
On the Impact of Dynamic Memory Management
on Software Transactional Memory Performance

Alexandro Baldassin
UNESP – Univ Estadual Paulista

alex@rc.unesp.br

Edson Borin Guido Araujo
UNICAMP – Institute of Computing

{edson,guido}@ic.unicamp.br

Abstract
Although dynamic memory management accounts for a significant
part of the execution time on many modern software systems, its
impact on the performance of transactional memory systems has
been mostly overlooked. In order to shed some light into this sub-
ject, this paper reports our first attempt at evaluating the effects
of memory allocators on the performance of transactional applica-
tions. In general, our results indicate a strong influence of the allo-
cators on the overall performance. In particular, we observed differ-
ences ranging from 4% to 171% in the STAMP applications. Our
results point to the importance of reporting the allocator utilized
in the performance evaluation of transactional memory systems, as
the conclusions might change from one allocator to another.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel Programming

General Terms Algorithms, Design, Performance

Keywords Transactional Memory, Dynamic Memory Allocation,
Performance Evaluation

1. Introduction
Excessive power dissipation and microarchitectural limitations
forced the semiconductor industry to bet its future on multicore
processors. The shift from single-core to multicore architectures is
causing what has been termed the concurrency revolution, in which
software plays a critical role [31]. In order to make the most out of
current processors, programmers need to explicitly write their code
such that it can be executed concurrently on multiple cores. Current
abstractions for shared memory parallel programming rely on locks
and condition variables for synchronization, whose drawbacks are
well known and include deadlock, priority inversion, and lack of
composability [1].

As a result of the many pitfalls raised by lock-based synchro-
nization, researchers have started looking at more abstract alterna-
tives. One promising approach proposes using transactions as the
unit of concurrency, a strategy more commonly known as Trans-
actional Memory (TM) [16]. A transaction is a sequence of in-
structions that operates on an all-or-nothing fashion: either the en-
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tire block of code is executed atomically or none of the instruc-
tions appear to take effect. Memory transactions are very much like
their database counterparts [15], except that they operate on volatile
memory (i.e., durability is not a concern).

The implementation of the transactional mechanism can be
done entirely in software (STM), in hardware (HTM), or using
a combination of both (HyTM). Despite recent announcements of
hardware support for TM in current processors [19, 20, 34], soft-
ware implementations are still very appealing since they can run
on top of the majority of mainstream processors (with no HTM
support) and provide an efficient testbed for new ideas. Moreover,
existent processors that do provide transactional support imple-
ment a best-effort HTM, relying on software to guarantee system
progress. As a consequence, software support will play a key role
in the future.

Performance has always been the Achilles’ heel of software
transactional memory. Early reports on STM performance revealed
execution time worse than sequential code, deeming STM a re-
search toy [3]. Later experiments showed that STM could indeed
provide good speedups over sequential execution time by using a
more diverse set of benchmarks, a state-of-the-art implementation,
and more powerful hardware [8]. Nonetheless, the development of
more efficient STM algorithms, implementations and optimizations
remains a very active field of research. Recent works have looked
into how platform specificities, such as thread mapping strategy and
compiler instrumentation, affect the overall runtime performance
and scalability of the system [4, 27]. Following on the same di-
rection, we investigate in this paper the impact of dynamic mem-
ory management on the performance of blocking STM implemen-
tations and applications. Although we only discuss the impact of
allocators on STM systems in this paper, we expect that most of the
conclusions are valid for HyTMs since they also rely on STMs.

1.1 Motivation
Dynamic memory allocation is among the most expensive and per-
vasive operations in C/C++ applications. Recent studies conducted
with a group of sequential applications have shown that, on aver-
age, 30% of the total execution time is spent on dynamic memory
management [33]. The advent of multicore processors has intensi-
fied the importance of the allocator in deploying high performance
systems. As transactional memory becomes mainstream, it should
also satisfactorily interact with the memory allocator.

Although the importance of memory management in current
software development is clear, surprisingly its impact on the per-
formance of transactional applications has been mostly overlooked.
Very few papers have investigated memory management issues in
the context of STMs [14, 18]. Unfortunately, most papers do not
even mention which allocator is used for performance evaluation.

To illustrate the influence of memory allocators, consider Fig-
ure 1 (see Section 4 for details on the experimental setup). The exe-
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Figure 1. Influence of memory allocators on Intruder (left) and
Yada (right) with 8 cores. The best-performing allocator changes
from one application to the other.

cution times of two STAMP applications [26] (Intruder and Yada),
both using the TinySTM library [10], and two allocators (Glibc
and Hoard), are shown for a configuration with 8 cores. While the
Glibc allocator performs better for Intruder (left), Hoard exhibits
a better execution time for Yada (right). The applications binary
files have not even been modified: by dynamically changing the
allocator at loading time we obtained remarkably different results.

It is important to notice that the performance of memory man-
agement in a transactional setting is not only affected by the allo-
cator itself (how objects are layed out in the address space and the
allocation algorithms), but it also depends on the specificities of
the transactional algorithm: most lock-based implementations re-
quire mapping memory addresses to locks for conflict detection. In
short, the main research questions we want to address in this pa-
per are: (a) what is the impact of memory allocators in the overall
performance of STM systems? (b) should researchers report which
memory allocator they have used in their experiments?

