance. In each model we give an estimate of effective efficiency or
speed-upofa computationasa functionthelatencyandbandwidthofthepro-
cessorcommunication medium.

e

The firstmodel isthatofa "medium scale"shared-memory multiprocessor,

having perhaps 2 to 32 processors,with each processorcapable of exploiting
substantiallocalvector parallelism.Section 2 of thispaper gives a formal

descriptionofthe shared memory model and illustratesa method ofanalyzing

algorithmsformachines ofthistype.Severalstandard,but important,numeri-

ca! problems are studied and a number of alternateimplementations are

analyzed.Inparticular,itisshown thatformachines which have two levelsof

parallelismthe performance ofalgorithmsdepends stronglyon theway inwhich

the problem ispartitionedto fiton the architecture.The performance of the

algorithmsisgivenas a functionofglobaland localmemory latencies,thespeed

ofarithmeticoperations,thenumber ofprocessors,and thesizeoftheproblem.

The second model isthatofa highlyparallelMIMDsystem where processors

communicate through a large network and there isno shared memory. We

assume here a number ofprocessorsrangingfrom perhaps 82 toa few thousand,

but withprocessorsoflesserpower than inthe shared memory model. Analysis

and designofalgorithmsforsuch systems turnsout to be significantlydifferent
than itisfor the shared memory machines. In sectionS itisshown thatthe

techniquesused inVLSI complexityanalysiscan be used to derivereasonable

upper bounds on speed-up and eGiciency.The appropriateparnrnetersforthis
analysisturn out to be the ratioof message transmissiontimes to arithmetic

speed,and the relationofthe problem beingsolvedtothe topologyofthe com-

munication network. By lookingat specificalgorithmsitisshown thatmany of
the derivedupper bounds are exact.

As a variantof thissecond architecturemodel, in section4 we consider

machines interconnected by packet switched communications networks.

Analysisofalgorithmsforsuch machines issimilarto analysisofalgorithmsfor

other non shared memory machines, except communication delaysplay a cen-

tralrole.The paper concludes with a discussionof the shortcomings of the
approaches describedhere and suggestsseveraldirectionswhere more work
•needs tobe done.

2.SharedHemoryMachines

One ofthe clearesttrendsincommercial systems isthe trend toward mul-

tiprocessorshawed memory architectures(seeFigure2.1),where each proces-
sor has eithera pipelinedmultitaskingor vectorcapability.Thisfanlilyofmul-
tiprocessorsincludesthe Cray X-MP, Cray-ll,theHEP-I and HEP-I!'*and the ETA

GFI0. The proposed Cedar multiprocessor[GKLS83] may be viewed asa machine

inthisclass,where each "processor"isinfacta clusterofsmallerprocessors.
in thissectionwe considerthe design and analysisof algorithmsfor such

machines. We begin with a listof propertiesshared by many machines in this

class.(0f course, no listwillcharacterizeevery machine and the set of

specificationbelow shouldbe consideredonlyas an approximationtoa familyof

_I 1-"nu Hep [ and [I machines belong in this class, though the model of analysis given below
does not fu/ly describe their performance.
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architectures.)

]. There are p processors, with p roughly in the range 2-_p_32.

2. All processors have equal access to shared memory and vectors may be of
arbitrary length and stride 2

3. Each processor also has a sizable local memory from which it can fetch vec-
tors of arbitrary length and stride.

4. Each processor can perform vector diadic operations (or vector triadic
operations where one operand is a scalar) using operands in from either the
local memory or global shared memory. The execution time for a vector
operation of length n is

if either operand is in global memory, while it is

ifboth operands are inlocalmemory. Here r._ 1 isthe asymptoticperfor-

mance rate for one processor,and n_tis the vector lengthrequired to

achievehalfthe asymptoticperformance rate,an ideadue toHockney and
Jesshope[HoJe81].Here we assume localmemory accesseshave much less

latencythan globalmemory accesses,and thus

The scale of this inequality depends on the machine. For a system that uses
a network of log(p) stages to bring data from shared memory into local
(cache)memory, one may have n_ = n_ + 6_Io17(p) forsome constantC.

Ingeneral,theration_ might varybetween I0 and i000 .a

5. The parallelexecutionofp tasksonp processorsisdenotedby:

pardo(i= 1,p)

task(i);

endpar;

Here task(i)isa procedure,block,or statementthatisexecuted on the i-th

processor. No assumptionswillbe made about the processorsynchroniza-

tionor task schedulingmechanisms other than thatthe executionorder

willbe consistentwiththe serialdatadependencies.

AlgorithmDesign

The most naturalway to designalgorithmsforthese systems isto employ

what the mechanical and structuralengineeringcommunity has calledproblem

substructuring.Inthisapproach,the problem isdividedintoa set ofindepen-
denttasks,each operatingon itsown portionofthedatastructure.

_2 In some s)_temsper_orrnancemay be severelydegraded iftwo processorsaccessthe

same vectoror an accesshas non-unitstride.The algorithmsthatfollowavoidmultiple

accesses,but to s_mplifythe analysis,non-unitstrideperformanceproblems have been ig-

noqred.

-' An alternateassumptionwould be thatthe latencies_ and _t_ are equalbut thatthe

computationratesforoperandfrom globaland localmemo_-ydiffer,'orthatallvectoropera-

tionson globaldata must be "cached"to localmemory beforeexecution.An analytical
mode, can be builtfrom any suchsetofassumptions.
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To illustratethis idea we consider an example studied many times in the

literature [HoJe81],[BrKa81],[LaVo75],[Ston75],[Hel177]: that of solving T sys-
tems of tridiagonal matrix equations each of size _.. Our notation is as follows.

Vectors and arrays will be denoted with capitol letters (X, Y) and problem

instances will be denoted with a 'superscript. Scalars (and vector components)

will be denoted by lower case letters (with subscripted positions). A range of
superscripts or subscripts will be denoted by [i;j] where i is the first element

and j is the last element. In general, we shall use superscripts to denote equa-

tion numbers and subscripts to denote the row within the matrix of an equation.

Let A be the tridiagonal matrix whose _th row has nonzero elements (5t, at, ct).
We seek the solutions of T tridiagonal systems.

AJx# = y#. j=l.T

We assume here, and through out this paper, that the matricies A are all sym-

metric positive definite and can be factored without partial pivoting.

