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Overhead on Future Optical Networks
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Abstract—The potential of optimum selection of modulation
and forward error correction (FEC) overhead (OH) in future
wavelength-routed nonlinear optical mesh networks is studied
from an information theory perspective. Different network topolo-
gies are studied as well as both ideal soft-decision (SD) and
hard-decision (HD) FEC based on demap-and-decode (bit wise)
receivers. When compared to the somewhat standard assumption
of QPSK with 7% OH, the results show large gains in network
throughput. When compared to SD-FEC, HD-FEC is shown to
cause network throughput losses of 12%, 15%, and 20% for a
national, continental, and transcontinental topology, respectively.
Furthermore, it is shown that for national and continental net-
work topologies, using one modulation format and only two OHs
achieves at least 75% of the maximum theoretical throughput.
This is in contrast with the infinite number of OHs required in the
ideal case. The obtained optimal OHs are between 5% and 80%,
highlighting the advantage of using FEC with high OHs.

Index Terms—Bit-wise receivers, channel coding, forward error
correction, modulation, optical networks, soft-decision.

I. INTRODUCTION AND MOTIVATION

T
he rapid rise in the use of the Internet has led to increasing

traffic demands putting severe pressure on backbone net-

works. The transport backbone of the Internet is made of optical

mesh networks, where optical fiber links connect nodes formed

of reconfigurable optical add drop multiplexers (ROADMs).

Studying the ultimate transmission limits of optical mesh net-

works as well as the optimal utilization of the installed network

resources is key to avoid the so-called “capacity crunch” [1],

[2].

Installed optical mesh networks use wavelength routing to

transparently connect source and destination transceivers. The

quality of the optical communication signal degrades due to

transmission impairments, which in turn limits the maximum
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achievable data rate. This degradation is usually due to the ac-

cumulated noise introduced by amplifiers in the link as well as

nonlinear distortion due to neighboring WDM channels. Fur-

thermore, the optical signals within a transparent wavelength

routed network travel a variety of distances, and thus, experience

different levels of signal degradation. The most conservative de-

sign strategy for an optical network is to choose the transceiver

to operate error-free on the worst light path, i.e., for transmission

between the furthest spaced nodes [3, p. 138], [4, Sec. 1], [5,

Sec. 1]. Under this design paradigm, any route reconfiguration

can be accommodated through the network. However, this leads

to over provisioning of resources.

The increase in traffic demand together with the development

of software-defined transceivers that can adapt the transmission

parameters to the physical channel have increased the inter-

est in designing networks that utilize the resources more effi-

ciently. The degrees of freedom in the transceiver design include,

e.g., the forward error correction (FEC) scheme, FEC overhead

(OH), modulation format, frequency separation (in flex-grid net-

works), launch power, and symbol rate (see [6, Fig. 3]). The

network resources can be better utilized if these degrees of free-

dom are jointly optimized in conjunction with the routing of the

optical light path through the network.

To cope with increasing capacity demands, future optical

networks will use multilevel modulations and FEC. This com-

bination is known as coded modulation (CM) and its design

requires the joint optimization of the FEC and modulation for-

mat (see Fig. 1). The optimum receiver structure for CM is the

maximum likelihood (ML) receiver, which finds the most likely

coded sequence [7, Sec. 3.1]. The ML solution is in general

impractical, and thus, very often the receiver is implemented

as a (suboptimal) bit-wise (BW) receiver instead [7, Sec. 3.2].

In a BW receiver, hard or soft information on the code bits

is calculated first, and then, an FEC decoder is used (see the

receiver side of Fig. 1). In other words, practical receivers de-

couple the detection process: symbols are first converted into

bits, and then, FEC decoding is applied. In this paper we con-

sider BW receivers with both soft-decision FEC (SD-FEC) and

hard-decision FEC (HD-FEC). BW receivers have been studied

for optical communications in, e.g., [8]–[10]

Traditional analyses of optical networks assume a target pre-

FEC bit error rate (BER), and thus, an HD-FEC with fixed OH

is implicitly assumed.1 Although the most common value for

the OH is 7%, higher OHs have become increasingly popu-

lar. Furthermore, the use of SD-FEC with high OHs (typically

1When SD-FEC is considered, however, pre-FEC BER does not determine
the FEC OH, as recently shown in [11].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. CM system under consideration. At the transmitter, a binary FEC code is concatenated with a M -ary QAM modulator. After transmission, the noisy
received symbols are demapped and then decoded by a BW receiver. When the demapper makes HDs on the symbols, an HD-FEC is used. When the demapper
computes log-likelihood ratios (SDs), an SD-FEC is assumed. The achievable rates discussed in Section IV are also shown.

around 20%) is considered the most promising FEC alternative

for 100G and 400G transceivers. Although from a theoretical

point of view, fixing the OH is an artificial constraint that re-

duces flexibility of the CM design and reduces the network

throughput, there are good reasons for fixing the OH. The client

rates are usually quantized to 10, 40, 100, 400 Gb/s for compat-

ibility with the Ethernet standards. The symbol rate is also often

fixed to accommodate the transmitted bandwidth into a given

fixed-grid, leading to fixed OHs. Under these constraints, no

full flexibility on the selection of OHs is possible. In this paper,

however, we ignore these constraints and focus on finding the

theoretically maximum network throughput.