1.2 Contributions and organization
To the best of our knowledge this is the first paper to conduct a
detailed analysis of the impact of dynamic memory management
on the performance of transactional applications. We make the
following 2 main contributions:

• A detailed performance analysis of the interaction of different
memory allocators and a blocking, word-based STM system,
conducted with a synthetic benchmark (Section 5). More specif-
ically, we investigate the influence of allocators on the locking
granularity exposed by the STM system, which has a direct im-
pact on the number of false aborts. Although earlier works have
explored this issue [7, 10], they have not taken into account the
effect of memory allocators. Moreover we show that, at least for
some data structures, the best mapping function does depend on
the memory allocator.

• A performance characterization of the STAMP applications [26]
with respect to a number of different allocators, which reveals
that they do interfere in the performance and may lead to wrong
conclusions (Section 6). Our results indicate that it is important
to report the memory allocator used on the experiments when
evaluating STM systems. For instance, we have observed dif-
ferences ranging from 4% to 171% in the STAMP applications.

The rest of this paper is organized as follows. Section 2 presents
the context in which this work is inserted, along with a brief de-
scription of related works. The memory allocators considered in
the analysis are described in Section 3, followed by the experimen-
tal setup in Section 4. An analysis of the allocators’ impact on the

synthetic and realistic benchmarks is done in Sections 5 and 6, re-
spectively. Finally, our conclusions are stated in Section 7.

2. Background and related work
At a higher level there are two main broad categories in which
software transactional memory designs can be organized: blocking
and non-blocking. For this work we focus on blocking implementa-
tions. In particular, our interest is on time-based STMs that operate
on the word granularity and are implemented in languages such as
C/C++, in which memory management is explicit. Representative
designs of such category are among the fastest known implementa-
tions, including TL2 [6], TinySTM [10], and SwissTM [7].

In order to correctly track conflicts, the lock-based STMs em-
ployed in this work rely on a big lock table commonly known as
Ownership Record Table, or ORT 1. We refer to an entry in this
table as a versioned lock. Memory accessed by an application is
divided into stripes, with each stripe being mapped to a versioned
lock by means of a mapping function. A lock bit included in each
versioned lock signals whether some transaction is currently mod-
ifying the memory stripe protected by the referred versioned lock.
An attempt by some other transaction to modify the same memory
region is blocked, leading the transaction to either wait or abort.
When the lock bit is unset, the versioned lock maintains a times-
tamp representing the last time that the corresponding memory
region was modified. Notice that it might occur for two distinct
memory stripes to be mapped to the same versioned lock, result-
ing in false aborts. The mapping function can be tuned in order to
avoid this behavior. Although larger memory stripes increase the
likelihood of false aborts, the validation and locking costs are re-
duced. On the other hand, a small memory stripe will prevent spu-
rious aborts from happening at the cost of larger read/write sets and
higher cache pressure. Despite the fact that investigations about the
performance implications of the mapping function have been con-
ducted previously [7, 10, 23, 24, 36], none of these works have
considered the impact of memory allocators.

For the class of STMs considered in this work, dynamic mem-
ory management is not a part of the core design. Instead, it is
built around an external allocator interface that provides at least
malloc and free function calls. An allocator wrapper must an-
notate all transactional allocations (because they must be undone
in case of aborts) and defer deallocations to commit time. Hud-
son et al. [18] investigated the integration of the memory allocator
with the transactional algorithm, but we have not heard any further
progress of this approach other than it has resulted in the design
of the current TBBMalloc allocator [21] (in a not transactional set-
ting). Gottschlich and Connors [14] discuss memory management
issues in the context of DracoSTM, observing a 20% performance
improvement while using a builtin user-configurable memory man-
ager. The use of hardware transactional memory for simplifying
the implementation of common data structures related to dynamic
memory management is investigated by Dragojevic et al. [9].

3. Dynamic memory management
Dynamic memory management is a fundamental part of any com-
puter system. The interface between the allocator and the applica-
tion is usually represented by the function pair malloc/free. A
call to malloc is used to request memory from the system’s heap,
while a call to free makes a previously allocated memory block
available again. Dynamic memory allocator design is an old topic,
dating back to 1961 [11]. A good allocator must provide at least:
(i) fast (de)allocation (low latency), and (ii) efficient use of mem-

1 The reader should notice that not all lock-based STMs are built around an
ORT (e.g., RingSTM [30]).



ory space (low fragmentation). Although a bit outdated, Wilson et
al. [35] provide an excellent review of the literature about sequen-
tial allocators.

With the introduction of multicore processors, allocators are
further required to provide good scalability and avoid cache false
sharing, a scenario wherein multiple threads accidentally share the
same cache line. It is important to notice that the development of
a multithreaded allocator requires a new design. For instance, ex-
tending an excellent serial allocator with a single global lock to
protect each (de)allocation is certainly not a good choice, since it
will inevitably serialize all allocations and badly hurt scalability.
New multithreaded allocator designs have been proposed recently
aimed at providing good scalability [2, 5, 21, 25, 29]. The per-
formance analysis conducted using these allocators show that the
choice of the allocator has a big impact on the overall performance.
Even then, performance evaluations of transactional systems have
mostly omitted the allocator employed in the experiments.