The simplest algorithm is to divide the problem into p sets of problems
each containing T/p subproblems. The standard vector algorithm is then run
on each processor.

simple( A, Y, X)

Pardo(i = 1,p)

begin (*on processor ido *)

r= (i-i)*T/p+t:s= i'T/p:
forj=2tondobe in

mC"_']= /a}"_'i
_/+i"It:l]= + m,c_r:s];
u']_i,l ,i + _,'.,l,uf-.,];
end:

for j = n-1 downto 1 do

=t,:1=@f,:,|.oP:'].=/+'i'])/4,.,];
end:

endpar;

The indices T,s.j and vector _ within each block are assumed to be local to the

execu_;ing processor. If all data is stored and fetched from shared (global)
memory (local memory used only for rr_) then the cost of this algorithm is

_ T__+nil)T;_p._ = ,-.' (s_- 7)(p

On the other hand, ifone firstbrings the matrix and data vectors down to the
localmemory and then solvesthe --problems there and copies the solutionvee-

_:, ' i tor back to global memory the cos_ is in terms of n_ for the expression above,

1_ i..,. . but it also includes the movement of 5 vectors _ [i;.i, it;hi .• .. ,,,_,-JbL,_l,o_r_t._,,1and
s;. _.,:,_,...,"..,_-.,l) eachoflength_-_---toandfromsharedmemory.

! + +5.( + f)%_,,,,.Ly= _-.;'(8,_- 7)(p

One usefulmethod forcomparingthesetwo implementationsofthisalgo-
rit,_mis to compute the "effectiveefficiency"of each. Observe that the asymp-

tohc speed of our machine isr.p operations per second. The set of T tridiago-

nalsrequires(8n-7)T operations.Ifthe machine couldbe programmed to
operateat100Y.efficiencytheexecutiontimewouldbe
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TO_ = rjl(8n-7)T
is

The effective efficiency of the simple algorithm operatingfrom shared
memory isdefinedby

E_w,_ .GY • T _t 1

T,_mp.r,u = _ (2.1)1+
T

b

For n >>p. the algorithmiceffectiveefficiencyforthe simplealgorithmoperat-
ingfrom localmemory isapproximately

E,O._ _ 8/13

1+ 8w + <a.2)
13T 13nT

Thus. if T is large in relation to pn_. the latency cost for global memory access
gets masked by the arithmetic, and the global memory scheme is superior. On
the other hand if T is near n_. then the local memory method is superior.

An alternative solution is to substructure the problem so that processor i
eliminates variables (i-l)n/p +1 through i_/p-i from each of the T systems.

The result is a set of T problems of size 2p. (This is a variation on a parallel
algorithmofSameh and Kuck [Saku78].)

Substructure(A.Y.X):

eliminate: pardo(i = 1,p)
' _ (* in processor i do *)

,!.:i, for j = (i-1)*n/p + 2 to i*n/p - I do begin

= f".":____
Y?_ ' = y_l_J+ mt';rJ,y},:n;

end;
endpar;
pado(i - I. p)

(* in processor i do *)

for j - i*n/p - i downto (i-l)*n/p + 2 do begin
•rail:r] = -ct!:$l/all:r];

= +

end;

• endpari

"' " The resulting system is shown in Figure 2.2. The subsystem corresponding to
rows (€,-l)%t/p and _*'¢t/p -1 for i = l.p can be solved by the "simple"
method described above and the remaining variables can be solved by the "back
.solve"process

bk-solve:pardo(i= l,p)

forj = O-l)*p/n+ltoi*p/n-idobegin
..[,.T]_ ..[_:T]br,:T],zr,:T]+ ^rx;Zl,_[t:_

, _£-.-.--_I. _." £ _. [_-t]_In _j- -_€_Ip,
. =

end;
endpar;
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I
m

1 a c
b a c
b a c
b a c processor 1

n/p _ _ c
n/p+l b a c

b a c

b a c processor 2
b a c

2n/p . b a c
2n/p+l b a c

b a c

b a c processor 3
b a c

3n/p _ b a c
3n/p+l b a c

b a c

b a c processor 4
b ac

4n/p b a
.m

Substructured Elimination to reduced system involving
equations I, n/p, 2n/p, 2n/p+l, 3n/p, 3n/p+l,4n/p
for p=4 processors.

F_gure 2.2 SubsLrucLured Elimination
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As uming all vectors are fetched and stored in shared memory, the algorithm
given above requires

n -2)*_:'(T+_f/,)+(iSp-V)'_:1(_+_f/,)+4SWb,,.c_(_.T)= IV(
A-

time steps where S isthe cost ofprocessorsynchronization.To do the same

algorithmfrom localmemory requiresthe downloadingof 4 vectorsof length

ztT/p forthe originalproblem and d_vectorsoflengthT forthe T subproblems

of sizeis dividedamong p processors. The uploading of the subproblems
requiresone vectormove oflengthT foreach processorand uploadingthe final

solutionisa vectormove oflengthRT/p. The penaltyfordoingthe substruo-
turedalgorithminlocalmemories isthen

' 5.(_ +T+2_).
P

Definethe multiprocessorspeed-up for the simple algorithmfrom shared
memory by the relation

Tl(n, T)
S_'_'(,_.T) =

_T_'_'(_.T)
For the sharedmemory version,thisvalueisapproximatedby

p(T +_,,_)
T + pn_/z

•For T = n _/zthisgivesa speed-upoflessthan 2p For largen and ignoring(p+1)"
S, the substructuredalgorithmthatusesonlyshared memory has a speed-upof
approximately

8

! 1+ ,16 (T+p_tQ)

_'. ." iVn (T+Ttc)

. . '"over.the single processor simple method. In the range T = _ic/z the substruc-

• ; ::,turedalgorithmyieldsa speed-upofapproximatelyp/2. Infact,the readercan

"J" ', _' verifythatthe pointat which the simplealgorithmissuperiortothe substruc-

'tured algorithmwhen both use onlysharedmemory is

1 4r._o

r > _8p-17)_ s.9(_-_)
If we again consider effective efficiency, one finds that for n >> p the approxi-
mate performance is

. ... :

" 8/17,:. _.'...'_ • . E_.C// =, ,- (2.3)
_tG

1 + -7-+ 16PZnU'" 17nT

.', E_o_..z_ = 8/22

17_" (10p+Isp2)_ (2.4)' 1+ --+
'!,_" '" " : 22T 8nT "

';'..., , l;'igure 2.3 plots the effective efficiencies (equations 2.1-2.4_) for the four methods
•," described above as a function of T for n = 64,000, p=32, _t r" = 10, _t o -- 1000.

Observe that as T becomes large the simple shared memory method has the
best asymptotic performance. On the other hand, for small T the local memory,
substructured algorithm is clearly superior. Consequently, we find the choice of

_, optimal algorithm depends heavily on the relation of problem parameters to
j . i _.

_....

.'?.
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Figure 2.3. Effective Efl'iciencies _,,,p.cas. E,_p.za. E,,_,d._,, ' E.,_.Z.U
for n =64000, p = 32, n_ = 10, n_ = 1000. plotted as a function of T.
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Hockney-Jessope parameters, hi/2 and the multiprocessor parameters p and S.

ADI Iterations

As an applicationoftheseresultsconsiderthe solutionofa system offinite

differenceequationarisingfrom the solutionofa partialdifferentialequationon

a two dimensionsquaredomain. The regionisdiscretizedas an 7tby _tgridand

the differentialoperatorisapproximated by a sparsematrix/4 ofsizezt2 by _t2.