To increase the network throughput, different approaches

have been investigated in the literature. For example, [12] con-

sidered mixed line rates (10, 40, 100 Gb/s) for the NSF mesh

topology, [13] considered variable FEC OHs with fixed sym-

bol rate and modulation formats, and [14] considered variable

modulation format and SD-FEC OHs. Adaptive FEC based on

practical codes was recently considered in [4] and [5]. Vari-

able OHs with 16QAM and 64QAM were studied in [15],

where probabilistically-shaped constellations were considered.

The optimal modulation format based on an approximation for

the maximum achievable rates of HD-FEC was considered in

[16]. Adaptive FEC OH for time frequency packing transmis-

sion was studied in [17]–[20]. The problem of routing and spec-

trum assignment for flex-grid optical networks with orthogonal

frequency-division multiplexing was studied in [21]. The key

enabling technology for these approaches are software-defined

transceivers, allowing for example to vary the modulation for-

mat and symbol rate, as done in [22]–[26]. In [20] and [27], a

software defined transceiver with variable FEC was experimen-

tally demonstrated.

To optimize the network design, a physical layer model is

required. While in the past very simple models (e.g., reach-

based models) were considered, recently, nonlinear effects have

been taken into account using the Gaussian noise (GN) model

[28]–[34]. In [35], the closed form solution of the GN model

of [34] was used to adapt the routing and wavelength assign-

ment problem, for a target pre-FEC BER, and four different

modulation formats. The same GN model was used in [36] and

[37] to jointly optimize power, modulation format, and carrier

frequencies (flex-grid) for a fixed OH. Numerical integration of

the GN model was used in [38] to assess signal-to-noise ratio

(SNR) and throughput optimization via power and modulation

adaptation. The numerically integrated GN model in [38] was

also used in [39] and [40] to sequentially optimize modulation

format and power for a fixed FEC OH. The potential gains of

adaptive FEC OH and modulation, or adaptive launch power

and modulation were studied in [41].

In this paper, we study the problem of finding the optimal

modulation and FEC OH from an information theory view-

point. In particular, we use information theoretic quantities (i.e.,

achievable rates) and a realistic model for the nonlinear inter-

ference to study the maximum network throughput of optical

mesh networks. For point-to-point links, and under a Gaus-

sian assumption on the channel, the solution depends only on

the end-to-end link SNR. For an optical network, however, the

solution depends on the SNR distribution of the connections.

Therefore, the theoretically optimum CM design is obtained

when the modulation size and FEC OH are jointly designed

across the network. Significant increases in network throughput

are shown. Furthermore, practically relevant schemes (based on

either one or two OHs) are also considered, and their gap to

the theoretical maximum is quantified. This paper extends our

results in [42] by considering multiple network topologies as

well as both HD- and SD-FEC.

This paper is organized as follows. In Section II the system

model, network topologies, and physical layer model are de-

scribed. In Section IV the optimal selection of modulation and

coding is reviewed and the maximum network throughput is

analyzed. In Section V practically relevant schemes are consid-

ered. Conclusion is drawn in Section VI.

II. PRELIMINARIES

A. System Model

We consider the CM transmitter shown in Fig. 1, where a bi-

nary FEC code maps the information bits I = [I1 , I2 , . . . , Ikc
]

into a sequence of code bits B = [B1 , B2 , . . . , Bn c
], where

Rc = kc/nc is the code rate. At each discrete-time instant,

m code bits are mapped to a constellation symbols from a

discrete constellation with M = 2m constellation points. We
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consider polarization-multiplexed square QAM constellations

with m = 2, 4, 6, 8, 10 (i.e., MQAM with M ≤ 1024) in each

polarization. The constellations are labeled by the binary-

reflected Gray code. For an FEC encoder with code rate Rc and

a modulation format with M symbols, the spectral efficiency

(SE) per two polarizations is

SE = 2Rcm

[

bit

symbol

]

. (1)

The FEC OH is

OH = 100

(

1

Rc
− 1

)

%. (2)

At the receiver side a BW receiver is used.2 In such a re-

ceiver, the noisy symbols are first demapped, and then, FEC

decoding is performed. The FEC decoder gives an estimate of

the transmitted bits Î (see Fig. 1). Due to the separation of the

detection process, BW receivers are suboptimal. They are, how-

ever, very common in practice due to the use of off-the-shelf

FEC decoders.

In this paper we consider two types of FEC decoders: HD-

and SD-FEC. This naturally leads to two different BW receiver

structures, shown on the right-hand side of Fig. 1. In an HD BW

receiver, the demapper makes HDs on the bits (by making HDs

on the symbols), which are then passed to an HD-FEC decoder.

We assume that there is a random bit-level interleaver between

the encoder and mapper, which we consider part of the FEC

encoder (decoder).

In an SD BW receiver, the demapper calculates soft informa-

tion on the code bits (also known as “soft bits”), which are then

passed to an SD-FEC decoder. The soft information is usually

represented in the form of logarithmic likelihood ratios (LLRs),

defined as

Lq � log
fY |B q

(y|1)

fY |B q
(y|0)

, q = 1, . . . , m, (3)

where Bq is the qth bit at the input of the mapper, and fY |B q
(y|b),

b ∈ {0, 1} is the channel transition probability. The sign of the

LLRs corresponds to an HD on the bits, while its amplitude

represents the reliability of the available information.

B. Network Topologies

In this paper we consider three networks shown in Figs. 2–4.

