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Abstract: The recent LHCb angular analysis of the exclusive decay B → K∗µ+µ− has

indicated significant deviations from the Standard Model expectations. Accurate predic-

tions can be achieved at large K∗-meson recoil for an optimised set of observables designed

to have no sensitivity to hadronic input in the heavy-quark limit at leading order in αs.

However, hadronic uncertainties reappear through non-perturbative ΛQCD/mb power cor-

rections, which must be assessed precisely. In the framework of QCD factorisation we

present a systematic method to include factorisable power corrections and point out that

their impact on angular observables depends on the scheme chosen to define the soft form

factors. Associated uncertainties are found to be under control, contrary to earlier claims

in the literature. We also discuss the impact of possible non-factorisable power corrections,

including an estimate of charm-loop effects. We provide results for angular observables

at large recoil for two different sets of inputs for the form factors, spelling out the dif-

ferent sources of theoretical uncertainties. Finally, we comment on a recent proposal to

explain the anomaly in B → K∗µ+µ− observables through charm-resonance effects, and

we propose strategies to test this proposal identifying observables and kinematic regions

where either the charm-loop model can be disentangled from New Physics effects or the

two options leave different imprints.
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1 Introduction

Since many years, radiative transitions b → sγ(∗) have been considered as very powerful

probes of physics beyond the Standard Model (SM). These Flavour-Changing Neutral

Currents (FCNC) are only mediated by loops in the Standard Model and thus exhibit a

quantum sensitivity to New Physics (NP). Recently the exclusive decay B → K∗µ+µ−

has come to prominence, as the latest LHCb angular analysis [1, 2] suggests significant

deviations from the Standard Model, most notably in the observables P ′5 [3] and P2 [4, 5]

in the region of large hadronic recoil. Within the model-independent effective Hamiltonian

approach (summarised for instance in ref. [6]), it has been shown in ref. [7] that such

deviations can be easily accommodated in the presence of short-distance NP contributions

to the semileptonic operator O9, reducing the size of the Wilson coefficient C9 by 25% with

respect to the SM prediction.
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Several later studies have reached similar conclusions from B → K∗µ+µ− data, using

different observables [8] and/or statistical methods [9], with possible interpretations in

terms of Z ′ models1 [7, 8, 18–21]. Interestingly, a recent lattice study of B → K∗µ+µ−

and Bs → φµ+µ− form factors [22, 23] confirms the same trend using different observables

(branching ratios rather than angular observables) and in a different kinematic regime

(low rather than large hadronic recoil). The need for NP contributions to other operators,

and in particular to the chirality-flipped semileptonic operator O′9, is currently debated

depending on the subset of observables and bins chosen and the input for hadronic form

factors [7–9, 23, 24]. Another issue currently debated is the exact role of long-distance cc̄

loops, for which only partial estimates exist [25], pushing in the opposite direction to LHCb

data, i.e. making the anomaly more severe [7]. A comparison of BES data on σ(e+e− →
hadrons) [26] and the B+ → K+µ+µ− dimuon spectrum [27] suggests that non-factorisable

corrections above the cc̄ threshold are very large [28]. Dispersive approaches have been used

to exploit this information and to estimate the effects in B → K∗µ+µ− [28], but it remains

unclear how reliable these methods are in reconstructing the needed real and imaginary

parts of the cc̄ loop function (including all long-distance effects) at low recoil, as well as its

extrapolation to the large-recoil region (see appendix for further discussion).

A usual problem in quark flavour physics is the precise estimation of hadronic uncer-

tainties, necessary for a correct comparison between theory and data. Reliable constraints

on short-distance Wilson coefficients depend on that premise, as well as the statistical as-

sessment of deviations potentially related to NP. This can only be achieved if long-distance

effects, encoded for example in hadronic form factors, are sufficiently under control. Al-

though calculations with different non-perturbative methods are available, e.g., light-cone

sum rules (LCSR) at large recoil and lattice QCD at low recoil, they have not yet reached

an accuracy matching the experimental measurements. In addition, as decay amplitudes

combine different form factors (in their canonical definition from B → K∗ vector and ten-

sor matrix elements), the absence of proper assessment of correlations among the different

form factors can lead to a significant enhancement in the uncertainties of SM predictions

of B → K∗ decay amplitudes, and thus of the decay rate and its angular coefficients.

A fruitful approach to this problem has consisted in identifying observables built as

suitable combinations of angular coefficients, where hadronic uncertainties cancel to a large

extent (so-called form-factor independent or optimised observables). A guiding principle

has been the use of effective theories (QCD factorisation/Soft Collinear Effective Theory

at large recoil, Heavy Quark Effective Theory at low recoil) [29–31], allowing one to sep-

arate hard physics (occurring at scales around mb) and soft physics (around and below

ΛQCD) through an expansion of the form factors in Λ/mb. The B → K∗ decay ampli-

tudes and related angular coefficients can be analysed through similar expansions, based

on the factorisation of the seven QCD form factors in terms of only two soft form factors

ξ⊥ and ξ|| [29, 32, 33]. In this context, form-factor-independent observables are defined

1Such a model would also have an impact on purely hadronic B and Bs decays. It could explain the

tension in ∆ACP in B → πK decays and lead to a large enhancement above the SM expectations of the

branching ratios of the purely isospin-violating decays Bs → φπ and Bs → φρ [10, 11]. The anomaly has

also been addressed in the context of other NP models [8, 12–16] and within MFV [17].
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as observables where the soft form factors cancel at leading order of the effective theory

for the kinematic regime of interest (low or large K∗ recoil). This has led for instance to

the transverse asymmetries A
(i)
T [4, 34–36] and later to the observables P

(′)
i [3, 5] at large

K∗ recoil.2 It was shown that a clever choice of observables could drastically reduce the

sensitivity to hadronic inputs and enhance the sensitivity to New Physics [39].

Beyond leading order the above-mentioned decomposition of the seven QCD form

factors in terms of two soft form factors receives αs corrections (coming from hard-gluon

exchanges) and 1/mb power corrections (due to soft-gluon exchanges) [29, 33]. In the

QCD factorisation analysis of B → K∗µ+µ− at large recoil [30], where amplitudes are

expressed in terms of Wilson coefficients and soft form factors, these corrections to the

relation between QCD and soft form factors manifest themselves as so-called factorisable

corrections. The QCD factorisation analysis of the B → K∗µ+µ− amplitudes leads to

further αs and 1/mb corrections called non-factorisable corrections, which are not related

to form factors, for instance those coming from four-quark operators that can be inserted

in the B → K∗µ+µ− decay (forming a cc̄ pair decaying into a dimuon pair).