In the following subsections we describe the basic behavior
of the four memory allocators studied in this work: Glibc [13],
Hoard [2], TBBMalloc [21], and TCMalloc [12]. We believe these
allocators cover a wide spectrum of allocation strategies and, in
addition, are publicly available.

3.1 Glibc
The GNU C library (Glibc) memory allocator uses a modified
version of Doug Lea malloc (dlmalloc) [22], adapted to support
multicore processors by Wolfram Gloger (ptmalloc3) [13]. It is the
default allocator distributed with typical Linux systems.

The allocator keeps memory blocks in bins, grouped by size (a
technique referred to as binning). For small blocks (usually 128
bytes or less), the allocator uses a caching mechanism wherein
freed memory are stored in a very fast type of bin, implemented
as a single linked list with no coalescing. Therefore, requests for
small blocks are usually resolved very quickly. For larger requests
the system memory mapping facility is used. Each memory block
has metadata (commonly known as boundary tags) holding size and
status information. The minimum allocated block size is 32 bytes
on current 64-bit systems.

The multithreading support added by Wolfram Gloger makes
use of per-thread arenas. An arena is a contiguous block of mem-
ory obtained from the kernel (heap area) and managed by the al-
locator. When a malloc is requested by a thread for the first time,
the allocator creates a new arena for that thread. To improve lo-
cality, subsequent requests by the same thread attempt to use the
same arena, but it might not be available, as the allocator does not
use private arenas. Therefore, locks are used to avoid having two
threads accessing the same arena at the same time.

In order to reduce lock contention, the allocator does not block
if a lock is already taken. Instead, a mutex try lock primitive
is firstly used in the hope of acquiring the lock. If it fails, the
allocator repeats the procedure for the next arena (they are kept
in a circular list). If none of the arenas can be used, a brand new
one is created to fulfill the thread request. When a thread frees a
block, the allocator returns the block to the arena from which it
was originally allocated. Notice that the allocator always requires at
least one atomic read-modify-write instruction per (de)allocation,
even when there is only one thread executing.

3.2 Hoard
The Hoard allocator was proposed by Berger et al. in 2000 [2] and
it is still being developed. The allocator is designed to be scalable,
avoid false sharing, and exhibit bounded fragmentation.

Hoard maintains per-thread heaps along with a global heap.
Each heap is assigned to a thread by means of a hash function
that maps the thread ID to its heap. When a block of memory is

requested, Hoard first checks the corresponding thread heap for
available memory. If no blocks of the desired size class are found,
the allocator retrieves a big chunk of memory from the global heap,
called a superblock in Hoard terminology. A superblock keeps a
free list of available blocks, all of the same size class. Size classes
are apart from each other by a power of b, bounding internal
fragmentation to a factor of b. External fragmentation is reduced
by returning superblocks below a given emptiness threshold to
the global heap. When a free operation is invoked, the block is
returned to the superblock from which it was allocated in order to
reduce false sharing.

Regarding synchronization, Hoard original algorithm required
a lock per heap and per superblock. A heap is locked during allo-
cation and deallocation. The deallocation procedure further needs
to acquire the lock for the specific superblock. The authors argue
that Hoard incurs very low contention costs for memory opera-
tions in the common case, claiming that the contention for the per-
thread heap locks is not a scalability concern and contention for
the global heap lock is rare. Recent versions of Hoard make use
of thread-private local heaps for small blocks (usually 256 bytes or
less). These local heaps substantially improve performance since
they avoid most of the atomic operations required for locking the
per-thread heaps in the original algorithm. Small chunks are also
freed locally.

3.3 TBBMalloc
The Intel TBBMalloc allocator is part of Intel Threading Building
Blocks, a software library designed to take advantage of multicore
processors [21]. The basic design of the allocator was carried out
during the McRT research program at Intel [28] and is based on
a non-blocking memory management algorithm, which was also
integrated with a software transactional memory system [18].

The TBBMalloc allocator uses thread-private heaps, eliminating
the need for costly synchronization if allocation requests can be ser-
viced by the local heap. Like Hoard, each heap maintains different
superblocks for different size classes. If the allocator cannot find
any available block in the local superblock for a given size class, a
global heap is accessed and a superblock is transferred to the local
heap. If there is no available memory in the global heap, a block of
1MB is allocated using the operating system memory support. This
big block is further split into superblocks of 16KB each. To avoid
a large memory footprint, empty superblocks are returned back to
the global heap.

Freed blocks are returned to the superblocks they were allocated
from. This has the advantage of reducing false sharing and may also
increase cache locality but, on the other hand, requires some form
of synchronization, as a superblock in another thread heap must be
accessed. In order to reduce the synchronization cost TBBMalloc
maintains two separate free lists for each superblock: a public and
a private. A malloc operation first attempts to grab a block from
the private list, which does not required any synchronization. The
public list is only inspected when no available blocks are found in
the private list. Contrary to the version of the allocator developed
by the McRT team, TBBMalloc does not employ non-blocking
synchronization, using fine-grained locks instead.