The first one is the network topology for Deutsche Telekom

Germany (DTG) [43, Sec. II], where the two core nodes per city

(see [43, Fig. 1]) were merged into one. The second one is the

reference 14-node, 21-link NSF mesh topology [39, Fig. 1], [38,

Fig. 7]. The last topology is the Google B4 (GB4) network con-

necting data centers in [44, Fig. 1]. We chose to study these three

topologies because they are representative of networks at three

different scales: national, continental, and transcontinental.

C. Physical Layer Model

For the analysis in this paper, it is assumed that each node

in the networks described in Section II-B is equipped with

2Also known as bit-interleaved CM receiver [7].

Fig. 2. DTG network formed by nine nodes representative of a national topol-
ogy. The location of the amplifiers (in one direction) is shown as triangles.

Fig. 3. NSF network formed by 14 nodes representative of a continental
topology. The location of the amplifiers (in one direction) is shown as triangles.

multiple transceivers. Furthermore, it is also assumed that these

transceivers are based on the structure in Fig. 1 and that they can

ideally adapt the FEC OH and modulation order. We consider

a fixed grid of 80 WDM channels of 50 GHz per fiber, which

accounts for approximately the entire C-band. The symbol rate

considered is 32 GBaud.

The nodes are connected with fiber pairs with standard single-

mode fiber with parameters shown in Table I. Erbium-doped

fiber amplifiers (EDFA) are regularly placed between the links,

as shown in Figs. 2 and 3.3 The span length is 80 km and the

EDFA noise figure is assumed to be 5 dB.

Every link in the network is modeled using a channel model

(see Fig. 1) that encompasses all the transmitter digital signal

3The amplifiers are not shown in Fig. 4 so as not to overcrowd the figure.
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Fig. 4. GB4 network (amplifiers are not shown) formed by 12 nodes representative of a transcontinental topology.

TABLE I
SUMMARY OF SYSTEM PARAMETERS

Parameter Value

Fiber attenuation 0.22 dB/km

Dispersion parameter 16.7 ps nm−1 km−1

Fiber nonlinear coefficient 1.3 W−1 km−1

Span length 80 km

EDFA noise figure 5 dB

ASE Power per span PASE 0.747 µW

Symbol rate 32 Gbaud

WDM channels 80

Channel separation 50 GHz

Pulse shape Nyquist sinc pulses

SPM Ideally compensated

ROADM Loss 0 dB

Nonlinear coefficient η 742 W−2

Launch power per channel P −1 dBm

processing (DSP) used after the mapper (i.e., pulse shaping,

polarization multiplexing, filtering, electro-optical conversion,

etc.), the physical channel (the fiber and amplifiers), and the

receiver DSP (optical-to-electrical conversion, filtering, equal-

ization, matched filtering, etc.). This channel is modeled using

a dual-polarization, discrete-time, memoryless, additive white

Gaussian noise (AWGN) channel.

For each polarization, and at each discrete time k =
1, 2, . . . , n, Yk = Xk + Zk , where Xk is the transmitted sym-

bol, Zk are independent, zero-mean, circularly symmetric, com-

plex Gaussian random variables, and n is the blocklength. This

GN channel model characterizes optically-amplified links domi-

nated by amplified spontaneous emission noise where chromatic

dispersion and polarization mode dispersion are perfectly com-

pensated. In this model, the power-dependent nonlinearities in

the presence of sufficient dispersion are treated as an additional

source of AWGN.

The symbol SNR for a light path with Ns spans is calculated

as

SNR =
P

Ns(PASE + ηP 3)
(4)

where P is the launch power per channel, PASE is the ASE noise

added after each span (in the 32 GHz signal bandwidth), η is the

nonlinear coefficient (per span).

The nonlinear interference is taken as that on the worst case

central DWDM channel, i.e., we assumed that all the links were

fully loaded with DWDM channels. The nonlinear coefficient

η is calculated using the incoherent GN model of nonlinear

interference as defined in [33], SPM is assumed to be ideally

compensated, and the ROADM nodes were assumed lossless.

Using the parameters in Table I, we obtain η ≈ 742 W−2 . The

launch power that maximizes the SNR in (4) is found to be equal

to [33, eq. (29)] 3
√

PASE/(2η) = −1 dBm. A summary of the

parameters discussed in this section is given in Table I.

III. PERFORMANCE METRIC: NETWORK THROUGHPUT

Throughout this paper, the performance metric under consid-

eration is the total network throughput, which we define below

and denote by Θ. The network throughput as we define it, rep-

resents the total traffic transported by the network that satisfies

a given traffic demand.

The physical network topology is assumed to have N nodes,

which we denote by the set N � {1, . . . , N}. We assume that

there are Ls,d available light paths connecting any two distinct

nodes s, d ∈ N (Ls,s = 0). We also denote the available capac-

ity of the lth light path by C
(l)
s,d , l = 1, 2, . . . , Ls,d . The total

available capacity between nodes s and d is then given by

Cs,d =

L s , d
∑

l=1

C
(l)
s,d . (5)

As discussed in Section II-C, in this paper we consider phys-

ical nonlinear impairments, and thus, the values of C
(l)
s,d are

different for different combinations of s, d and l in a given

network. Consider for example the simple network topology in

Fig. 5(a), where the different light paths are shown with different

colors. In this example we assume nodes 1 and 2 are connected

through 3 light paths (L1,2 = 3), and that they travel through

different routes (green and orange). The nodes pairs (1, 3) and

(2, 3) are connected through one light path only (L1,3 = 1 and

L3,2 = 1).