To findan approximatesolutiontothe partialdifferentialequationrequiresthat
we solvethe equation/4X=Y where Y isa given7tby _ array ofvalues.A com-

mon techniqueused to solveforX arrayistoview/J as approximatelyfactored

intoa productA*B where the matrixA isa system oftridiagonMmatriceslink-

._ ing the rows of the X array and B has the same structurebut itlinksthe

• columns ofthe X array.To findX --B-IA-lY requiresus tofirstsolve_ttridiag-
:: • .,, ; on.al systems

'. A jz J = YJ for l<j<z;

where the superscript j refers to the jth column of the gird. Then the set of
solution columns Z j is viewed as a set of vectors in the solution of another _z tri-
diagonal systems

.. B:IXj = Zj for l<j_n

Thi:- method is known as the Alternating Direction Implicit (ADI) method and is
used inmany applications[PeRa55].We examine two solutionschemes.

" Assume the components ofthe arraysare storedby rows. The most natural

partitioningofthe algorithmisto substructurethe system (A matrix,B matrix

, and Y array)intoblocksof sizen---byn. Let r_= _and s_= (_+l)et The
p

" block D.-] is the set of coefficients corresponding toP_----column equations and

the block B ] correspondsto components r_ through s_of alln row equa-
t;.ons.By "downloading"the data

oc,-,:...,3
into the local memory of processor _, one may use the "simple" algorithm to
compute

Z[':'] = (A['_])-ly_'_]

in each processor using only loom memory. Then, without "uploading" the Z
array back to shared memory, it is possible to use the substructured method to
solve the i'ow equations

Ad":"] = (B[L_])-IZ.

The only use of the shared memory is to solve 7z reduced systems of size 2p
required to complete the substructured elimination. The total time to completethis is

Step I. Download data and solve column equaLions
7t 2

T_I (STt--7)(--+ +
7r._ i ( p

Step 2. Do the substructured eUmination and upload final results
7Z

+ +, ,p

The alLernaLive is to use the simple algorithm for both column and row
t:quations. UnfortunaLely, this requires that the partial solution vector Z be



moved back to shared memory and read back to local memory in transposed
order. Based on our memory addressing assumptions this step requires a

minimum of rj l-_--(n + n_) seconds.P

Step 2'. Transpose Z and use the simple method and upload final results.
n 2

+2r:1(--+p +
To determine the effective efficiency observe that to compute B-IA-Iy

requires at least 7t(16_t-14) operations. If the machine can be programmed to
run at 100Z efficiency the execution time would be

r._x-n-(l 6n -14)
dF

The asymptotic efficiency for the substructured algorithm is 507o (computed in
the limit as _ goes to infinity) and 62Z for the transposed simple method._ In the

case that n is small (near or below n_) the substructured algorithm is superior.
; To illustratethis,considerthe specialcase ofp=82 processors,n_= 1000 and

¢t_ = 10. Figure 2.4 depicts the efficiency as a function of _t. The cross point at
_" *,, _ which both methods are equal is when _t is approximately 12000. In general, one
_ ,'_ , can show that the substructured algorithm is superior to the simple scheme

,,. ' ' "" when

IILAlgorithmAnalysisforMachines Based on LargeNetworks

In thissectionwe considersystems builtfrom a largenumber of simple

processorsinterconnectedby a communication network. Each processorcon-

tainslocalmemory, but thereisno globalshared memory. These architectures
can be based on a varietyoftypesofcommunications networks.These networks

can be offixedtopology,such as a ringor mesh, or can be packet switchedor

circuitswitched networks. Numerous examples exist.The FiniteElement

Machine [Jord78]isa mesh connected latticeof 36 processors.The caI-Tech

Cosmic Cube contains64 processorsconnectedas a binary6-cube.The Non-Von

(ColumbiaUniv.)isa treeofprocessors.The CHiP architectureislatticeofpro-
cessors[Snyd62]interconnectedvia a circuitswitchingnetwork which can be

configuredas any member of a largefamily of graphs. The Boolean Vector

Machine (Duke University)isan implementationof the Cube Connected Cycle

network [PrVi82].These machines are allnon-shared memory MIMD architec-
turesbased on largecommunicationsnetworks.

In allofthe above machines,no shared memory isused,and allinterpro-
cessor communication takes place via explicitinterprocessorcommunication
steps.In other cases a processor connection network is used to emulate a

•: crossbarswitch.Examples in thiscategorythe CDC Cyber pluswhich isa net-

work offourringswith16processorsineach ring.Zmob (Univ.ofMaryland)and

Crystal(UnivofWisconsin)are based on ringarchitectures.A host ofothersys-

tems share propertiesthatare similartothe machines cited,but have a global

addressspace and share datathrougha processortomemory permutationnet-

work. These systems include the TRAC system [LiTr77], PASM [Sieg79],
Cedar[GKLS82], and the ULTRA Computer [GoSc82]. These systems are con-
_idered in section 4.

3ur principal focus in this section is on nonshared memory machines where

data movement is explicitly controlled by the processors and limited by the
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topology of the network. The primary result presented here is that techniques
developed for VLSI complexity analysis can be used to derive algorithm indepen-
dent upper bounds on speed-up and effective efficiency that depend only on the
problem being solved and the network topology. The upper bounds are derived
for three problems: Fourier Transforms, Tridiagonal systems of Equations, and
two dimensional elliptic boundary value problems. To prove that many of the
bounds are exact, we describe the optLrnal algorithms. The system hardware will
be modeled by the following rules:

I. The system is composed of p processors where p could be very large,
p_32.

2; Each processorhas a sizablelocalmemory and thereisno sharedmemory.

3. Each arithmeticoperationtakes a seconds. Initiationor receiptofa data

transmissionrequires_ secondsper word ofdata,and receiptofa message
can be done immediately aftertransmission,or at any time thereafter.

Processorsdo not "overlap"communication with arithmetic.(Thisisthe
primary focusofsection4.)

4. The processorscommunicate witheach other alongpaths thatcorrespond
to edges ofa fixedconnectiongraph. Ifthe graph iscomplete,a crossbar

network ismodeled. Ifthe graph isnot complete,communication between

processorsnot connectedby an edge must be broken down intoa sequence

ofmessage transmissionsbetween processorsalonga path connectingthe
originand thedestinationprocessors.

In the paragraphs thatfollowwe examine the performance of algorithms

that have been implemented on thisclassof architectures,paying particular
attentiontothe structureand costofcommunication.

The CostofCommunication.

Let,4be a parallelalgorithmand letM be a machine withisprocessors.We

can describethe interconnectiontopologyofthe machine M as a graph G(M).