3.4 TCMalloc
The Thread-Caching Malloc (TCMalloc) [12] is a high-performance
multithreaded memory allocator distributed with Google Perfor-
mance Tools (gperftools), along with other tools for heap and
CPU profiling. TCMalloc is also used by Google Chrome web
browser.

The design of the allocator is very close to TBBMalloc. Each
thread is assigned a local heap (a thread cache in TCMalloc
nomenclature) from which small blocks (usually 256KB or less) are



Allocator Version Metadata (tag) Min Size Fast Path Granularity Synchronization
Glibc 2.11.1 Per block 32 bytes <= 128 bytes 132KB-64MB

per arena
A lock per arena. If a thread fails to grab the lock for any
of the active arenas, a new one is created.

Hoard 3.10 Per superblock 16 bytes <= 256 bytes 64KB per su-
perblock

Each heap is protected by a lock as is the global heap. A
cache is maintained for small block sizes and is accessed
without synchronization.

TBBMalloc 4.1 Per size class 8 bytes < 8KB 16KB per size
class

The public free lists of a private heap are each protected
by a distinct spinlock. Each free list in the global heap
is also protected by a separate spinlock. Accessing the
private free lists is synchronization-free.

TCMalloc 2.1 Per size class 8 bytes <= 256KB incremental Each free list in the central cache is protected by a spin-
lock. A spinlock is also used to protect the central page
heap.

Table 1. Summary of the main attributes of the studied allocators.

allocated without any synchronization overhead. Available blocks
are internally stored in separate free lists according to their size.
When a malloc is requested, the allocator first locates the free
list that matches the required allocation size in the thread cache
and returns an available block if the list is not empty. Otherwise,
the allocator consults a central heap (also called central cache) that
works as a back store. Inside the central heap, blocks are also segre-
gated by their size and kept in different free lists. Since all threads
share the central heap, spinlocks are used to provide consistent
access.

In case the requested block is still not found in the central heap,
TCMalloc uses another sort of allocator called the central page
heap. This component allocates pages directly from the operat-
ing system and serves two main functions: (1) as a back store for
the central heap; (2) as an allocator for large chunks. When small
blocks are deallocated, TCMalloc insert them into the appropriate
free list in the current thread’s thread cache. Recall that this be-
havior differs from both Hoard and TBBMalloc, since they would
return the block to the thread cache it was originally allocated from.
To avoid external fragmentation, TCMalloc runs a garbage collec-
tor when a thread cache size exceeds a given threshold, moving
unused blocks back to the central heap.

3.5 Discussion
In the description of the allocators presented earlier we focused
on how memory (de)allocation is performed, the data layout, and
the synchronization aspects. Other important features such as heap
corruption protection are out of the scope of this paper.

Table 1 highlights the main attributes of the allocators employed
in this work. As can be seen, only Glibc maintains metadata infor-
mation on a per block basis. This choice considerably increases the
minimum allocated size (Min Size column) on 64-bit machines.
Even a malloc(0) would cause the Glibc allocator to return a
pointer to a 32-byte block. Apart from the memory utilization over-
head, this choice reduces cache locality and may have a direct im-
pact on the performance of the system. Notice that only 2 memory
blocks would fit a cache line on typical L1 caches (considering a
standard 64-byte line size), whereas for TBBMalloc and TCMalloc
8 memory blocks could potentially be placed on the same line.

The Fast Path column indicates the block sizes for which the
respective allocator provides a fast path (de)allocation. With the ex-
ception of Glibc, which still requires locking an arena, all remain-
ing allocators implement some sort of local cache that effectively
provides synchronization-free (de)allocations. In the fast path, syn-
chronization is required only when a block is not found in the local
cache and the allocator must access a global back store. Even then
the blocks are segregated by size, allowing the use of fine-grained
locks. The Synchronization column describes the basic synchro-
nization strategies for each allocator.

0x1FFFFFF0
0x1FFFFFE0

0x1FFF0000
0x1FFF0010
0x1FFF0020

Central Cache for 16-byte blocks

� 16-byte blocks

0x1FFF0030
0x1FFF0040
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memory address
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�

{  

}  

}  
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Figure 2. An illustration of false sharing induced by TCMalloc.

Finally, the Granularity column shows the size of the mem-
ory block made available to a thread when the first allocation is
requested. For Glibc, the minimum arena size is 132KB and is
internally split into bins for different size classes. All threads can
share the same arena as long as there is no contention. An arena can
be further enlarged to a maximum of 64MB on demand. Hoard as-
signs a superblock of 64KB for each requested size class, whereas
16KB blocks are used by TBBMalloc. The larger the size the less
frequently the allocator has to access the global heap and, conse-
quently, the less the synchronization overhead. On the other hand,
larger sizes increase fragmentation. TCMalloc employs an incre-
mental approach, wherein all free lists are initially empty and their
sizes are incrementally increased on each successive allocation re-
quiring access to the central cache. This behavior can possibly give
rise to false sharing scenarios as discussed next.