Furthermore, we assume different light paths have different

capacities. Consider for example the following values:

C
(1)
1,2 = C

(2)
1,2 = 15, C

(3)
1,2 = 5 (6)
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Fig. 5. Schematic representation of a (a) three-node physical network topol-
ogy and (b) the corresponding logical network. In the physical network, different
colors represent different light paths; for this network, L1 ,2 = 3, L1 ,3 = 1 and
L3 ,2 = 1.

and

C
(1)
1,3 = 50, C

(1)
2,3 = 15 (7)

which leads to the following available capacity between nodes:

C1,2 = 35, C1,3 = 50, C2,3 = 15. (8)

These available capacity between nodes can be associated to the

links in a logical network, as shown in Fig. 5(b).

Once the capacities of the links in the logical network Cs,d

have been found, the network throughput could be defined as

the sum of these capacities (i.e.,
∑

s,d∈N Cs,d ). In this paper,

however, we consider a given traffic demand that needs to be

satisfied, and thus, the network throughput should be defined

considering this constraint.

The traffic demand is defined by a normalized traffic matrix

T , whose entries Ts,d with s, d ∈ N , are normalized such that

N
∑

s=1

N
∑

d=1

Ts,d = 1. (9)

We assume connectivity between all pairs of nodes is required

(0 < Ts,d < 1, s �= d) and that Ts,d = 0 if s = d. Under these

constraints, the network throughput Θ is defined as

Θ � min
s,d∈N
d �=s

Cs,d

Ts,d
. (10)

To clarify the definition in (10), consider again the network in

Fig. 5 with available capacities given by (8) and the following

normalized traffic matrix:

T =
1

200

⎡

⎢

⎣

0 35 50

35 0 15

50 15 0

⎤

⎥

⎦
. (11)

In this case, the network throughput in (10) gives

Θ = min {200, 200, . . . , 200} = 200, (12)

which coincides with the sum of the available capacities

(
∑

s,d∈N Cs,d = 200). This is due to the fact that the normalized

traffic matrix in (11) is matched to the available capacities in

the logical network.

Consider now the following normalized traffic matrix:

T =
1

200

⎡

⎢

⎣

0 55 5

55 0 40

5 40 0

⎤

⎥

⎦
(13)

which requires very little traffic between nodes 1 and 3 (which

has large available capacity, C1,3 = 50). In this case, the net-

work throughput in (10) gives

Θ = min {127.2, 2000, 75} = 75 (14)

which is less than half of the sum of the total available capacities
∑

s,d∈N Cs,d = 200. The intuition behind the result in (14) is

that although large amounts of traffic can be transported between

nodes 1 and 3, only very little is required by the normalized traf-

fic matrix in (13). This causes underutilization of the resources,

which in turn gives a lower network throughput. Nevertheless, if

a given normalized traffic matrix is to be fulfilled, and this ma-

trix does not perfectly match the logical network, the network

throughput definition in (10) should be used.

Although the network throughput definition (10) is general in

the sense that it considers arbitrary normalized traffic matrices,

in this paper we consider a uniform normalized traffic matrix,

i.e.,

Ts,d =

{

1
N (N −1) , s �= d

0, s = d
. (15)

The network throughput in this case reduces to

Θ = N(N − 1) min
s,d∈N
d �=s

Cs,d . (16)

For the example in Fig. 5 with available capacities given by

(8), the uniform normalized traffic matrix is given by

T =
1

6

⎡

⎢

⎣

0 1 1

1 0 1

1 1 0

⎤

⎥

⎦
(17)

and the network throughput is

Θ = min {210, 300, 90} = 90. (18)

The matrix T in (17) does not match the logical network, and

thus, the obtained throughput is again below the sum of the

available capacities. It should be noted, however, that a network

throughput of 200 (the sum of the available capacities) cannot

be transported through the network while at the same time ful-

filling the normalized traffic matrix in (17). Therefore, from now

on, we only consider Θ in (16).
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IV. OPTIMAL MODULATION AND FEC OH

In this section, we describe the selection of optimal FEC OH

and modulation format from an information theory viewpoint.

We first consider the ideal case of continuous constellations and

then move to the case of modulation with discrete number of

constellation points. The routing and wavelength assignment

problem and the maximum network throughput are also dis-

cussed in this section.

A. Channel Capacity

The capacity of the AWGN channel (in [bit/sym]) under an

average power constraint is

C = 2 log2(1 + SNR) (19)

where the pre-log factor of 2 takes into account the two po-

larizations. The value of C represents the maximum number

of information bits per symbol that can be reliably transmitted

through an AWGN channel.

The capacity in (19) is achieved when the transmitted symbols

are chosen from a zero-mean Gaussian distribution. In practice,

however, the modulation has M discrete levels, which reduces

the achievable transmission rates. This case is studied in the

next section.

B. Achievable Rates for Discrete Constellations

From an information theory point of view, the optimal code

rate and constellation size can be chosen from the mutual in-

formation (MI) between the input and output symbols of the

channel, usually denoted by I(X;Y ). Although the MI can be

defined between any two random variables X and Y , it has

a very important operational meaning in the context of data

transmission: the MI I(X;Y ) is an achievable rate for an op-

timal receiver.4 MI curves for square QAM constellations indi-

cate that, regardless of the SNR, in order to maximize the SE,

the densest available constellation should always be used and

the code rate chosen between 0 and 1.5 This has been shown,

e.g., in [7, Fig. 4.3], [15, Fig. 1], [33, Fig. 11].