Similarly,the data flowgraph of the algorithm,4can be definedas the graph
G(,4)which isthe directedacycUc graph whose nodes representthe operations

in`4,and whose arcsrepresentoperand datadependencies.By an irnplementa-
t.ionof,4on M we mean a mapping

where the operationsofG(A)are mapped to processorsand the communication

arcs map to G(M) in one of three possibleways. Let a and b be operatorsin

G(`4)thatare connected by an arc c.Assume c and b aremapped toprocessors
_p_ and iob respectively. The three possible mappings of the arc c axe

I. Processors ps and Pb coincide. In this case arc c becomes a self-loop and
no interprocessor communication is need to implement this arc.

2. Processors pa and Pb are connected by an arc in the graph G(M). In this
case Pa transmits a value to Pb to implement arc c.

3. Processors Pc and Pb are not connected in the graph G(M). In this case the
arc c must be mapped into a path

Pa = Pl.P2,"'',Pk= Pb

where pc isconnectedby an are inG(M) top_.l.That isthecommunication

alongarc c ismapped intoa sequence ofinterprocessorcommunications
need torelaythe message.
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The time required to perform the communication represented by arc c will
vary depending on which of these cases applies. In the first case, no communi-

cation occurs. In the second case, the message must be sent and received.
requiring time 2fl. In the third case, where the message is relayed k times, the

communication time becomes 2kfl. In this third case, performance of all pro-
cessors along the path is degraded by the time spent forwarding messages.

Let T._(a,fl) be the time required to execute algorithm A on machine M. It
is often the case that algorithms designed for this class of architecture take the
form of a loop with two steps

Repeat

1. Permute the data via the Communication network.

2. Execute a set of arithmetic functions in parallel.
until done:

(Though all parallel algorithms can be put in this form. many have optimal
implementations that violate this structure. This case is briefly considered in

the next section.) T_(a.O) is the total amount of time required to execute step 2
for all passes through the loop and T_(0,fl) is the total amount of time required
to complete the data routing. In this case we have

= +

In the general case, I/O can be generated in one processor•while another is
engaged in arithmetic and messages are moving through the wires. In this case

it is possible (but not trivial!) to show that the equality above becomes a _.

Hence. given a parallel program it is possible for us to put an upper-bound on
execution time. For a given problem, we can ask what is the lower bound on the

execution time for any algorithm running on machine M. Clearly. if we know the
optimal serial algorithm SEN, we have the bound

<
P

This bound is tight only if there is enough parallelism to exploit p processors. A
technique devised by Thompson [Thom80] (and extended by many others

[Agga83]. [BrGo82]. [CaMoBt]. [Leig81]. [Sava81]. [ViulB0]) to study the area-
time trade-off in VLSI design can be used to find lower bounds on TJ_(O,f!), Define
a bisector B of a graph G of n nodes to be a set of arcs of G whose removal

separates G into two graphs of equal size ( i.e. if n is odd. one subgraph is size
n__+ 1
2 _--and the other is of size n 1_-- _-_. Let be be the number of arcs in the
minimal bisector.The bisectionbandwidth,

isthe number of words per second thatcan crossany minimal bisectorof G(M).
Let B be a minimal bisectorofG(M) and i,r_:G(A)-*G(M)be an implementation
ofA on M withthe followingproperty

IfA has _tinputsand _toutputstheni_ maps _--inputsand n_outputsto
each of the p processors. P

In other words, we assume the implementation "uniformly distributes" the
problem. This condition implies the set Im-l(B) is a bisector of the input and
output nodes of G(A). Let bpr be the size of the minimal bisector of G(A) for all
algorithms that solve the given problem/%-. We then have
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b_
! <

P F bccu)

This inequality characterizes the communication "bottleneck" imposed by the

network topology induced bandwidth constraints. Network delay can aLso play
an important role. A function with 7t inputs and _t outputs is said to be transi-

Uve if every output is a nontriviai function of every input. For any transitive
funqtion that has been uniformly distributed over p processors, the minimal
time that information about each input can be propagated to each output is
2_Zog (p). In this case we have

TSE¢_(1.0) max[ _ b_ ]

%' Values of bpr have been derived for a vdde variety of problems. We consider
three problems important for scientific computation.

i. FFT.: an FFT on n complex numbers X[0;n-i].

2. TRy: The direct solution of a tridiagonal matrix of size _t.

3. E/_: The direct solution of the _t linear equations obtained by a simple
approximation (5 or 9 point star) of a second order elliptic boundary value
problem on a unit square discretized as a _ by _ grid.

The first problem here is well known ([ThomB0]), but the second two have
not been studiedinthiscontextand itisinterestingtonotethatthe same proof
appliestoallthreeproblems.

Lamina 3.I.

Assume that_zineven and each of the problems three FFT,, . Tl_ir,. and

•" _Z!_ in solved by algorithms where the inputs X['O;m,] and outputs Y[O;cn,] are
equally distributed over all processors. Then all three problems are transitive
functions of their inputs and

Proof:

Each of the problems above can be viewed as the problem of solving a
matrix equation of the form

A_ =!/

fora givenn by _zinvertiblemaLrixA. The basicideaisasfollows:any bisector
willdividethe flowgraph of an algorithminto two "machines" where one

machine has one halfthe inputvector,callit_/z,and the other machine has the

otherhalf,!/z.The bisectionwidth ofthe problem isdefinedto be the minimal

amount of"information"about _/zthatmachine I must send to machine 2 plus
the "information"about _/zthatmachine 2 must send tomachine I.The theorem

_tat.esthat,forexample, no algorithmexistsfordirectlysolvingellipticboun-
dary valueproblems forwhich the the informationflowbetween the two halves

!_ of the system falls below 2_/_ words for all input vectors y. The formal proof
requires a formal definition of information and algorithm. Assume, without
much loss of generality, that A and _/ have values that are rational numbers.
Define an algorithm to be any finite sequence of tests and branches and rational
arithemetic operations (+,-,*,/). In other words, an algorithm is assumed to be
a pieeewise rational function of the inputs. The basic unit of information will be
a rational number.
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Let A denote the matrix obtained from A by permuting the rows and

columns so thatthe components ofz and y correspondingtomachine 1 are then

first_-rows and the components ofz and y corresondingtomachine 2 form the

bottom halfofthe system. The linearequationcan now be writtenintheform

The inverseofA existsand,can be decomposed intoblocksofsize-_-by _-as
follows:

or

=_ - QYl + D_y2 i,-1,_.