In Figure 2 we picture a central cache with a free list of 16-
byte blocks, showing the respective available addresses inside each
block. Notice that the blocks represent consecutive addresses, since
a big chunk has been previously allocated from the operating sys-
tem. We consider only 2 threads for simplicity, also assuming that
each local cache is initially empty. When thread 1 requests a mem-
ory block, it will not find it in the local cache and therefore the
allocator transfers one block from the central cache Ê. After that,
thread 2 also requests a memory block and, since its local cache
is also empty, the next available block from the central cache is
fetched Ë. At this point the two threads will have the variables x
and v pointing to consecutive memory locations, 16 bytes apart
from each other, possibly causing false sharing. When another
block is requested by thread 1, the allocator needs to go to the cen-
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Figure 3. Throughput of the studied allocators for different block
sizes (8 threads).

tral cache again but now it transfers 2 blocks Ì (the third time it
will transfer 3 blocks, the fourth time 4 blocks, and so on). Thread
2 also performs another allocation, forcing the allocator to bring
the next two memory blocks from the central cache Í.

To conclude this section we conduct a performance analysis of
the allocators described previously. It is difficult to measure the
overall performance of a memory allocator since it depends on
a host of factors. In this particular analysis we are interested on
how fast a pair of malloc/free operations are processed. Our mi-
crobenchmark is the same used by Hoard [2], called threadtest. In
this experiment 8 threads repeatedly do nothing but allocations and
deallocations. A memory block is deallocated right after allocation
by the same thread. Figure 3 shows the throughput of each allocator
for several block sizes.

It is interesting to notice that TCMalloc does not perform well
for 16-byte blocks due to cache false sharing, as discussed earlier
and illustrated by Figure 2. Apart from this behavior, it presented
the best overall throughput for this particular experiment. Hoard
also performs quite well for blocks less than or equal to 256 bytes,
as predicted by Table 1 (Fast Path column). Afterwards, the lo-
cal cache is not used anymore and a thread must access its lock-
protected heap, decreasing its throughput to a level very close to
Glibc. Recall that in Glibc a thread always needs to go through
a per-arena lock in every allocation and deallocation. TBBMalloc
throughput is kept roughly constant until blocks slightly less than
8KB are requested, in which case the allocator invokes the operat-
ing system memory management directly.

4. Experimental setup
In this section we describe our evaluation methodology, tools con-
figuration, and the benchmarks analyzed in this paper. The goal
of our analysis is to assess the impact of the different memory al-
locators on the performance of the STM library and transactional
applications.

Our experiments have been carried out on an Intel Xeon ma-
chine, whose detailed configuration is given in Table 2. The oper-
ating system is a typical 64-bit Linux distribution (Ubuntu server
10.04.3 LTS), with kernel 2.6.32, and Glibc version 2.11.1. The
STM library and the applications employed in the analysis were
compiled for 64-bit mode using GCC version 4.4.3 with optimiza-
tion flag -O3. For fairness we also avoided GCC specific optimiza-
tions targeted at the Glibc allocator by using the -fno-builtin
flags for malloc, calloc, realloc, and free. Since the alloca-
tors are provided as dynamic libraries, we did not produce differ-
ent application binaries for each of them. Instead, each allocator
is dynamically loaded by setting the LD PRELOAD environment

Processor Model Intel(R) Xeon(R) E5405 @ 2.00GHz
Total cores 8 (2 sockets, 4 per socket)
L1 data cache 32KB, 8-way set associative, 64-byte lines
L2 cache 2x6MB, unified, 24-way set associative
Main memory 4GB

Table 2. Machine configuration used in the experiments.

variable accordingly at runtime. The versions of the allocators are
given in the second column of Table 1.

The main STM library chosen for this work is TinySTM [10]
version 1.0.4, released on January 29, 2013. For most of the exper-
iments we did not change any library configuration, using the de-
fault ETL (Encounter-Time Locking) design and the SUICIDE con-
tention management strategy (the transaction that causes the con-
flict is aborted and immediately restarted). We did turn on the flag
for statistics (number of commits and aborts, mostly) but did not
notice any significant overhead. The default size for the ownership
record table (ORT) is 220 elements. A given address is mapped to
an entry in this table by shifting its 5 less significant bits to the right
and taking the rest modulo the size of the ORT. This configuration
forces 32 consecutive bytes to be mapped to the same versioned
lock in the ORT.

We use both synthetic and realistic benchmarks in our experi-
ments. The synthetic one has a configurable number of threads up-
dating (inserting or deleting) or searching for elements in a given
data structure. Three different data structures were used: a sorted
linked-list, a hashset, and a red-black tree. The number of elements
is kept nearly constant by forcing insertions and deletions to take
turns: the next element to be removed is the last one inserted. This
sort of benchmark has been extensively used in previous works (see
for instance [17] and [10]) and provided us an excellent and sim-
plified workload to understand the behavior of the allocators. The
configuration exploited in the experiments uses a set with 4096 el-
ements, random numbers in the range of [0, 8192), and three dif-
ferent update rates: read-only, read-dominated (20% of updates),
and write-dominated (60% of updates). Due to space constraints,
we only discuss the write-dominated configuration because its per-
formance is more sensitive to the allocators.