The MI is not an achievable rate for the two receiver structures

we consider in this paper (see Fig. 1). The first receiver in Fig. 1

is suboptimal because it makes HDs on the symbols (and thus,

information is lost). The second receiver is suboptimal because

the LLR calculation ignores the dependency of the bits within a

symbol (i.e., Lq in (3) does not depend on Bl for l �= q). In this

paper we consider two different achievable rates, one for each

of these receiver structures.

For the case of a BW receiver with HDs, Shannon’s cod-

ing theorem states that error-free transmission is possible when

4In information theory, a transmission rate R is said to be achievable if there
exist an encoder with rate R and a (possibly very complex) decoder, such that
the error probability after decoding vanishes as n → ∞.

5This is difficult to realize in practice as high-order modulation formats at low
SNRs are hard to implement. The DSP limitations in the choice of high-order
modulation formats have been recently discussed in [45].

Fig. 6. Achievable rates for a BW receiver with HD-FEC. The black asterisks
show the SNR values where the modulation size should be changed. The channel
capacity in (19) is shown for comparison.

Fig. 7. OHs obtained from the achievable rates in Fig. 6 for a BW receiver
with HD-FEC. The black asterisks show the SNR values where the modulation
size should be changed and the corresponding FEC OH. The channel capacity
in (19) is shown for comparison. The SNR required for QPSK with 7% FEC
OH is also shown with a green pentagon.

n → ∞ if the rate of the encoder fulfills [16, eq. (5)] [46, eq. (8)]

Rc ≤
I(B; B̂)

m
= 1 − Hb(BER) (20)

where I(B; B̂) is the MI between the transmitted and re-

ceived code bits (see Fig. 1). In (20), Hb(p) = −p log2 p −
(1 − p) log2 (1 − p) is the binary entropy function and BER is

the average pre-FEC BER (across m bit positions).

The values of I(B; B̂) for M = 4, 16, . . . , 1024 are shown in

Fig. 6, where the BER was calculated using [47, Th. 2]. The key

difference between the achievable rates I(B; B̂) and I(X;Y )
is that the former cross each other for different values of M (see

the asterisks in Fig. 6). An important consequence of crossing

achievable rate curves is that the theoretically optimal choice of

Rc and M is not straightforward. For a BW receiver with HD-

FEC we consider here, QPSK should be used for SNRs below

SNR ≤ 5.8 dB, 16QAM for 5.8 ≤ SNR ≤ 14 dB, etc. The cor-

responding FEC OHs obtained via (2) are shown in Fig. 7. This

figure also shows the optimum minimum and maximum OH
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Fig. 8. Achievable rates (GMI) for a BW receiver with SD-FEC. The black
diamonds show the SNR values where the modulation size should be changed.
The channel capacity in (19) and the crossing points of the achievable rates for
HD-FEC (asterisks) taken from Fig. 6 are also shown for comparison.

values for each modulation format as well as the SNR required

for QPSK with 7% FEC OH (green pentagon).

When the BW receiver operates with SDs, and if the code

bits are independent, an achievable rate is given by the GMI [7,

eq. (4.55)], [10, eq. (13)], [11, eq. (25)]

GMI =

m
∑

k=1

I(Bk ;Y ) =

m
∑

k=1

I(Bk ;Lk ) (21)

where the second equality holds if the LLRs are calculated

via (3) and where I(Bk ;Lk ) is the MI between the code bits

and LLRs before FEC decoding. The three achievable rates

considered above (MI, (20) and (21)) are schematically shown

in Fig. 1.

Fig. 8 shows the GMI in (21) for different constellations.

Similarly to the achievable rates for HD-FEC, the GMI curves

cross each other (see black diamonds).6 Although this effect

is less noticeable, the theoretical implications are the same:

different SNRs call for different modulation sizes and FEC OH.

In Fig. 8, we also show (with asterisks) the crossing points

of the achievable rates for HD-FEC taken from Fig. 6. We do

this to emphasize that if SD-FEC is considered instead of HD-

FEC, different (higher) SNR thresholds are obtained. This is

also visible in Fig. 9, where the optimum FEC OHs for SD-

FEC are shown. The results in Figs. 8 and 9 have been recently

experimentally studied in [50] and [51].

C. Routing and Wavelength Assignment Problem

The routing and wavelength assignment problem is solved

numerically as an integer linear programming (ILP) problem

as described in [40, Sec. 4.1]. In particular, we maximize

the network throughput in (16) (i.e., under a uniform traffic

demand), where C
(l)
s,d are assumed to be given by the capacity

6We again emphasize that this is only due to the fact a suboptimal receiver is
considered. MI curves, on the other hand, do not cross each other for M QAM
constellations, which has been known for many years (see, e.g., [48, Fig. 2],
[49, Fig. 1]).

Fig. 9. OHs obtained from the achievable rates in Fig. 8 for a BW receiver
with SD-FEC. The black diamonds show the SNR values where the modulation
size should be changed and the corresponding FEC OH. The channel capacity
in (19) is shown for comparison. The SNR required for QPSK with 7% FEC
OH (SNR7% ) is also shown with a green pentagon.

function C in (19). The ILP solution provides the number of

active light paths and their routes between each node pair. From

this, the total number of active light paths in the network is

obtained. This solution also provides the SNR of each active

light path.