A first approach to predict B → K∗µ+µ− observables in the large-recoil region is naive

factorisation, using the seven full (QCD) form factors for the three operators O7 (electro-

magnetic), O9 and O10 (semileptonic), but neglecting effects from four-quark operators

beyond their high-energy contribution accounted for by the effective Wilson coefficients

Ceff
7,9 (see refs. [6, 40] for the definition of the operators and Wilson coefficients). If the form

factors are computed fully non-perturbatively, predictions obtained in this way include

factorisable αs and 1/mb power corrections to all orders. The method can be extended be-

yond naive factorisation by adding perturbative O(αs) corrections to the contribution from

four-quark operators within the framework of QCD factorisation [30], as in ref. [6]. These

corrections rely on the factorisation of matrix elements of hadronic operators at the leading

power in a (Λ/EK∗ ,Λ/mb) expansion. Contributions from four-quark operators at sublead-

ing power are not known and must be estimated. We will refer to these contributions as

non-factorisable power corrections. As a downside of this approach, the form factor depen-

dence does not cancel analytically in optimised observables, and in order to obtain accurate

predictions it is crucial to know precisely the correlations among the uncertainties of the

different form factors. In practice, however, LCSR results are usually presented without

specifying the correlations among the various form factors. Moreover, while in principle

parametric correlations originating from the hadronic inputs can be traced back easily,

more sophisticated intrinsic correlations (e.g., the dependence on the Borel parameter) are

hard to pin down.

A second approach consists in factorising the QCD form factors using effective field

theory methods [29, 32, 33]. In this approach, correlations among the seven QCD form

factors are to a large extent accounted for by their expression in terms of the two soft

form factors ξ⊥ and ξ||. At leading order in αs (and at leading 1/mb power) this leads to

an analytic cancellation of form factors within optimised observables. Hence this method

2Similar observables can be built at low recoil [37–39], but the structure of the form-factor relations is

different due to the different effective theory holding in this kinematic regime.
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enables one to obtain precise predictions even in the absence of a precise knowledge on the

correlations among the form factors. The dependence on form factors obviously reappears

through (factorisable and non-factorisable) corrections to the leading-order results, either

via (perturbative and calculable) O(αs)- or (non-perturbative) O(Λ/mb)-corrections to

the factorisation formula for QCD form factors. The fact that the dominant errors from

form factors are suppressed in form-factor independent observables by one power of αs or

Λ/mb makes these observables quite sensitive to subleading Λ/mb power corrections (either

factorisable or non-factorisable).

In order to determine the significance of the deviations in B → K∗µ+µ− with respect

to the Standard Model, it appears thus essential to estimate the size of the Λ/mb power

corrections. While an estimate of factorisable corrections is needed to get a reliable predic-

tion from the second method, non-factorisable corrections have to be considered in both

approaches. Non-factorisable power corrections cannot be computed from first principles,

but factorisable ones can be extracted from QCD form factors by separating the contribu-

tion from soft form factors. This issue was discussed recently in ref. [41], suggesting that

factorisable power corrections estimated in this way would imply substantial hadronic un-

certainties on B → K∗µ+µ− observables, much larger than what was found in other works.

The present paper aims at reassessing these claims, showing that these large uncertainties

are largely due to peculiar choices in the analysis method used in ref. [41] and are not a

consequence of the theoretical information currently available on B → K∗ form factors.

The paper is organized as follows. We begin in section 2 by describing the decom-

position of QCD form factors in terms of soft form factors, including perturbative and

power corrections, and discussing the role of the renormalisation scheme. In section 3

we describe our approach to factorisable power corrections, leading to our estimates for

power correction parameters and their uncertainties. We then discuss the impact of these

power corrections in the binned observables, and the scheme dependence. In section 4 we

briefly discuss our approach to non-factorisable power corrections, which differs from the

popular procedure [35] of multiplying each amplitude with a complex factor. In section 5

we present our final results for binned B → K∗µ+µ− observables. We conclude in sec-

tion 6. Appendix A addresses the issue of long-distance cc̄ loops proposing different tests

of the mechanism advocated in ref. [28] to explain the B → K∗µ+µ− anomaly within the

SM. A specific B → K∗µ+µ− observable is discussed where the advocated charm-loop

contribution cannot mimic New Physics below the J/ψ resonance, whereas two other tests

are proposed to distinguish between SM long-distance effects and NP short-distance con-

tributions. Appendix B summarises the factorisable perturbative corrections used in the

renormalisation schemes considered for our study and appendix C collects SM predictions

for other B → K∗µ+µ− observables of interest.

2 Soft form factors

The evaluation of matrix elements for the decay B → K∗µ+µ− involves seven non-

perturbative form factors V,A0,1,2, T1,2,3 (see ref. [29] for definitions). LCSR calculations

of these form factors suffer from large uncertainties originating from hadronic parameters,
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and moreover rely on certain assumptions (modelling the continuum contribution, fixing

the Borel parameter, etc.) introducing systematic uncertainties that are difficult to quan-

tify. For a precise analysis of the decay B → K∗µ+µ− it is thus desirable to reduce the

sensitivity to the form factors as much as possible. To this end one can make use of the

fact that in the symmetry limit of large K∗ energies, i.e. for small invariant masses q2 of

the lepton pair, the seven QCD form factors V,A0,1,2, T1,2,3 reduce to two independent soft

form factors ξ⊥,‖, up to corrections of order O(αs) and O(Λ/mb). A completely general

parametrisation for the QCD form factors V,A1,2,0, T1,2,3 including all perturbative and

non-perturbative corrections is given by

V (q2) =
mB +mK∗

mB
ξ⊥(q2) + ∆V αs(q2) + ∆V Λ(q2) ,

A1(q2) =
2E

mB +mK∗
ξ⊥(q2) + ∆Aαs

1 (q2) + ∆AΛ
1 (q2) ,

A2(q2) =
mB

mB −mK∗

[
ξ⊥(q2)− ξ‖(q2)