We also use the STAMP benchmark suite [26] in our evalua-
tion2. STAMP is comprised of 8 different applications, each with
different behavior concerning time in transaction, level of con-
tention, size of read/write sets, and transaction length. The config-
urations used in the experiments are the ones suggested in the orig-
inal paper with large data sets. For two of the applications, Kmeans
and Vacation, there are two recommended configurations, but we
only use one of them in this paper (the one with the highest con-
tention level and working set size) due to space constraints.

Finally, our results are presented as a mean of 50 (synthetic
benchmark) or 30 executions (STAMP). In order to provide statisti-
cally significant values, our figures also show error bars represent-
ing a 95% confidence interval. Besides throughput and execution
time, some of the experiments required more detailed information
about cache events (such as number of accesses and miss ratio). In
order to collect those events we utilized the PAPI interface [32] ver-
sion 5.2, an abstraction layer for accessing hardware performance
counters.

2 Since STAMP is not maintained by the original research group any-
more, we used the one supported by the community and available at
http://code.google.com/p/tm-benchmarks/. This version has sev-
eral bug fixes.



20

25

30

35

40

45

50

55

1 2 4 6 8

T
hr

ou
gh

pu
t (

x 
10

3  tx
/s

)

Number of cores

Linked List (60% updates)

Glibc
Hoard
TBBMalloc
TCMalloc

5

6

7

8

9

10

11

12

1 2 4 6 8

T
hr

ou
gh

pu
t (

x 
10

6  tx
/s

)

Number of cores

HashSet (60% updates)

Glibc
Hoard
TBBMalloc
TCMalloc

1

2

3

4

5

6

7

1 2 4 6 8

T
hr

ou
gh

pu
t (

x 
10

6  tx
/s

)

Number of cores

Red-black Tree (60% updates)

Glibc
Hoard
TBBMalloc
TCMalloc

Figure 4. Throughput of the different data structures: Sorted LinkedList (left), HashSet (middle), and Red-black Tree (right). The results are
for the write-dominated workload (60% updates).

Application Best Worst Speedup Threads
Linked-list Glibc TBBMalloc 13.12% 8
HashSet Hoard TCMalloc 18.52% 6
RBTree TBBMalloc Glibc 14.76% 8

Table 3. Best and worst allocators for each data structure, relative
speedup and respective thread number (write-dominated configura-
tion).

5. Synthetic benchmark analysis
We start off our performance analysis considering the synthetic
benchmark described previously. Figure 4 presents throughput re-
sults for the different data structures and the write-dominated work-
load. It is surprising to notice that the performance of the different
allocators vary considerably among the three data structures, as re-
vealed by Table 3. This table also shows the relative speedup be-
tween the best and worst allocators, as well as the thread config-
uration that produced the maximum throughput. In the following
subsections we investigate what is behind this behavior and how
the allocators and the STM library affect the overall performance.

5.1 Sorted linked list
In this microbenchmark each node of the list is composed of a 64-
bit value field and a pointer to the next node, amounting to 16 bytes.
A transaction allocates a node through malloc when inserting a
new element, and deallocates the node via free when deleting it.
Finding an element in the linked list may require scanning a lot of
nodes. Since insertions and deletions in a sorted list first need to
locate the previous element, many memory locations are touched
during the traversal, resulting in large transactional read sets.

One important difference among the allocators is that Glibc
will allocate 32 bytes for each node (minimum block size), whereas
all other allocators will reserve the exact amount (16 bytes). De-
spite the worse cache locality introduced by Glibc, it is intriguing
to observe that it displayed the best overall results. To further inves-
tigate this issue we measured the fraction of the total transactions
that have been aborted and also the L1 data miss rate. The values
are displayed in Table 4. As expected, the cache locality is worse
for Glibc but, on the other hand, many more transactions are being
aborted with the other allocators. Our findings reveal that the good
results achieved by Glibc are due to the 32-byte aligned addresses
and the way the STM library maps addresses to versioned locks in
the ORT. We use Figure 5 to illustrate the problem in detail.

Before spawning the threads to perform the operations on the
linked list, the main thread allocates all the nodes and inserts them
in the list. Pick two nodes allocated in sequence, say x and y. When
the Glibc allocator is used, these nodes are 32 bytes apart (min-
imum allocation size). Assume these addresses are 0x18000020

#P Glibc Hoard TBBMalloc TCMalloc
aborts L1miss aborts L1miss aborts L1miss aborts L1miss

1 00.0% 4.6% 00.0% 3.2% 00.0% 3.2% 00.0% 3.2%
2 10.4% 5.0% 17.4% 3.4% 17.3% 3.3% 17.4% 3.3%
4 30.9% 5.2% 45.4% 3.6% 45.0% 3.5% 45.1% 3.5%
6 44.1% 5.2% 61.2% 3.6% 60.8% 3.5% 61.0% 3.5%
8 55.7% 5.3% 70.6% 3.6% 70.2% 3.5% 69.7% 3.5%