The SNR values obtained by solving the ILP problem for

the three network topologies in Figs. 2–4 are shown in Fig. 10.

The vertical bars show the number of transceivers that need to

be installed to maximize the network throughput. The number

of (two-way) transceivers for the DTG, NSF, and DTG networks

are 1230, 1094, and 570, respectively.

The vertical bars in Fig. 10 can be interpreted as the

distribution of SNR across the network. By comparing these

distributions, it is clear that the average SNRs across the net-

work decreases as the size of the network increases. This is due

to the presence of long links in continental and transcontinental

networks (NSF and GB4). The SNR distributions in Fig. 10

also show that the spread of the SNR values is much larger

for large networks. While for the DTG network, the variation

in SNR is about 10 dB, for the GB4 network, this variation is

about 20 dB.

Once the SNR values for the active light paths are found,

the maximum network throughput can be calculated via (16).

In particular, the SNRs of the light paths shown in Fig. 10 are

first grouped for each source destination pair. Then, the SNRs

are “mapped” to throughputs via (19), and the value of Cs,d is

obtained via (5). The resulting throughputs are 524, 278, and

88 Tb/s, for the DTG, NSF, and GB4 networks, respectively.

These throughput values are shown in the first columns of

Table II together with the number of transceivers for each

network.

D. Ideal FEC

The results in the previous section assume all the transceivers

can achieve the capacity of the AWGN channel. This is never
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Fig. 10. Number of transceivers (vertical lines with triangles at the top) for all SNR values for the three network topologies in Figs. 2–4. These values are
obtained by assuming all transceivers can achieve the capacity C in (19). The horizontal lines show the SNR ranges in which different formats should be used. As
in Figs. 7 and 9, asterisks and diamonds represent the SNR thresholds for HD- and SD-FEC, resp. The SNR thresholds for QPSK with 7% OH are also shown
with green pentagons.

TABLE II
OPTIMUM NUMBER OF TRANSCEIVERS AND NETWORK THROUGHPUT Θ (IN

TB/S) UNDER IDEALISTIC ASSUMPTIONS ON CODING AND MODULATION

Network Throughput Θ (in [Tb/s])

Network Nodes

N
Transceivers Maximum

(Capacity-based)

Ideal

HD-FEC

Ideal

SD-FEC

DTG 9 1230 524 431 489

NSFNET 14 1094 278 217 255

GB4 12 570 88 64 81

the case in practice as it requires the use of continuous constella-

tions. In this section we consider the case where all transceivers

can choose any of the MQAM constellations considered in

this paper. Although more practically relevant, we assume the

code rate Rc can be adjusted continuously, which is again never

the case in practice. Nevertheless, the results in this section can

be used to estimate the penalty caused by the use of discrete

(and square) constellations.

The selection of code rate and modulation format is assumed

to be based on the achievable rates discussed in Section IV-B.

This idea is shown schematically in Fig. 10, where horizontal

lines with different colors are included. These lines show the

SNR ranges where different modulation formats should be used

(lines with diamonds for SD-FEC and lines with stars for HD-

FEC) and are obtained from Figs. 9 and 7.

To obtain the throughput achieved by ideal HD- and SD-FEC,

we again use (16) and follow similar steps to those used in Sec-

tion IV-C. Namely, the SNRs of the light paths (shown in Fig. 10

and obtained from the ILP solution) are first grouped for each

source destination pair and the SNRs are then “mapped” to

throughputs via the achievable rates discussed in Section IV-B.

The network throughputs obtained for HD-FEC, are 431, 217,

and 64 Tb/s, for the DTG, NSF, and GB4 networks, respec-

tively. For SD-FEC, these values become 489, 255, and 81 Tb/s.

These throughput results are shown in the last two columns

of Table II.

The results in Table II show that, when compared to the max-

imum throughput obtained via the AWGN capacity assumption

(fourth column in Table II), the use of ideal SD-FEC causes

a relative throughput decrease of 9%, 8%, and 7%, for the

DTG, NSF, and GB4 networks, respectively. This indicates

a relatively constant loss across different network topologies.

On the other hand, the use of ideal HD-FEC causes relative

losses of 18%, 22%, and 27%. These results show an increas-

ing loss as the network size increases, which in turn shows

the importance on considering SD-FEC for large networks. We

conjecture that these increasing losses are due to the different

shape of the “envelopes” of the crossing achievable rates in

Figs. 6 and 8.

When compared to SD-FEC, HD-FEC codes are typically low

complexity and low latency. On the other hand, for the same

SNR, HD-FEC codes need higher OH to operate error free,

which causes a throughput loss. The relative throughput losses

are approximately 12%, 15%, and 20% for the DTG, NSF, and

GB4 networks, respectively. This indicates that low complexity

and latency can be traded by a 10–20% loss in throughput and

that the use SD-FEC becomes more and more important as the

network size increases.

V. PRACTICAL SCHEMES

Due to the continuous code rate assumption, the through-

puts in the last two columns of Table II are only upper bounds

that cannot be achieved in practice. In this section we discuss

practically relevant alternatives.