]
+ ∆Aαs

2 (q2) + ∆AΛ
2 (q2) ,

A0(q2) =
E

mK∗
ξ‖(q

2) + ∆Aαs
0 (q2) + ∆AΛ

0 (q2) , (2.1)

T1(q2) = ξ⊥(q2) + ∆Tαs
1 (q2) + ∆TΛ

1 (q2) ,

T2(q2) =
2E

mB
ξ⊥(q2) + ∆Tαs

2 (q2) + ∆TΛ
2 (q2) ,

T3(q2) =
[
ξ⊥(q2)− ξ‖(q2)

]
+ ∆Tαs

3 (q2) + ∆TΛ
3 (q2) ,

with ∆Fαs representing QCD corrections induced by hard gluons, and ∆FΛ representing

soft power corrections of order O(Λ/mb). Even though these corrections are expected to

be small compared to the current hadronic uncertainties of the QCD form factors, they

play an important role in the study of optimised observables as they break the exact sym-

metry relations and therefore reintroduce a form factor dependence at order O(αs,Λ/mb).

While QCD corrections ∆Fαs can be taken into account using results calculated within

the framework of QCD factorisation [29], the inclusion of soft power corrections ∆FΛ is

not straightforward, since no first-principle calculation of these quantities exists.

On the other hand, LCSR determinations of the QCD form factors V,A1,2,0, T1,2,3

include all factorisable power corrections. Therefore as long as one is not interested in

an explicit decomposition of the form factors into a soft contribution and power correc-

tions, one can directly use the LCSR results as input for the form factors appearing in the

naively factorised expressions for the amplitudes. In order to obtain precise predictions for

observables involving QCD form factors, it is essential to assess properly all correlations

among the errors of the different form factors within the LCSR calculation. The decom-

position (2.1), on the other hand, if supplemented by a realistic estimate regarding the

size of the O(Λ/mb) corrections ∆FΛ, takes into account the major part of correlations

among the form factors by representing them in terms of the two soft form factors ξ⊥,‖.
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Therefore as long as the correlations among the LCSR form factors are not accessible or

are not known to the same degree as they can be inferred from eq. (2.1), making use of

the soft form factor decomposition is very convenient in order to obtain precise results for

angular observables in the decay B → K∗µ+µ−.

The separation of the form factors V,A1,2,0, T1,2,3 into soft form factors ξ⊥,‖ and per-

turbative/power corrections ∆Fαs,Λ in eq. (2.1) is not unique as one can always redefine

ξ⊥,‖ in such a way that these corrections are partly absorbed. In order to unambiguously

define the soft form factors ξ⊥,‖ (and thus the terms ∆Fαs,Λ ), one first has to fix a renor-

malisation scheme, i.e. define the ξ⊥,‖ in terms of the physical form factors V,A1,2,0, T1,2,3.

A popular definition for ξ⊥, used for example in refs. [6, 29, 39], is

ξ
(1)
⊥ (q2) ≡ mB

mB +mK∗
V (q2). (2.2)

where the superscript refers to the scheme thus defined. This definition eliminates all

corrections to the form factor V leading to ∆V αs(q2) = ∆V Λ(q2) = 0. Alternatively one

can define a second scheme for ξ⊥, in terms of T1,

ξ
(2)
⊥ (q2) ≡ T1(q2), (2.3)

eliminating in this way ∆Tαs
1 (q2),∆TΛ

1 (q2). This choice of scheme has been applied in

refs. [41, 43], being quite convenient when extracting T1(0) from experimental data on

B → K∗γ. Note, however, that extracting T1(0) from B → K∗γ relies on the assumption

that there is no new physics in the Wilson coefficients C7 and C ′7. Furthermore, the

T exp
1 (0) determined in this way can be identified with the form factor T1(0) only up to

corrections of order O(Λ/mb), stemming from four-quark operators (e.g., cc̄ loops). These

non-factorisable power corrections can neither be computed nor extracted from the QCD

factorisation prediction for B → K∗γ. Therefore, identifying T exp
1 (0) with T1(0) amounts

to including unknown non-factorisable power corrections into T1. Hence it cannot be used

consistently as input in our approach to determine the factorisable O(Λ/mb)-corrections,

and we will instead infer T1 from LCSR calculations.

The soft form factor ξ‖ can be defined as

ξ
(1)
‖ (q2) ≡ mB +mK∗

2E
A1(q2) − mB −mK∗

mB
A2(q2), (2.4)

as done for example in refs. [6, 39, 43]. This definition minimises power corrections in

the form factors A1,2 by correlating ∆Aαs
1 (q2),∆AΛ

1 (q2) with ∆Aαs
2 (q2) and ∆AΛ

2 (q2). An

alternative scheme applied in ref. [29] is given by

ξ
(2)
‖ (q2) ≡ mK∗

E
A0(q2). (2.5)

The choice of scheme determines which part of the O(αs,Λ/mb) corrections will be

absorbed into ξ⊥,‖ and which part will remain in the functions ∆Fαs,Λ. The perturbative

corrections ∆Fαs can be computed explicitly in each scheme, as illustrated in appendix B.

If one had full control on the power corrections ∆FΛ (including correlations among their

– 6 –
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errors), physical quantities would not depend on the choice of scheme for the soft form

factors at O(αs).
3 On the other hand, as long as information on the ∆FΛ is not available or

only available in part (for example because correlations cannot be assessed), predictions for

observables will exhibit a scheme dependence at O(Λ/mb). In this situation a proper choice

of scheme can increase the precision of the theoretical prediction. Assume for example that

a certain observable is dominated by the form factor V . Obviously a prediction employing

scheme 1 for ξ⊥ where V is directly taken as input will be more accurate in this case than

a prediction relying on scheme 2 where V is obtained as a sum of T1 and an unknown (or

only partially known) power correction ∆V Λ. This also depends on the relative size of

the LCSR uncertainties in V and T1. If T1 is known much more precisely, and the total

uncertainty in V is larger than expected power corrections, scheme 2 might be preferred

in this case. The general statement is the following: different schemes lead to different

uncertainties, and for each observable there is a preferred scheme where uncertainties are

minimised.4

Different choices of the renormalisation scheme correspond to a reshuffling between

soft form factors and power corrections. This choice affects the pattern of cancellation of

power corrections when one considers clean observables. Indeed, since the soft form factors

ξ⊥,‖ cancel at leading order in clean observables, any power correction absorbed into the

soft form factors according to the chosen renormalisation scheme will undergo a similar

cancellation, so that it can contribute only at order O(αs,Λ/mb) × O(Λ/mb) (the second

factor coming from the power correction itself). On the other hand, the power corrections

that are kept explicitly in ∆FΛ contribute at O(Λ/mb) and their size must be assessed.