We pose the question:How much informationabout y_ must be known to com-

putezl? Let G(Y2)be the partofthe algorithmininmachine 2 thatencodes the

minimal amount ofinformationabout the vectorY2 needed to compute =i given
Yl and letF be algorithminmachine 1 used tocompute zlgivenG(y2).

zl = F(Z/I,C(y2))

SettingYl = 0,we have a new functionF definedby

=i= = F(0,
Bu then

DI 2=
If G returns k values it follows that

k :_Tank(DI)

The same argument shows that the minimum amount of informationabout Yl
thatone needs to compute =2 is_'a=dc(Dz).The minimal bisectionwidth bp is
thengivenby

mi (r (DI)+rauc
over allrow and column permutationsofthe matrix,4.Because the inverseofA

exists and the blocks are of equal size, it can be shown that rank (Dt) = r_nk (Bt)
for _=1,2. To complete the proof we make the following observations

1 For a tridiagonal system Bt contains only one element and, hence has rank
1

" "'., ,_ 2 The block tridiagonalsystem obtahg.edby the naturalorder of a finite

: """ difference operator has Tank (B_) = _t_ which, the reader can verify, can not
•_ ; j_' I ;"
. ..._ ._ , be reduced by any row or column permutations.

: '3 The FFr matrix is composed of _t column vectors that are of the form

A_ = [i,_,_, ..._(n-1)_]r.
77.

where _ isa primativerootof unity. Selectingany _-rows from any 2

columns iseasilyshown tohave rank _ QED
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Upper Bounds on Efficiency.

Asymptotic lower bounds on the operation counts are we]! known for each of
these problems.

TfFT= 2_log(_), T_ = B_-7, rP = Ontog(_)
The constant 2 in the FFT algorithm assumes a complex operation requires only
1 time unit. In terms of operations on real numbers only, the formula is

3n tog (_). The constant C depends on the special properties of the equation. In
the case E/!n we restrict our attention to the family of implementations of Fast

Poisson Solvers [BuGo70, SCKu76]. In this case the lower bound bFpSa = bmu_ and
the arithmetic serial complexity is

TFs = 2_(bg(_)+4) - 7
The resulting lower bounds on parallel complexity can be expressed as upper

bounds on effective efficiency. Letting r = P--the bound are
C¢

1
EjTF_

i+ _ F n I2,,.Zo_(_.)_-'__.]. log(p)bccu) J

1
£'_<

I+notog(p)
4n

E_s < 1

i2nJog(2_) be(u)

To apply these bound to specific processor connections, we need only specify
G(M) and determine bcu,t). Figure 3.1 illustrates 5 graphs:

CorrL, the complete graph onp processors; bc(o_,,) = p.

ShRJ', a reduction of the shuffle-exchange graph on 2p processors obtained
by identifying pairs of adjacent processors connected by exchange edges;
bo(stmf) = p.

R_ng, a ring ofp processors; bc(R_ ) = 2.

• Tree, a tree ofp-I processors; bo(_, ) = I.

Mesh, a p]i by p_l octagonally connected grid of processors; bo(#=_) = p_.

Given the Efficiencies, an upper bound on the speed-up S_ can be derived
using the relation S_ = £_. Using the relation SP_ = pE_, one can derive an
upper bound on speed-up performance for each of these network topologies.

This information is given in Table 3.1. These bounds are exact, up to constant
terms, as functions of n. Their primary short comings are that they often

underestimate communication costs by a factor of Zsg(is) for networks of large
bandwidth. A better model of the delay seems to be needed. In the case of the

FFT, the communication delay term is, in fact, -_-4og(p) not just log(p) as we
P

have indicated.) To show that some of these upper bounds are tight, we now con-
struct algorithms and consider each case in turn.
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Figure 3.1 Network Connection Graphs.
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i

FFT TridiagonalSystem E11ipticPDE

Tree = P = P = ffP

ptog(p) pP 1+ cr 1+ cr
1 + cr log (n) n n_logn

Ring = P << . p < L"p
: P I + cr plog (,1:,) 1 + cr P
.... 1 + cT tog (n ) n n_tlogn

• Mesh = P << p _ O"p

pil
I + cr _logn 1+ cr p£ogn (p) 1+ cr nMlog n

S:,uf < P = P << _P
cr ptog_ ) 1

i+ tog(n) I+ cr n i+ cz_logn

Table3.1 BisectionWidthSpeed-upUpperBounds.

The valuer = _--andtheconstantsc and ffarebothlessthan I. Terms

precededby < areexactifr is replacedby r log(p).The prefix<< indi-

catesthebestknown methods aresubstantiallyslowerand = means that
theboundisexactfortheappropriatechoiceoftheconstants.

The Fast Fourier Transform.

The FFr algorithm on a problem ofsizen can be definedinmany ways.
Here we follow[AHUI74].The.algorithmisexpressedintermsofa sequenceof
log(n)permutations.The k_ term inthissequenceisdefinedon a vectorof
lengthn,X[0;n-l]by theexpression,

Bytw(x)= xp,co_.x,,_(1_,...,xp,(,,_,)
where

= +o'+ e).
These "butterfly"permutations arc concatenated to form the flow graph ofthe

FFT algorithmas showninFigure3.2.Thisbutterflygraphhas an interesting

property.Ifp dividesn we cangroupthecolumnsintop blocksof_adjacent
p

columnseach.Then theresulting"quotientgraph"ofthebutterflygraphB)'l_]k
isthebutterflygraphBfly__tog(p).(See[FiFi82],[Degr83]formany otheruseful

quotientgraphrelations).AssumingthatinputsX(j-,)rtoXIe_Iallresideon pro-
cessor] for]=l,p,we canwritetheFFT algorithmas

FFT( X[0;n-l]);
for i = log(n) downto 1 do begin
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Y=sIly,(x);
pardo(] = l,p)

fork= (j-l)n/ptojn/p-1do
= +

endpar;

end;

end ;*

The values 0_._are powers of primative roots of unity that are given in [AHUI74]

and are not of concern here. As index variablei runs from log(n) down to I,the

permutation Bj]'lyican be accomplished using the interprocessor connection

Blf_J_-_(./p).For valuesofig log(n/p) no interprocessorcommunicationis

involved. For the other values of i, there are _--data items to be sent and
p

n
receivedby each processor,so --communication stepsare required.This

p
requirestime flPn on the Corn network.

p
It can be shown that the log(p) stage butterfly network is topologically

equivalent to the log (p) passes of the STzuf permutation. (The rearrangement is
shown in Figure 3.2 and a formal proof is given in [ParkS0]). Consequently, on
machineswithCorr_and Shxzfinterconnectiontopologies,theexecutiontimeis
approximately,

T_(=,_)= =g-_-_og(n)+ (_-)_og@).p

with speed-up

Speer = P

I+ rI°g(_)
log(n)

To emulate the permutation B.]'ly_ on a ring network requires uniform shifts of

distance ±_-l. With each such permutation requiring 2fl;_ seconds the speed-
up is found to be

SPr_ = P
1+I" P

log(n)
On a mesh connected computer the uniform shifts of distance L:_-I can be done

in time f12_-y_tp) (see [ThKu77]) and the speed-up is

= P
1+r p)!

log(n)
InthecaseoftheRing and theMesh,thespeed-upagreeswiththetheoretical

upperboundand must be optimal.Intheothercases,we feelthealgorithmis
optimal and the speed-up bound istoo generous.