Table 4. Percentage of aborted transactions and L1 data cache
misses for the write-dominated configuration (sorted linked list).
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Figure 5. The interaction between the allocator and the STM li-
brary may cause false aborts. While nodes are 32-byte apart when
Glibc is used and the system advances naturally (a), the combined
effect of 16-byte blocks and the STM mapping function causes
false aborts for Hoard, TBBMalloc, and TCMalloc (b).

and 0x18000040, respectively. Now assume transaction 1 is per-
forming a write operation on node x (e.g., changing its next pointer
to insert a new node) and transaction 2 is traversing the list and
reads node y (Figure 5a). Transaction 1 sets the lock bit for x in
the ORT and, since the address of y is mapped to a different entry
in this table, there is no conflict and both transactions proceed (re-
call that the mapping function simply right-shifts the address by 5
and takes the rest modulo the ORT size). Now consider the same
scenario for the other allocators (Figure 5b). Since in this case ad-
dresses are 16 bytes apart (0x18000020 and 0x18000030 in the
example), transaction 2 will mistakenly be aborted.



5.2 HashSet
Differently from the linked list microbenchmark, operations on the
HashSet are very fast as a hash function is used to directly calculate
the target addresses. Therefore, transactions are short and have
relatively small read/write sets. When there is a collision in the
hashtable the nodes are linked linearly. However, the likelihood of
a collision is very low since the hash table has 128K entries and
the set is 4K long. The size of a node is also 16 bytes, but since
the transactions do not have to traverse them in a linear fashion, the
issue depicted previously for the linked list is not a concern here.
Nevertheless, one can see that some allocators did not perform very
well, in particular TCMalloc.

Looking at the fraction of aborted transactions we noticed that
both Glibc and TCMalloc exhibited much larger numbers when
compared to Hoard and TBBMalloc. On closer inspection we real-
ized that when transactions were about to perform an insertion and
requested memory for a node, TCMalloc was returning adjacent
memory addresses (16-byte apart) due to the behavior described
previously (see Figure 2). The impact on throughput is twofold:
first, there is false sharing due to distinct nodes in different threads
sharing the same cache line; second, the STM library will map two
contiguous nodes to the same versioned lock in the ORT. The com-
bined effect is the increased number of aborted transactions and
consequent reduced throughput as observed in Figure 4. The worst
case happens when only two threads are active. When one of them
locks the ORT to insert/delete a node in the hashset it might have
to wait for the invalid cache line to become available3. Meanwhile,
the other transaction will continuously abort. Indeed, looking at the
execution log we noticed a huge number of repeated aborts.

The problem that caused a subpar performance with the Glibc
allocator is a bit different but also stems from allocator-induced
false aborts. Each transaction will most likely allocate memory
from a different arena and, since arenas have a 64MB alignment,
the mapping function will discard the higher bits of the addresses
and map the result to the same versioned locked. As an example,
consider that the nodes allocated by any two transactions are at
locations 0x18000000 and 0x1c000000. There is no false sharing
at the cache level here, but both addresses will be mapped to
entry 0 in the ORT. This problem does not occur with Hoard and
TBBMalloc because their superblocks are aligned at 64KB and
16KB boundaries, respectively.

5.3 Red-black tree
The red-black tree benchmark has some key differences compared
to the previous two. First, each node of the tree is 48 bytes long.
Both Glibc and Hoard do not provide a class with the exact same
size, thus using the 64-byte class. It is curious to notice that a 48-
byte block might cause false conflicts with the default shift value
(5), as its last 16 bytes will be mapped to the same versioned
lock of the first 16 bytes of the next contiguous node. Because
a 64-byte block is used in the case of Glibc and Hoard, this
would not be possible. We did not observe this trend directly in the
results, although Hoard did exhibit the less percentage of aborted
transactions among all allocators. For Glibc we actually found a
relatively larger fraction of aborted transactions, probably due to
arena-induced conflicts. Also, recall that the access to the arenas
requires an atomic instruction for grabbing its lock, which also
contributes to the inferior overall throughput of this allocator.

Another important difference is that in this benchmark a trans-
action can deallocate a block of memory allocated by other transac-
tions. When a transaction tries to delete a node that it last allocated,

3 Having a microarchitectural store buffer will not help here because the
next step of the commit protocol requires a memory barrier before the phase
responsible for unlocking the write set starts.
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Figure 6. Relative speedup (-1) of the sorted linked list with a shift
amount of 4 bits for the write-dominated workload (with regard to
a shift amount of 5).

the node actually deleted might have a different address (this is
due to the nature of tree deletions that might rearrange the disposi-
tion of the nodes and copy the values around). Also, the size of the
write set tends to be larger for insertions and deletions (the other
microbenchmarks only perform a single write).

5.4 Discussion
The experiments with the synthetic microbenchmarks revealed that
allocators may interfere with the way that word-based STM li-
braries map addresses to versioned locks in the ORT, changing the
likelihood of false aborts. In the experiments performed previously
we use a shift amount of 5 bits, forcing a region of 32 bytes to be
mapped to the same versioned lock. We repeated the experiment
for the linked list with a shift amount of 4 in order to examine the
behavior of the allocators. The relative speedup is showed in Fig-
ure 6 for the write-dominated workload. In general, we observed
that reducing the shift amount increased the L1 data cache misses
(more entries in the ORT need to be accessed) and, as a result, all
allocators showed a performance loss with only 1 core (there are
no conflicts in this case). As more cores are added, the question is
whether the gain obtained with the reduced number of false aborts
will overcome the extra overhead. Notice that for Glibc there is
no conflict to be avoided (the allocator returns 32-byte blocks) and
hence its performance falls off. On the other hand, the remaining
allocators display some improvements since the issue illustrated in
Figure 5 does not happen anymore.