Therefore the choice of the renormalisation scheme is crucial when one wants to determine

how power corrections will affect clean observables.

In figure 1 we show the leading-power predictions for the observable S5 [6], and the

optimised observable P ′5 [3] in two different schemes: (ξ
(1)
⊥ , ξ

(1)
‖ ) defined from (V,A1, A2),

and (ξ
(2)
⊥ , ξ

(2)
‖ ) defined from (T1, A0). As input we have used the LCSR form factors from

ref. [25]. The observable S5 indeed exhibits the expected scheme dependence which can be

considered as a measure of O(Λ/mb) power corrections. The observable P ′5, on the other

hand, shows only a very mild scheme dependence because the soft form factors cancel at

leading order pushing the scheme dependence to O(αs). In addition we show the prediction

which one would obtain using uncorrelated QCD form factors without resorting to the soft

form factor decomposition.

3 Factorisable power corrections

Even though no direct calculation of the factorisable power corrections ∆FΛ exists, the fact

that they are included in LCSR determinations of the QCD form factors allows for their

estimation. One studies to which extend the full LCSR form factors violate the (∆Fαs-

3There is still a small residual scheme dependence at O(Λ/mb) introduced by non-factorisable power

corrections.
4Of course, for some observables different schemes might lead to very similar uncertainties; in these cases

the choice of scheme has no impact.
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Figure 1. Scheme dependence in the prediction of the observables S5 and P ′5. Power corrections

are set to zero and uncertainties are solely due to form factors. Gray bands correspond to scheme 1

(V,A1, A2), blue (solid) boxes to scheme 2 (T1, A0), and red (dashed) boxes to the full-form-factor

approach with no correlations. Form factor input is taken from ref. [25] in all cases.

corrected) symmetry relations (2.1) and attributes these deviations to the ∆FΛ, which

then can be determined from a fit. This basic strategy has been proposed and applied for

the first time in ref. [41]. In our analysis we modify the approach of ref. [41] and go beyond

it in several aspects. In the following we will specify our method in detail pointing out the

differences with respect to ref. [41].

3.1 General approach

Following ref. [41] we parametrise the unknown soft power corrections ∆FΛ as a polynomial

in q2/m2
B,

∆FΛ(q2) = aF + bF
q2

m2
B

+ cF
q4

m4
B

+ . . . , (3.1)

and perform a fit of the resulting form factor representation (2.1) to the QCD form factors

from LCSR, using central values for the latter. In ref. [41] this fit was performed to first

order in q2/m2
B and the result âF , b̂F was interpreted as an order-of-magnitude estimate

for power corrections. Consequently the error associated to factorisable power corrections

was estimated by varying independently −|âF | ≤ aF ≤ +|âF |, −|b̂F | ≤ bF ≤ |b̂F | assuming

the central values of ∆FΛ to be zero. In our analysis we perform a fit to second order

in q2/m2
B and keep the correlated results âF , b̂F , ĉF as (non-zero) central values for ∆FΛ.

With this procedure the central values of our predictions of observables will agree exactly

with the ones which one would obtain in a calculation based on full LCSR form factors. In

particular, they will not exhibit any dependence on the renormalisation scheme chosen for

the soft form factors ξ⊥,‖, apart from the one induced by non-factorisable power corrections.

For the error estimate we vary aF , bF , cF symmetrically around their respective central

values:

âF −∆âF ≤ aF ≤ âF + ∆âF ,

b̂F −∆b̂F ≤ bF ≤ b̂F + ∆b̂F , (3.2)

ĉF −∆ĉF ≤ cF ≤ ĉF + ∆ĉF .

– 8 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
5

â
(1)
F b̂

(1)
F ĉ

(1)
F r(0 GeV2) r(4 GeV2) r(8 GeV2)

A0(KMPW) 0.002± 0.000 0.590± 0.125 1.473± 0.251 0.007 0.220 0.333

A0(BZ) 0.000± 0.000 0.003± 0.052 0.219± 0.121 0.002 0.012 0.032

A1(KMPW) −0.013± 0.025 −0.056± 0.018 0.158± 0.021 0.052 0.063 0.049

A1(BZ) −0.009± 0.027 0.042± 0.018 0.078± 0.017 0.032 0.003 0.029

A2(KMPW) −0.018± 0.023 −0.105± 0.022 0.192± 0.028 0.078 0.108 0.101

A2(BZ) −0.012± 0.024 0.037± 0.029 0.239± 0.034 0.050 0.006 0.053

T1(KMPW) −0.006± 0.031 −0.012± 0.054 −0.034± 0.095 0.016 0.018 0.020

T1(BZ) −0.024± 0.032 −0.019± 0.045 −0.014± 0.092 0.075 0.066 0.057

T2(KMPW) −0.005± 0.031 0.153± 0.043 0.544± 0.061 0.014 0.075 0.174

T2(BZ) −0.024± 0.031 0.040± 0.021 0.072± 0.019 0.074 0.046 0.015

T3(KMPW) −0.002± 0.022 0.308± 0.059 0.786± 0.093 0.007 0.181 0.322

T3(BZ) −0.035± 0.019 −0.021± 0.021 0.097± 0.025 0.178 0.154 0.116

Table 1. Fit results for the power-correction parameters in the case of scheme 1 –with (ξ
(1)
⊥ , ξ

(1)
‖ )

defined from (V,A1, A2). The relative size r(q2) is also shown for q2 = 0 GeV2, 4 GeV2, 8 GeV2. The

label KMPW refers to LCSR input from ref. [25], and BZ to ref. [44]. In this scheme, V receives

no power corrections and therefore the corresponding parameters vanish.