A. QPSK With 7% FEC OH

Probably the simplest (and most popular) alternative in terms

of coding and modulation for an optical network is to consider

QPSK and a fixed FEC OH of 7% across the network. In this

case, if the SNR of a given light path is below the required SNR

for QPSK with 7% OH, the light path will not be used. If the

SNR is above the threshold, then the available throughput in

the lth light path C
(l)
s,d will be given by the SE in (1) times the
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symbol rate. The total available throughput (in [Tb/s]) in (10) is

then given by

C
(l)
s,d =

⎧

⎪

⎨

⎪

⎩

0.128

1.07
, if SNR

(l)
s,d ≥ SNR7%

0, otherwise

(22)

where SNR
(l)
s,d is the SNR of the lth light path and SNR7% is

the SNR required for QPSK with 7% OH (shown with green

pentagons in Figs. 7, 9, and 10).

The total network throughput in (16) (in Tb/s) is then

Θ = N(N − 1) ·
0.128

1.07
min

s,d∈N
d �=s

L s , d
∑

l=1

I
[SNR

( l )
s , d ≥SNR7 % ]

(23)

where I[ν ] is an indicator function, i.e., I[ν ] = 1 if ν is true, and

I[ν ] = 0 otherwise.

The SNR threshold SNR7% in (23) is different for HD- and

SD-FEC, and thus, the resulting throughputs might also be dif-

ferent. However, for both the DTG and NSF networks, all the

light path SNRs are above both thresholds, and thus, the total

network throughput in (23) is

Θ = N(N − 1) ·
0.128

1.07
min

s,d∈N
d �=s

{Ls,d}. (24)

The minimum number of light paths for any source destination

pair for the NTG and NSF networks are 14 and 4, respectively,

which combined with the number of nodes in the network, give

throughputs of 120 and 87 Tb/s.

For QPSK and 7% FEC OH, SD offers a theoretical max-

imum sensitivity increase of about 1.15 dB.7 However, for

the DTG and NSF networks, there is no difference between

HD and SD in terms of network throughput as the minimum

SNR of all light paths is above the SNR threshold. This re-

sult highlights the fact that under these conditions and traffic

assumptions, upgrading all transceivers from HD to SD FEC

without changing the OH might not bring any benefit for small

networks.

When the GB4 network is considered, however, most of the

light paths are in fact below the SNR required for QPSK with 7%

OH (see Fig. 10). For this case, the network throughput given

by (23) is in fact zero. This can be intuitively explained by the

fact that there are node pairs that are very far apart, and thus,

the uniform throughput constraint and full network connectivity

cannot be satisfied.

B. Single-Modulation Schemes

As an alternative to the QPSK with 7% FEC OH approach,

in this section we consider two approaches, both of them based

on the approach that only one modulation format should be

implemented across the network.

The first scheme assumes all transceivers implement one

modulation format and one code rate. We call this scheme

7This can be obtained by comparing the green pentagons for HD and SD FEC
in Figs. 7 and 9.

1Rc1M . In this scheme, the code rate is chosen such that

the network throughput (based on achievable rates) is maxi-

mized. The results obtained for 1Rc1M are shown in Fig. 11

with red triangles for HD-FEC and with blue triangles for

SD-FEC. The top figure shows network throughput, while the

bottom ones show optimum code rates. The different networks

under consideration are shown from left to right. In the through-

put results, we also include the ideal network throughputs in

Table II (solid horizontal lines) as well as the results obtained

with QPSK and 7% FEC OH from Section V-A (green pen-

tagons).

The results in Fig. 11 show that for HD-FEC and 1Rc1M ,

there is always a modulation format that is optimum: M = 64
for DTG, M = 16 for NSF, and M = 4 for GB4. Nevertheless,

for both HD- and SD-FEC, the gains obtained (with respect to

QPSK with 7% OH) by using 1Rc1M are quite large. Inter-

estingly, the optimum code rates for HD-FEC and 1Rc1M are

Rc ≈ 0.8 for DTG, Rc ≈ 0.62 for NSF, and Rc ≈ 0.56 for GB4

(24%, 61% and 79% FEC OH, respectively). This indicates a

clear potential benefit of using large FEC OH when HD-FEC is

used in a network context and where the modulation format is

fixed across the network.

When it comes to 1Rc1M with SD-FEC, the optimality of a

given modulation format is less clear, as the throughput curves

in this case do not have a clear peak. This is due to the fact

that the crossings between the GMI curves is not as pronounced

as the crossings for HD-FEC. Nevertheless, by observing the

trend of the curves, a good compromise would be to choose

the same modulation formats as for HD-FEC, i.e., M = 64 for

DTG, M = 16 for NSF, and M = 4 for GB4. In this case, the

corresponding optimum code rates are Rc ≈ 0.89, Rc ≈ 0.75,

and Rc ≈ 0.68 (12%, 33% and 47% FEC OH, respectively). In

general, the optimum code rates in this case are slightly higher

than the ones for HD-FEC. The gains of SD-FEC over HD-FEC

in this case are approximately 50 Tb/s for the DTG and NSF

networks. On the other hand, only small gains are observed for

the GB4 network.

As mentioned before, the throughput for QPSK with 7%

FEC OH for the GB4 network is zero. On the other hand,

for this network, 1Rc1M gives throughputs of about 20 Tb/s.

This is obtained by using QPSK and an increased OH. This

result highlights the need to consider high FEC OH in large

networks.

The second scheme we consider in this section is called

2Rc1M . In this case, the transceivers operate with one mod-

ulation format but with two code rates. Again, the code rates are

optimized so that the network throughput is maximized.