Figure3.3depictstherelativeefficienciesoftheFFT algorithmonthethree

- networksdescribedaboveinthecasethatp = 512andr=l.O.

--I We have omitted the usua] terminating "bit reversal" permutation to simplify the discus-
:don. Inclusion of this permutation would have only a minor effect on the results here.
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Figure3.3 MultiprocessorAlgorithmEfficiencyforFFT on threenetworks,

Shuffleconnection,Mesh, and Ringeach withB = 512,_"= 1.0.



- 23 -

'rrid_onal Systems

To solve the tridiagonal system AX = Y we assume .that the inputs

Y[(i-1)_--_ '_ 1] are located in processor "/, for _;€[1..p]. We employ the same
solution strategy as used in section 2. By substructured elimination we reduce

the n---equations in each processor to 2. This takes time
P

12 ()----1)
and involves no interprocessor communication. To solve the reduced system of
size 2p let x,! be a tree of p-1 processors with the root processor numbered 1
and the children of the i,t" processor numbered 2i and 2i,+1. Assume the p
pairs of equations are represented as p records e [O;p-1] of the form

eqn = record

a,b,c,y: array[O,1] of real;
end;

Afteran operationoflog_) communication stepswe may assume the elements

ofthe array e have been storedinthe leavesofM withequation-pairse[2£]and

e[Z +1] storedinprocessori..Tosolvethesystemoftridiago-
nalequationon a treeofprocessorswe usethe followingbasicidea.Each inter-

nalnode ofthe treereceivesa pairofequationsfrom itstwo decendantsgiving
it4 equations

b_xh_ z + aLz#I + c_z#_+t = _h i = 1.4
in 6 variables

=J,' zJl' "' "' zJ5

Let elC_rL()be a function called by the tree node that applies the substructured
elimination computation to a set of four such equations and sends first and last
of the new set

b1talc+ _tmja + e lmjs = !!1

b4"CJo"l" 0"4ZJ4 + C4Z/5 = '_/4

to its parent node and leaves the other 2 equations stored in the executing pro-
cessor. To recursively reduce the 2p equations to 2 on the Tree connection we
apply the function

function reduce(i: integer): eqn,
begin

on processor(i) do
reduce := if (i >= p/2 )

elim(e[2i-p], e[2i-p+ 1])
else

elim(reducepi),reduce(2i+i))
end;

Figure 3.4 illustrates the movement of the variables through the tree. Once the

2 by 2 system has been solved a "backsolve" procedure can be used to move the
solutions back to the leaf processors. The backsolve process requires 5 arith-
metic steps:per equation, and somewhat less communication than the forward

elimination. Observe that this algorithm works with 4 equations per processor



p F-11
z

i Figure 3.4 Recursive reduction of 8 equations to 2
and Shuf implementation
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while other parallel tridiagonal system solvers need only three equations in each
process. The advantage of this algorithm is that we can do the communication

on the Tree while the standard methods require a more elaborate connection
network.

Taking both the elimination and the backsolve into account, the execution
time is found to be:

TZ_,,(a.fl) = a(lV_---+ 34 log(p) + 9) + 17/_ log@)
P

and the speed-up is approximately
8

i + (2 + r) pLog(p)

This differs from the theoretical upper bound for this problem by the factor _
17

in the numerator, and by the factor 2 in the communication term. The later is
due to extra arithmetic caused by "matrix flU" associated with the the sub-
structed elimination and the constant 2 comes from redundant arithmetic used

to solve the reduced system.

To execute this algorithm on the Shu_f network we need only embed the

tree structure in the target graph (as shown in Figure 3.4) and the execution

time and speed-up will be the same as on the tree. The tree has the property
that any node can be reached in at most 2log(p) steps from any other node,

consequently no direct embedding of the tree is possible in the ring or mesh.

We do not know of an algorithm for these networks that is within a factor of
log (p) of the correct communication complexity.

The tree computation above proceeds as a wave from the leaf nodes to the

root. If we consider the problem of solving ca tridiagonal systems of size _z

(ca_T__?z), we can pipeline the method above. The execution time is

Tt_,r'_'_(a._8) = 17a( nca + 2(Tt-ca-1) + 3log(p)) + 9= + 30/_(n + Log(p))
P

This result will be used below.

Fast Poisson Solvers

There are a wide variety of interesting direct solvers for the poisson equa-
tion

re= =!/
(see[HoJeB1],[Gros79],[SCKu76]).The methodhereistheeasiesttoexplain.
Consider a grid of n }iby r_}_points. The basic fast poisson solver operates in

three steps on an array of values _/.

1. Apply an F1_r to each row of the grid of _/ values. (17 = Eo'tu_,FFTs(_I)).

2. Solve n systems of tridiagonaI equations of size n using the columns of the
grid of _ values as the right hand sides.

3. Apply an inverse Fir to each row of the solution of the previous step.

With Dirichlet boundary conditions, the Firs used here are actually real sin

transforms which can be computed with the complex FFT algorithm (see
[HoJeB2] for details). Assume we have 10 processors to execute this algorithm.

Let ]c be a divisor of p and partition the problem so that the columns are divided

into ]c groups and the rows are divided into ,P-groups. We can then assign each/c
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processortoa blockwith -_--columnsand n_]c rows. Insteps 1 and 3 each rowP

of/€processorsmust compute n_/c FFTs ofsizen_. Usingthe algorithmsabove,
is

the minimal executiontime forbothstepsis

TFFT_= 2a_d°g(_)
p + 4__-_og(k)

In step 2,each column of processorsmust solve_ tridiagonalsystems of
sizen_. As we have seen,thissteptakes

To choose the optimalpartitioningofthe problem we minimize TFF_ + T_ as a

functionofk _[-P--.,rrtizt(p,Tt_i)].The functiontakesthe form

n_t

# + 30_-€-+(4_- 34a-30#)tog(k) (3.2)

where R isindependentofk. Minimizing3.2as a functionof/cis,ingeneral,not
easy. There are two interestingcasestoconsider.