In principle the errors ∆âF ,∆b̂F ,∆ĉF are related to the errors of the QCD form factors

and could be determined from a fit if the correlations among the form factors were known

precisely. In the absence of such knowledge one is forced to rely on dimensional arguments,

exploiting the Λ/mb suppression of the ∆FΛ. To this end we consider an expanded approx-

imation F (q2) = AF +BF q
2/m2

B +CF q
4/m4

B of the full LCSR form factors and attribute

a 10% error to the power corrections setting ∆âF = 0.1AF ,∆b̂F = 0.1BF ,∆ĉF = 0.1CF .5

Given the fact that ∆FΛ ∼ F × O(Λ/mb) ∼ 0.1F this amounts to assigning an error of

∼ 100% to the result ∆F̂ from the fit.

Note that with our approach any future improvement on the precision of form factor

calculations can be accounted for by reducing the size of the free parameters ∆âF ,∆b̂F ,∆ĉF
accordingly. On the contrary, in the method of ref. [41] the errors are frozen due to their

determination from central values, and they do not approach zero in the hypothetical limit

of exact knowledge of the form factors, if (as expected) they do not fulfill exactly the

leading power symmetry relations.

The soft form factor decomposition (2.1) is not unique and depends on the renormali-

sation scheme for the soft form factors ξ⊥, ξ‖. In the following section 3.2 we will discuss

how the choice of scheme affects the errors induced by power corrections for B → K∗µ+µ−

angular observables.

In tables 1 and 2 we show respectively our fit results in the two different schemes, with

(ξ
(1)
⊥ , ξ

(1)
‖ ) defined from (V,A1, A2) and with (ξ

(2)
⊥ , ξ

(2)
‖ ) defined from (T1, A0), and for two

different sets of LCSR form factors [25, 44]. Apart from the actual values of the coefficients

5The expanded approximation is only used to obtain a normalisation for the errors ∆âF ,∆b̂F ,∆ĉF ,

while everywhere else in our analysis the full q2-dependence of the form factors is used.
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â
(2)
F b̂

(2)
F ĉ

(2)
F r(0 GeV2) r(4 GeV2) r(8 GeV2)

V (KMPW) 0.005± 0.036 0.013± 0.063 0.039± 0.113 0.016 0.018 0.020

V (BZ) 0.027± 0.039 0.021± 0.053 0.014± 0.107 0.072 0.064 0.056

A1(KMPW) −0.009± 0.025 −0.049± 0.018 0.166± 0.021 0.035 0.043 0.027

A1(BZ) 0.011± 0.027 0.038± 0.018 0.069± 0.017 0.043 0.061 0.083

A2(KMPW) −0.010± 0.023 0.099± 0.022 1.496± 0.028 0.040 0.135 0.451

A2(BZ) 0.017± 0.024 0.055± 0.029 0.400± 0.034 0.071 0.115 0.187

T2(KMPW) 0.000± 0.000 0.161± 0.043 0.553± 0.061 0.002 0.092 0.191

T2(BZ) 0.000± 0.000 0.035± 0.021 0.062± 0.019 0.000 0.019 0.040

T3(KMPW) 0.005± 0.022 0.486± 0.059 1.895± 0.093 0.026 0.352 0.639

T3(BZ) −0.011± 0.019 −0.006± 0.021 0.235± 0.025 0.054 0.028 0.027

Table 2. Fit results for the power-correction parameters in the case of scheme 2 –with (ξ
(2)
⊥ , ξ

(2)
‖ )

defined from (T1, A0). The relative size r(q2) is also shown for q2 = 0 GeV2, 4 GeV2, 8 GeV2. The

label KMPW refers to LCSR input from ref. [25], and BZ to ref. [44]. In this scheme, A0 and T1
receive no power corrections and therefore the corresponding parameters vanish.

âF , b̂F , ĉF and the estimated errors, we also display the relative size

r(q2) =

∣∣∣∣∣∣
âF + b̂F

q2

m2
B

+ ĉF
q4

m4
B

F (q2)

∣∣∣∣∣∣ (3.3)

for different invariant masses q2 = 0 GeV2, 4 GeV2, 8 GeV2 of the lepton pair. The results

confirm that power corrections are typically . 10% for q2 ≤ 4 GeV2 as expected from

dimensional arguments. In the case of LCSR input from ref. [25] (KMPW) slightly larger

power corrections are found for larger values of q2 for the form factor T3, as well as for

A0 in scheme 1 (A2 in scheme 2). However, this is not problematic in the case of the

B → K∗µ+µ− transversity amplitudes, given that A0 is suppressed by powers of the

lepton mass and T3 is relatively subdominant as compared to other tensor contributions

due to their relative kinematic prefactors at large recoil [39].

3.2 Correlations of power corrections

The quantities aF , bF , cF parametrising the factorisable power corrections are subject to

several constraints, resulting from (a) kinematic correlations among QCD form factors at

maximum recoil, and (b) the definition of the soft form factors ξ⊥ and ξ‖. Taking into

account these correlations reduces the number of parameters to be varied in the error

analysis, reducing correspondingly the overall uncertainties in the observables. Not taking

into account such correlations would lead to an over-estimation of the effect of factorisable

power corrections.

At q2 = 0 the QCD form factors obey the exact equations6

A0(0) =
mB +mK∗

2mK∗
A1(0) − mB −mK∗

2mK∗
A2(0) ,

T1(0) = T2(0) . (3.4)

6The relation between A0, A1 and A2 is only approximately fulfilled for the input from LCSR determi-

nations. In practice we enforce it to hold exactly by a rescaling of A0.
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These equations imply that the soft power corrections fulfil

aA0 =
mB +mK∗

2mK∗
aA1 −

mB −mK∗

2mK∗
aA2 ,

aT1 = aT2 . (3.5)

While the correlations of eq. (3.5) always apply, additional constraints depend on the

renormalisation scheme chosen for ξ⊥ and ξ‖. Defining ξ⊥ in terms of V according to

eq. (2.2) results in

a
(1)
V = 0, b

(1)
V = 0, c

(1)
V = 0, (3.6)

while a definition from T1 following eq. (2.3) gives

a
(2)
T1

= 0, b
(2)
T1

= 0, c
(2)
T1

= 0. (3.7)

If the soft form factor ξ‖ is defined from A1,2 in eq. (2.4), one finds the correlations

a
(1)
A2

=
mB +mK∗

mB −mK∗
a

(1)
A1
,

b
(1)
A2

=
mB +mK∗

mB −mK∗

[
a

(1)
A1

+ b
(1)
A1

]
c

(1)
A2

=
mB +mK∗

mB −mK∗

[
a

(1)
A1

+ b
(1)
A1

+ c
(1)
A1

]
(3.8)

for the corresponding power corrections. The definition (2.5) in terms of A0, on the other

hand, translates into

a
(2)
A0

= 0, b
(2)
A0

= 0, c
(2)
A0

= 0. (3.9)