The results obtained for 2Rc1M are shown in Fig. 11 with

circles (red for HD-FEC and blue for SF-FEC). These results

show that, regardless of the network under consideration, half

of the gap between the ideal FEC limit (horizontal lines) and

the throughput obtained by 1Rc1M can be harvested by using

an extra code rate. These results highlight the advantage of

adapting the code rate to the variable channel conditions across

the network. These results also show that for both SD- and HD-

FEC, the penalty with respect to the ideal case is about 85%,

75%, and 53 − 56%, for DTG, NSF, and GB4, respectively.
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Fig. 11. Throughput (top row) and optimum code rate (bottom row) for one M schemes, for both HD-FEC (red) and SD-FEC (blue), and for the three network
topologies in Figs. 2–4. The throughput results obtained with QPSK and 7% FEC OH in Section V-A are also shown with green pentagons.

This suggests that a good complexity-performance tradeoff can

be obtained by using one modulation format and two code rates

for national and continental networks, while for transcontinental

networks, more code rates should be used.

C. Variable-Modulation Schemes

In this section we consider a design strategy where the mod-

ulation format is variable. In particular, we assume all the

transceivers can choose any modulation format in between

QPSK and a given maximum value of M , which we denote by

M̂ . For example, if M̂ = 64, then the transceivers can choose

from M = 4, M = 16 and M = 64.

The first scheme we consider assumes only one code rate is

implemented across the network, and that the code rate is op-

timized to maximize the network throughput. We denote this

scheme 1RcVarM . The results obtained using this scheme are

shown in Fig. 12 (squares) and indicate that, in general, constel-

lation sizes beyond 256QAM give little throughput increases

(the throughput curves flatten out for large values of M̂ ).

Figs. 13 and 14 show the percentage of transceivers using dif-

ferent modulation formats for 1RcVarM , for HD- and SD-FEC,

respectively, and for M̂ = 16, 64, 256. The value in the middle

of each chart is the total throughput obtained. The general trend

in these results is that QPSK (green) is only useful in the very

large network (GB4). These results also show that, considering

256QAM (light blue) gives very little throughput increases for

the NSF and GB4 networks, for both HD- and SD-FEC. On the

other hand, 256QAM gives a relevant throughput increase for

the DTG network.

To compare the throughput contribution of different modu-

lation formats for 1RcVarM , we show in Fig. 15 the obtained

throughputs for both HD- and SD-FEC. Apart from showing

the relative contributions, this figure also shows how the con-

tributions change when SD-FEC is considered instead of HD-

FEC. The throughput gains due to SD-FEC are also clearly

visible.

The results in Figs. 12–15 show that 1RcVarM gives similar

throughput results to those obtained by 2Rc1M (two code rates

and one modulation format) shown in Fig. 11. This indicates that

similar (large) gains, can be obtained by having either multiple

code rates or multiple modulation formats.

The second scheme we consider in this section is one where

two code rates are implemented across the network (and the

modulation can be varied too). We call this scheme 2RcVarM .

The results are shown with plus-circles in Fig. 12. These results

indicate that including a second code rate gives a clear advantage

with respect to 1RcVarM (squares). This gain is particularly

visible for large values of M̂ and large networks. In particular,

for the GB4 network and M̂ = 256, the gains are approximately

15 Tb/s for both HD- and SD-FEC.

We conclude this section by comparing the optimal code

rates of two-rate versus the one-rate schemes. In particular, we

observe from Figs. 11 and 12 that the smallest code rate for
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Fig. 12. Throughput (top row) and optimum code rate (bottom row) for variable M schemes, for both HD-FEC (red) and SD-FEC (blue), and for the three
network topologies in Figs. 2–4. The throughput results obtained with QPSK and 7% FEC OH in Section V-A are also shown with green pentagons.

Fig. 13. Percentage of transceivers using different modulation formats for the optimal HD-FEC solution (for 1Rc VarM ) and the three network topologies. The

results are shown for different maximum constellation sizes M̂ .



2350 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 9, MAY 1, 2016

Fig. 14. Percentage of transceivers using different modulation formats for the optimal SD-FEC solution (for 1Rc VarM ) and the three network topologies. The

results are shown for different maximum constellation sizes M̂ .

Fig. 15. Network throughput for 1Rc VarM for HD-FEC (red lines with
squares) and SD-FEC (blue lines with squares) as a function of the maximum
constellation size for the three network topologies in Figs. 2–4. The colors
represent the throughput contribution from the different modulation sizes. The
lines with markers are the network throughput shown in Fig. 12.

the two-rate schemes is always quite close to the optimal code

rate of the corresponding one-rate scheme. The intuition behind

this is that when the transmitters are equipped with two code

rates, one low code rate can be used for the worst performing

connection, while the other rate is used to increase the overall

network throughput.

VI. CONCLUSION

Optimal constellation sizes and FEC OHs for optical networks

were studied. Joint optimization of the constellation and FEC

OHs was shown to yield large gains in terms of overall network

throughput. The optimal values were shown to be dependent on

the SNR distributions within a network. Two code rates and a

single constellation (which varies as a function of the network

size) gave a good throughput-complexity tradeoff.

In this paper, we studied the problem from the point of view of

largest achievable rates. Practical FEC implementations, how-

ever, will operate a few decibels (or fractions of decibels) away

from these achievable rates. Extra penalties are also expected

from the use of high-order modulation formats. However, if

these penalties are known a priori, the methodology used in

this paper can be straightforwardly used to consider practical

codes and practical implementations of high-order modulation

formats. This is left for future investigation.
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