Casel._---_17 a . 15 •
is _ p 2"

In this case the last term in 3.2 is negative, thus we pick k as large as possi-
ble. Ifp < zt_-then we set1_= p which impliesthatitisbest todistribute

the FFrs acrossallisprocessors_sandtosolvethe columns oftridiagonalsys-
tems withoutcommunication

(_-columns per processor.)Ifn_ior isis
15

greaterthan 17 a + -_-we find_t_< is.Settingk = _ the FFTs are again

€-

a p
distributedand the executiontime is

r FPa = a(2_dog(TL) + 17_z + 34tog(_ + #('bzlog(_) + 30/0g(_)'is is is

C.s_2. _ > 17 a . 15
is 2 p 2

The optimal value for ]c is found to be

34 a ¥)-ze= _=(i.( -_i+yd-_-,,)F"

Inthe casethat_M >> 2 we have ]c= 1 and the executiontime is

TFPs'= a(_-U_tog(p)+ ___15+ 34Log(p))+ 30_(n_+ log(p))

Setting /_=t implies that each row of the grid is stored completely in one

processorand the FFTs involveno communication. Consequently,onlythe solu-
tionofthe fridiagonalsystems involvecommunication and the timebound above

isvalidfora treenetwork. The resultingspeed-upisofoptimalcomplexity.On

the otherhand, the theoreticallowerbound forcommunication costforan EMp-
n_l TL_

ticproblem is{_C_-y-fora mesh network and {_C--for the Shut network. The
P P

time estimateabove suggeststhatthisform ofthe FastPoissonSolverissubop-
timalforthesenetworks.

Based on the upper bounds forspeed-up intable3.1,Figure3.5illustrates
the relativeperformance of optimal Fast Poisson Solversas a functionof
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Figure3.5Efficiencyupperboundsbasedon table3.1for
FastPoissonSolvers.p = 512,r = 1.0.
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problem size (Tz) when p = 512 and r=l for the three network topologies Ring,Mesh and Shut.

Multi-Grid iterative methods [Bran81, GaVr82] are structured so that each
stage of the iteration reduces a 7t31by n _iproblem to a problem of smaUer size
which is solved by a direct method. Let the initial problem be distributed such

that square subgrid of size (___.)_Ipby (_--)_ are mapped to each processor in a

mesh. The communication,_, cost to reduce the original problem to one of size p_t
by p_ is

__)31for some constant CI. Using the FPS method (ease i) to solve

the reduced problem on the mesh requires an additional flCzp _i communication
steps. Applying K such iterations will reduce the error to a fixed level and cost

which is of the optimal complexity. Other methods, such as the preconditioned
conjugate gradient can also be shown to have this communication bound. On
the other hand, the authors know of no method that achieves the lower bound of

tiC'z31 for the networks with high bandwidth.P

4.MultistagePacket SwitchedNetworks

The analysisofnon-sharedmemory multiprocessorstothispointassumed a

machine !Jwitha fixedor switchableconnectiontopologyG(M). The onlycom-

munication costin thismodel was the time _ taken by the processorsto per-
form sends and receives.For most non-sharedmemory multiproeessors,this
model isprobablyquitereasonable.

However, this model corresponds poorly to machines with multistage

packet switchednetworks. An example ofsuch a network isthe Omega network
of Lawrie [Lawr75].With thistype of network, messages can be broken into

packets ofuniform sizewhere each packet consisitsofa destinationtag and a
data field.The switchesinthe networkread the destinationtagand forwardthe

packet alongitsroute.An Omega network interconnectionofp processorscon-

rainslog(p)stages,each having 2_-switches.In the bestcase,a packet can be

routed through the network in log(p)steps. However,when the network has

heavy traffic,contentionoccurs and contendingpacketsmust be queued atthe

switches.Simulationresultssuggestpacketsare delayedby an averageamount

c0zog(p)

and thatthenumber ofpacketstransmittedper clockcycleisabout

C1p

f,_rany number ofprocessorsp. Thus the Omega network behaves much likea

) crossbar switch, except message propagation delays are relativelylong

[KrSn82],[GoSc82].Performance ofotherlog(p)stagepacket networks,such as

the Banyan network,baselinenetwork,and so on,iscomparable to thatofthe
Omega network.

In principal, packet switched networks can be accommodated in our mul-

t.iprocessor m_del by treating switches as specialized processors. Though feasi-
ble, this approach is difficult, since the communications patterns in packet net-
works are complex. A more illuminating approach is to view the packet switched
network as a close emulation of a crossbar switch, and modify our multiproces-
sor model accordingly. The model given at the beginning of this section needs to
be _odi6ed only in the two provisions governing communication:
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3' Each arithmetic operation takes a seconds. Transmission or receipt of a
word of data takes _ seconds. Receipt of a message can be done 7 seconds
after its transmission or any time thereafter.

4' The connection topology is a complete graph.

The delay parameter 7 here is designed to model the time taken to route

and forward messages in the network, and the time packets spend queued at
switches when there is contention. With this model, sending a one word message
between two processors takes total time 2_ + T. In sending a k word message, k
sends and receives are required. But the propagation delays can be overlapped,
so afterreceivingthe firstword, a new word can be receivedevery _ seconds,
giving a totalmessage delay of:

(k+ i)p+7.

With this model of a multiprocessor interconnected by a packet switching
network, it is possible to look at any of the algorithms already considered. We
lookhere at fastFouriertransforms,sincethere are interestingaspectsofthis
algorithmnot yet treated.The communications requiredin an FFT can allbe

viewed as permuting data between processors.Suppose we have _twords of

data,with _---wordsper processor.Then we can ask,how much time isrequiredP

to simultaneouslymove the data on every processorto some otherprocessor.

Letthe time taken toperform thisoperationbe denotedby Xp(_t).

To compute the value ofXp(_.),note thattomove _--datawords from one
P

processortoanothershouldtaketime

(_+ i)#+7.

as discussedabove, But thiswillbe so onlyifthe targetprocessorisready to
receivethe dataas soon asitarrivesthere.Inpermuting_zwords ofdata,each

processormust send _---andreceive_----words,sothe executiontime forthisper-
P P

mutation cannotbe lessthan:

P

Infact,the timeperform thispermutationis

(4.1)

as one can easilyverify.

Now considertheproblem ofperformingan FFT on a vectoroflengthn.with
thismultiprocessormodel. The executiontime willbe:

TFrr-"= a(-_-_og(_)+Xp(,_)log(p)

2,, +7]log(p)= a(_-_tog(_)+

Thisisexactlythe same asthe executiontime derivedpreviously,exceptforthe

new term involving7. Noticehere thatthe vectorlength_zdoes not multiply7,
sothe impact ofa large7,caused perhapsby packet contention,isnot as severe
asone might expect.

Next considerthe problem ofperformingmultiplefastFouriertransforms.

In treatingfastPoisson solvers,itwas implicitlyassumed that to take fast

Fouriertransformsofrr_vectors,one would justrepeatthe parallelalgorithm

fora singleFFT 7rttimes. Thisisnot necessarilythe bestapproach,especially
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on packet switched networks where one needs to contend with propagation
delays. At least four reasonable approaches to performing rrt fast Fourier
transforms can be found:

I Repeat the parallel algorithm FFT..B, for a single data vector, rr_ times.

2 Combine rrt invocations of iP_r 13 to overlap communication. Each step of
the FFT would be performed on all rrL data vectors at once before proceed-
ing to the next step.

3 If TrL_ p and rrt ] p, the data can be permuted so data vector i resides on

processors (i-l) _--+ 1 through i_.. Then the algorithm Fl_r_rt for a singleT/Z /TZ

data vector can be performed on each block of "P--processors. Finally the

results must be permuted back to their correct locations.