Note that unlike the authors of ref. [41], we do not enforce any of the constraints

(either the general constraints eqs. (3.4)–(3.5) or the renormalisation-scheme dependent

ones eqs. (3.6)–(3.8)) in the fit for the central values âF , b̂F , ĉF . Our results from the fit

given in tables 1 and 2 respect the constraints within the overall accuracy of the fit, limited

by the parametrisation of the power correction functions as second order polynomials. The

precision to which the correlations are fulfilled can be improved by adding higher-order

coefficients dF , eF , . . . in the fit.7

For the estimation of errors associated to power corrections, we vary the parameters

aF , bF , cF within the ranges specified in tables 1 and 2, imposing in addition the con-

straints (3.5)–(3.9) according to the respective scheme. As the correlations depend on the

definition chosen for the soft form factors ξ⊥,‖, the errors originating from factorisable

power corrections are scheme dependent. In figure 2 we show the corresponding errors

7Imposing the correlations in the fit by hand would not improve the overall accuracy of the fit result.

As constraints are mostly related to the endpoint q2 = 0, it would imply that form factor values F (0) at

q2 = 0 have a larger weight in the fit than F (q2) at larger q2. The resulting functions for the sum of soft

form factors and power corrections would describe then the full form factors better at q2 ≈ 0, but worse in

the physically more interesting region q2 > 1 GeV2.
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Figure 2. Scheme dependence on the prediction of the observables P1, P2, P ′4, P ′5 in QCD factori-

sation. These results include factorisable power corrections as described in the text.

for the observables P1, P2, P ′4 and P ′5 in the two schemes, with (ξ
(1)
⊥ , ξ

(1)
‖ ) defined from

(V,A1, A2) and with (ξ
(2)
⊥ , ξ

(2)
‖ ) defined from (T1, A0).8 As input we have used the LCSR

form factors from ref. [25]. For q2 > 4 GeV2, the observables P1 and P ′5 exhibit significantly

smaller errors in the first scheme, while the observables P2 and P ′4 have slightly smaller

uncertainties in the second scheme.

The scheme dependence of the observables is dominated by the definition of ξ⊥. The

fact that the Wilson coefficient C9 always enters in combination with a vector form factor

V,A1, A2, while C7 enters in combination with a tensor form factor T1,2,3, thus explains

that observables with a high sensitivity to C9 like the third bin of P ′5 can be predicted

more precisely in the first scheme, while observables with a higher sensitivity to C7 like P2

are better described in the second. Concerning ξ‖, the situation is unambiguous: since any

contribution of the form factor A0 to physical observables is always suppressed by small

lepton masses, the constraint (3.9) does not improve the precision of the theory predictions

in contrast to the correlation (3.8) obtained in the first scheme. On the other hand, one

may think that the first scheme has the disadvantage of ξ‖ being built from two form factors

A1,2, which would lead to an increase of the error on ξ‖ if one takes the errors on A1,2 as

independent. This problem can actually be avoided because eq. (3.4) allows us to extract

the error on ξ‖(0) from A0(0).9

8Obviously, these two examples are not limitative: other pairings of normalisation schemes could be

considered, and additional schemes could be devised.
9We increase the error on ξ‖(0) obtained in this way by the small extent to which the LCSR form factors
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In ref. [41] the authors have chosen a scheme similar to our second scheme, by defining

ξ⊥ and ξ‖ in terms of T1 and A0. As discussed above, this explains to some extent the

big uncertainties they find in the observable P ′5. Their scheme differs, however, from our

second scheme as they assigned an ad-hoc q2-dependence to the soft form factors ξ⊥,‖
which differs from that of the QCD form factors T1, A0: equations (2.3) and (2.5) are thus

fulfilled only at q2 = 0. As a consequence, only the a-coefficients are correlated in their

scheme, and the correlations of b- and higher-order coefficients are lost. This reduces the

number of correlations artificially from eight, as in our second scheme, to only four in

their scheme (if parameters a,b,c are considered). Another difference in their study is that

they extract T1 from experimental data on B → K∗γ while we take T1 from its LCSR

calculations — the limits of the first approach compared to our extraction from theoretical

computations of the form factors have already been discussed in a previous section, after

eq. (2.3). Concerning the extraction of factorisable power corrections, our main differences

with respect to the approach in ref. [41] are the following: we vary the power correction

parameters a, b, c around their (non-zero) fit values with a separate assessment of the

uncertainties (âF − ∆âF ≤ aF ≤ âF ≤ ∆âF ), rather than varying them in the whole

range given by the magnitude of the fit value (−|âF | ≤ aF ≤ |âF |). We have chosen

a different renormalization scheme leading to stronger correlations and generally smaller

errors. Furthermore, we do not average different form factor determinations (especially

we do not perform average of absolute values, leading to numerical values for the power

correction parameters inconsistent with respect to the renormalisation scheme chosen).

These differences result in better controlled uncertainties on the angular observables shown

in figure 2.

4 Non-factorisable power corrections

Even in the situation in which QCD form factors were known exactly, the problem of non-

factorisable contributions would persist. This problem is related to the factorisation of

hadronic contributions to B → K∗µ+µ− from four-quark and chromo-magnetic operators

where the lepton pair is produced via a virtual photon. At large recoil, the factorisation of

the corresponding matrix elements into form factors, light-cone distribution amplitudes and

hard-scattering kernels is a formal prediction of SCET/QCD factorisation at leading power

in the 1/mb expansion [30]. At subleading power, however, new unknown non-perturbative

contributions would appear. These power corrections are called non-factorisable, and ap-

pear irrespectively of whether QCD form factors are expressed in terms of soft form factors

or not. An estimate of such power corrections must be included in the predictions.