The tuning of the shift amount parameter has been studied in
earlier works [7, 10, 23, 24, 36]. Although the optimal value for
this parameter is application specific, a value of 5 is usually ac-
cepted (4 bit on 32-bit machines) as this configuration provides the
best overall results. However, these earlier works did not consider
allocator-specific interferences. As our results have showed, for the
linked list microbenchmark a value of 5 is optimal for Glibc, but
4 presents the best results for Hoard, TBBMalloc, and TCMalloc.

6. STAMP analysis
Instead of analyzing the details of the interaction between each
allocator and the STM system as we did with the microbenchmarks,
we take a holistic approach with the STAMP applications due to
their complexity. We are particularly interested in contrasting the
speedup achieved by each allocator. In the introduction (Figure 1)
we showed an example where the execution time varied according
to the allocator used. Here we extend this analysis to other STAMP
applications and allocators.

Figure 7 shows the speedup of the STAMP applications for each
of the allocators studied. Each speedup number represents the result
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Figure 7. Speedup with different allocators for the STAMP applications.

a research group would achieve if the corresponding allocator was
used. In other words, the normalization is applied independently
for each allocator using the respective sequential execution time.
This allows us to see the discrepancies in scalability among the al-
locators. Important disparities can be noticed for Bayes 4, Genome,
Intruder, Vacation, and Yada. The remaining applications (Kmeans,
Labyrinth, and SSCA2) are not heavily affected by the allocators,
although we noticed that Hoard did not perform as well as the oth-
ers with Labyrinth.

An interesting behavior is displayed by Genome. At first sight
it seems that Glibc is more scalable, but a closer look reveals a
completely different story. The data layout pattern produced by
Glibc causes many cache misses and the sequential execution time
(from which the speedups are calculated) is about 30% worse than
the other allocators. This loss is attenuated when multiple cores
are used as the working set can fit nicely in each available cache.
Therefore, the 6x speedup attained with Glibc is misleading since
it was an artifact of the allocator rather than the result of the STM
library design.

Another noteworthy behavior is presented by Yada. Notice that
its speedup curve reveals very different trends. While it practically
does not scale with the Glibc allocator, it performs reasonably
well with the other 3 allocators. Yada displays a high abort rate
and, moreover, it is highly dependent on the memory allocator. Al-
though we have not further investigated the sources of the Glibc
inefficiency at this point, we suspect it is related to its high syn-
chronization overhead (per-arena locks).

The speedup numbers show the scalability attained with each
allocator but they do not allow us to compare the allocators’ rel-
ative performance (the speedup curve is highly dependent on the
sequential execution time of each allocator). Similarly to what was
done with the synthetic benchmark, Table 5 displays the best and
worst allocator for each application along with the relative perfor-
mance gain and thread configuration that exhibited the best results
(we omitted Kmeans because no important difference among the
allocators was noticed). Observe the impressive performance gain
achieved with TCMalloc when compared to Glibc for the Yada
application. It is interesting to notice that Glibc did not present the
best performance for any of the STAMP applications. If we assume
that the majority of the performance evaluations of software trans-

4 As observed by other groups, this application presents high variability. We
decided to include it for completeness.

Application Best Worst Speedup Threads
Bayes Hoard Glibc 47.6% 4
Genome TBBMalloc Glibc 14.4% 8
Intruder TBBMalloc Hoard 24.2% 8
Labyrinth TCMalloc Hoard 9.6% 8
SSCA2 TCMalloc TBBMalloc 4.1% 8
Vacation TCMalloc Hoard 24.1% 8
Yada TCMalloc Glibc 170.9% 8

Table 5. Best and worst allocators for each STAMP application,
relative speedup and respective thread number.

actional memory systems has been carried out using Glibc (the
default Linux allocator), we can observe that some of the results
might not reflect the real performance of STM systems, as shown
by the behavior of Genome and Yada.

As revealed by our experiments, the allocator has a direct im-
pact on the performance and should be mentioned along with the
evaluation of STM systems. Finally, our results with the STAMP
benchmark indicate that either TBBMalloc or TCMalloc displayed
the best overall results and should be preferred for evaluating STM
systems.

7. Conclusions
This paper reported our first attempt at measuring the impact of
dynamic memory allocators on the performance of software trans-
actional memory applications. By using a synthetic microbench-
mark we conducted a detailed analysis of the interference of allo-
cators with the mapping function of blocking software transactional
memory systems, showing that allocators do not agree on a single
function. We further showed that the scalability of the transactional
applications included in the STAMP benchmark is also affected by
the chosen memory allocator. Our results highlight the importance
of reporting the allocator employed in the evaluation of transac-
tional systems.
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