4 If p _ rrt and iv I rrt, the data can be permuted so each data vector resides

on only one processor. Each processor then performs sequential FFTs on

the _ data vectorsithas,and finallythe resultsare permuted back toP
theircorrectlocations.

Now lookingindetailat each ofthese,forthe firstapproach,the execution
time isjustrr_tLmes the executiontime ofFFT_/L Thatis:

Tlm.j,_.._ .2rnrt ,.
= atp--- Log(r,)+mxp(r,)zog(v)

With the second approach,one willhave onlylog(p)communication steps

ratherthan rn_og_) as inthe firstapproach. However, each stepisnow a per-

mutation on rrtnwords of dataratherthan on _twords as inthe firstapproach.
The executiontime isthus:

= =( tog (=)+xp(m=)Zog(p)

At firstsightthere appears to be littledifferencebetween the two approaches.

However, thefunctionXp(_t)satisfiesthe inequality

xp(m)
for all_rt,so the second approach is always at least as good as the first
approach.

The thirdapproach here issomewhat more complex. Two operationsare
involved,permuting the data,so each ofthe _r_vectorsisdistributedover a

block of -P--
processors,and then performing I_PTson these processorblocks.¢n

The FIT algorithmneeded here isjustthe FFT for a singledatavector,FFT_/I,

alreadystudied,except only_---processorsareused now. The executiontime to

perform theseFFrs on processorblocksis:

where we have used the identity Xp/m(n) = Xp(rrt_) which is easily derived
from equation 4.1.

The other operation needed is permuting the rrt data vectors. Each data
vector is originally distributed evenly over the p processors, and must be moved

•so it is distributed over a block of processors. The cost of this is:
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The factors_-1 arisesincea fractionofeach vectorisalreadyinthe properP

processormemory and does not need tobe transmitted.Assuming p islarge,

..... P-lis closetounityand we can set:
P

~ xp(m,)
The data needs to be permuted before and after performing the FFTs. so the
totalexecutiontime becomes

T_._ ,2rn.n ,.
= +xp (p)- +e)

Analysisofthefourthalgorithmissimilar.No communication isinvolvedin

the FFTs inthiscase,but data permutationsare requiredbeforeand afterthe
FFTs. The executiontime isthus:

2tn.Tt_. .

= +

One way tocompare thesefouralgorithmsforcomputing 7rtFFTs istocom-
pute theirspeed-ups.The resultsare:

81 " P

S, = I P
1+max + P (_+7) 2

2rana log (n )

Comparing these equationsitis clearthat the firstalgorithmis never

:, . betterthan thesecond,asalreadymentioned,sincethe impact of7 issmallerin

, lhe second. Note thatthisconclusionappliesorRyforthe packet switchednet-

works under consideration.For networkswith/Ixedor circuitswitchedtopology
thesetwo algorithmsperform identically.

Figure4.1illustratestheefficiencyinthe casethata - fl- 1.0and 7 = 50.0,

P = 512 and n --1024. Inthiscase we have plottedthe preformance as a func-

t,on ofthe number ofequations,z_. Observethatthe thirdalgorithmbecomes
betterthan the second when rrt_4.Had we includedthe costofthe "bitrever-

sal"permutation in allalgorithms,the third algorithmwould have become

bettereven earlier.Between thethirdand fourthalgorithmsthereisnothingto
decide,sincethe thirdappliesonlytothe case rrt_ p and the fourthtothe case

z_z_ p. Figure4.I depictsthesetwo methods asone witha transitionatr_ = P.
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Though searching for optimal algorithms is interesting, the real issue here
is the impact of the delay 7 caused by the use of a packet switching network.

The effect of 7 depends on the ratio of problem size to the number of proces-
sors; on problems with a great deal of computation, 7 is well masked. In fact in

the three FFr algorithms for multiple data vectors found to be best, 7 always
enters the execution time in the ratio:

7
2¢rtn a

Though this analysis was performed only for FFT algorithms, experience sug-
gests that the" delays caused by packet switched networks are relatively unim-
portant on most compute bound problems.

5. Conclusion

This paper has considered three basic families of multiprocessors and the
analysis of communication complexity in the algorithms for these architecture

classes.The principalgoalhere was tolookatcommunication and itsimpact on

algorithmperformance. For large shared memory muitiproeessorsanalyzing
communication turnsout to be relativelystraightforward.The main issuesare

memory latencyand findingways to organizeor substructureproblems tominimize itseffect.

Studying algorithms on non-shared memory machines is more difficult,
since the topology of the communication network is a central issue. Our
analysis of non-shared memory network based machines was divided into two
parts, the first covering machines with a fixed or circuit switched topology, the
second covering machines based on packet switched networks.

On circuit switched machines, techniques borrowed from VLSI complexity
theory provide a nice tool for obtaining lower bounds on algorithm complexity.
Given an interconnection topology, one can with relative ease compute upper
bounds on efficiency of the problem solution. An important point here is that
these are upper bounds on the problem, (e.g. FFT, Fast Poisson Solve, direct
solution of tridiagonal systems) not on any particular implementation of an algo-
rithm for solving the problem. In the cases studied, these upper bounds are
apparently quite tight; in two of the three cases studied these upper bounds are
actuallyattained.

By contrast,analysisofalgorithmson machines interconnectedby a large
packet switchingnetworkisfareasier,givenour simplemodel ofthe behaviorof

packet switchingnetworks. Here the propagationdelayparameter 7,modeling

the impact ofpacket contention,isquiteimportant. But on most largeprob-

lems itseems tobe possibleto substructurethe problem so thatthe effectof
isminor. Withour model ofa packet switchednetwork,inwhich such a network

istreatedas a crossbarswitchwith delay,analysisof algorithmsisno more

difficultthanforshared memory multiproeessors.(Infact.the delay_,isclosely
relatedto thevaluen_.)At the moment thismodel restsonlyon heuristiccon-

siderationsand simulationresults,so itwould be valuableto establishthe pre-
cisecircumstancesunder which itholds.

Many important problems remain to be solved.In particular,improved
techniquesare needed forlower bounds on communication inmultiprocessors.

In the case of specificalgorithms,we do not know of betterlower bounds (or
betteralgorithms)in the case ofellipticPDEs on highbandwidth networks like
theSh_zf connection.
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Of particularimportance are issuesthatwere not consideredat allin this

paper. Thisincludesa systematicapproach to algorithmswith dynamic data

structures,such asadaptivegridalgorithmsforPDEs. Do theseproblems have a

reasonablynice solutionon nonshared memory .systems? Ifso,what is the

structureof the communication? A closelyrelatedproblem isthe analysisof
complexityof communication in Data Flow machines. How does itdifferfrom
themodels we have surveyedinthispaper?
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