An approach that has become popular [35] consists in parametrising both factoris-

able and non-factorisable power corrections jointly via a set of complex factors multiplying

violate the relation (3.4). For the form factors from ref. [25] we are still left with determining the error

for the slope-parameter of the q2-dependence of ξ‖ from A1 and A2. Even though the error of ξ‖ increases

significantly for large q2 because of the unknown correlation of uncertainties in the slopes of A1 and A2,

this has only a minor impact on the errors of optimised observables where the form-factor enters only at

next-to-leading order.
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each transversity amplitude, with typical absolute values of order 10% (motivated from

dimensional arguments) and arbitrary phases.10 Even if this ad-hoc procedure tends to

underestimate the errors associated to individual transversity amplitudes in the vicinity of

the zeroes, this is not the case for observables. Error estimates based on this strategy are

expected to give reasonable results for physical observables because they receive contribu-

tions from various amplitudes, and left- and right-handed transversity amplitudes do not

vanish at the same value of q2 (with the sets of form factors currently available).

In our present analysis we could use the same technique for non-factorisable power

corrections alone (since factorisable power corrections are estimated separately using the

more sophisticated methods described in section 3), but that would clearly overestimate

the effect. Note that the contributions from electromagnetic and semileptonic operators

are free from non-factorisable corrections, so that the terms proportional to C
(′)
7,9,10, which

are leading contributions, must not be inflated artificially.

Therefore we proceed as follows: in ref. [30], the amplitudes of 〈K∗γ∗|Heff |B〉 are

decomposed in terms of three hadronic form factors Ti(q2), which are re-expressed in terms

of Wilson coefficients, soft form factors, light-cone sum rules and hard-scattering kernels

using QCD factorisation. In each of the amplitudes, we single out the part involving the

hadronic form factors T had
i , obtained from the functions Ti by 11 T had

i = Ti|C(′)
7 →0

. Finally,

we multiply each of these amplitudes with a complex q2-dependent factor:

T had
i →

(
1 + ri(q

2)
)
T had
i , (4.1)

with

ri(s) = rai e
iφai + rbi e

iφbi (s/m2
B) + rci e

iφci (s/m2
B)2. (4.2)

Let us note at this point that the relationship T2 = 2E/mB T1 [30] does not hold at

subleading power, so that our parameters r2 and r3 for non-factorisable power corrections

are unrelated.

We define our central values as the ones with ri(q
2) ≡ 0, and estimate the uncertain-

ties from non-factorisable power corrections by varying ra,b,ci ∈ [0, 0.1] and φa,b,ci ∈ [−π, π]

independently, corresponding to a ∼ 10% correction with an arbitrary phase. The uncer-

tainties for each observable are then obtained by performing a random scan and taking the

maximum deviation from the central values to each side, to obtain (possibly asymmetric)

upward and downward error bars.

5 Results

5.1 SM predictions for angular observables

In this section we present the set of SM predictions for the various angular observables.

We give results within scheme 1 (where soft form factors are defined from V , A1, A2),

10Shortcomings related to this procedure, as well as the general problems related to the estimation of

power corrections in B → K∗`` have been recently reviewed in ref. [17].
11The amplitudes Ti are defined from 〈K∗γ∗|Heff |B〉 and thus do not contain contributions proportional

to C
(′)
9,10. In the presence of right-handed currents (i.e., chirally-flipped operators O′i) the set of amplitudes

generalizes to T ±i (see e.g., ref. [45]). Here we use the collective symbol Ti for all of them.
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which globally leads to smaller uncertainties related to factorisable power corrections, as

detailed in section 3.2. We do not provide the results for scheme 2 (where soft form

factors are defined from T1, A0), but we do include these in the plots below (figure 3)

for comparison. We have explored several schemes12 and find that scheme 1 is preferred

for many observables. In the case of observables sensitive to C9, of particular interest

for the analysis of the deviations observed by LHCb [7], an argument in favour of this

scheme has been given in section 3.2. We stress that in principle one can choose different

schemes for different observables consistently, allowing one to optimise the accuracy of

the theory prediction for each individual observables. In global analyses (i.e. global fits),

on the other hand, all observables should be calculated using the same scheme because

otherwise different observables would depend on different sets of theory parameters ξ
(i)
⊥,‖

and a
(i)
F , b

(i)
F , c

(i)
F and correlations among the predictions for different observables would

be lost.

The central value for each observable corresponds to the value obtained by setting all

the parameters to their central values, including factorisable power corrections, as obtained

from the central values of the parameters aF , bF , cF in tables 1 and 2. This is an important

difference with respect to previous analyses based on QCD factorisation, where central

values correspond to subleading contributions put to zero. In particular our central values

are comparable to those obtained from analyses that use QCD form factors (e.g., ref. [6]).

Uncertainties related to factorisable and non-factorisable power corrections are com-

puted as described in sections 3 and 4, and presented separately. The rest of the error

analysis is separated into “parametric” and “form factors”. The first accounts for the vari-

ation of all input parameters except form factors (masses, decay constants, Gegenbauer

moments, renormalisation scale, taking the same inputs as in ref. [39]), and the second

for the errors associated to ξ‖,⊥(q2), inherited from the form factor input in the respective

scheme. For all four types of uncertainties, errors ranges are obtained in the same way,

which we illustrate by focusing on the parametric uncertainties: we make a random flat

scan of all relevant parameters (masses, etc.) simultaneously, within the range given by

their “uncertainty” (error bars given by the PDG [42] in the case of masses, the renormali-

sation scale between mb/2 and 2mb, etc.), while keeping the other sets of parameters (form

factors, power corrections) fixed to their central values. We compute each observable for

every point in the scan, and take the corresponding maximum and minimum value. Up-

ward and downward error bars are then obtained by comparing the extreme values with

the central values.

Table 3 contains our results for a selected set of observables in scheme 1, where we

give both results based on form-factor input from [25] (KMPW) and [44] (BZ). The cor-

responding predictions for other observables are collected for reference in appendix C. We

note that for optimised observables and for input taken from KMPW, parametric uncer-

tainties, form factor uncertainties and uncertainties from factorisable power corrections are

usually of the same order of magnitude, while uncertainties from non-factorisable power

12Besides schemes 1 and 2 discussed in the paper, we have also considered a mixed scheme were soft form

factors are defined from V,A0. This scheme leads to very similar results to scheme 2.
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Observable KMPW - scheme 1 BZ - scheme 1

〈P1〉[0.1,2] 0.021+0.004
−0.003

+0.008
−0.010

+0.011
−0.012

+0.034
−0.043 0.035+0.005

−0.003
+0.000
−0.000

+0.010
−0.011

+0.035
−0.045

〈P1〉[2,4.3] 0.000+0.004
−0.002

+0.001
−0.006

+0.040
−0.040

+0.009
−0.013 −0.023+0.003

−0.003
+0.000
−0.000

+0.049
−0.057

+0.007
−0.009

〈P1〉[4.3,8.68] 0.013+0.002
−0.001

+0.046
−0.037

+0.071
−0.069

+0.005
−0.005 −0.101+0.002

−0.003
+0.000
−0.000

+0.076
−0.074

+0.005
−0.005

〈P1〉[1,6] 0.009+0.002
−0.001

+0.009
−0.012

+0.037
−0.040

+0.010
−0.014 −0.031+0.003

−0.004
+0.000
−0.000

+0.045
−0.054

+0.009
−0.011

〈P1〉[1,2] 0.002+0.003
−0.002

+0.015
−0.020

+0.020
−0.023

+0.033
−0.043 0.031+0.004

−0.003
+0.000
−0.000

+0.015
−0.019

+0.033
−0.043

〈P1〉[4.3,6] 0.021+0.004
−0.002

+0.039
−0.033

+0.068
−0.069

+0.002
−0.002 −0.071+0.000

−0.002
+0.000
−0.000

+0.077
−0.077

+0.003
−0.003

〈P1〉[6,8] 0.015+0.003
−0.001

+0.049
−0.039

+0.073
−0.070

+0.004
−0.004 −0.104+0.002

−0.003
+0.000
−0.000

+0.077
−0.075

+0.004
−0.005

〈P2〉[0.1,2] 0.179+0.008
−0.007

+0.006
−0.007

+0.018
−0.015

+0.002
−0.002 0.187+0.008

−0.008
+0.000
−0.000

+0.015
−0.016

+0.002
−0.002

〈P2〉[2,4.3] 0.244+0.030
−0.053

+0.044
−0.038

+0.083
−0.098

+0.010
−0.013 0.156+0.035

−0.056
+0.000
−0.000

+0.102
−0.099

+0.011
−0.015

〈P2〉[4.3,8.68] −0.344+0.028
−0.050

+0.030
−0.019

+0.041
−0.030

+0.004
−0.003 −0.386+0.021

−0.039
+0.000
−0.000

+0.032
−0.022

+0.003
−0.002

〈P2〉[1,6] 0.106+0.026
−0.054

+0.042
−0.034

+0.071
−0.078

+0.008
−0.010 0.034+0.026

−0.052
+0.000
−0.000

+0.082
−0.076

+0.008
−0.011

〈P2〉[1,2] 0.409+0.017
−0.017

+0.012
−0.016

+0.030
−0.031

+0.004
−0.004 0.429+0.015

−0.016
+0.000
−0.000

+0.022
−0.031

+0.004
−0.004

〈P2〉[4.3,6] −0.210+0.030
−0.066

+0.044
−0.031

+0.073
−0.057

+0.006
−0.007 −0.281+0.023

−0.054
+0.000
−0.000

+0.063
−0.045

+0.005
−0.006

〈P2〉[6,8] −0.376+0.026
−0.057

+0.025
−0.016

+0.034
−0.024

+0.003
−0.002 −0.412+0.019

−0.043
+0.000
−0.000

+0.025
−0.016

+0.003
−0.002

〈P ′4〉[0.1,2] −0.352+0.019
−0.016

+0.047
−0.031

+0.039
−0.031

+0.009
−0.009 −0.316+0.024

−0.017
+0.001
−0.001

+0.042
−0.034

+0.010
−0.010

〈P ′4〉[2,4.3] 0.485+0.047
−0.039

+0.082
−0.094

+0.129
−0.125

+0.010
−0.009 0.628+0.041

−0.036
+0.001
−0.002

+0.112
−0.131

+0.010
−0.009

〈P ′4〉[4.3,8.68] 0.902+0.014
−0.008

+0.045
−0.060

+0.050
−0.056

+0.005
−0.004 0.993+0.010

−0.005
+0.000
−0.000

+0.043
−0.049

+0.004
−0.003

〈P ′4〉[1,6] 0.476+0.041
−0.034

+0.091
−0.095

+0.116
−0.111

+0.009
−0.008 0.594+0.037

−0.031
+0.002
−0.002

+0.103
−0.117

+0.009
−0.008

〈P ′4〉[1,2] −0.186+0.034
−0.023

+0.059
−0.053

+0.091
−0.069

+0.011
−0.011 −0.105+0.044

−0.028
+0.002
−0.002

+0.095
−0.080

+0.012
−0.012

〈P ′4〉[4.3,6] 0.842+0.018
−0.015

+0.052
−0.069

+0.067
−0.076

+0.004
−0.004 0.950+0.012

−0.010
+0.000
−0.000

+0.054
−0.067

+0.003
−0.003

〈P ′4〉[6,8] 0.930+0.012
−0.011

+0.038
−0.053

+0.046
−0.052

+0.005
−0.004 1.019+0.008

−0.009
+0.000
−0.000

+0.040
−0.044

+0.004
−0.003

〈P ′5〉[0.1,2] 0.505+0.015
−0.024

+0.014
−0.028

+0.045
−0.049

+0.011
−0.012 0.506+0.016

−0.025
+0.000
−0.000

+0.042
−0.048

+0.012
−0.013

〈P ′5〉[2,4.3] −0.411+0.050
−0.072

+0.017
−0.015

+0.109
−0.101

+0.016
−0.020 −0.436+0.048

−0.068
+0.000
−0.000

+0.095
−0.097

+0.016
−0.019

〈P ′5〉[4.3,8.68] −0.902+0.025
−0.043

+0.019
−0.021

+0.043
−0.041

+0.006
−0.006 −0.853+0.021

−0.036
+0.000
−0.000

+0.048
−0.047

+0.006
−0.006

〈P ′5〉[1,6] −0.412+0.042
−0.070

+0.026
−0.045

+0.096
−0.089

+0.014
−0.017 −0.416+0.039

−0.064
+0.000
−0.000

+0.083
−0.086

+0.014
−0.017

〈P ′5〉[1,2] 0.331+0.029
−0.045

+0.013
−0.006

+0.074
−0.081

+0.015
−0.017 0.315+0.032

−0.048
+0.001
−0.001

+0.073
−0.084

+0.016
−0.018

〈P ′5〉[4.3,6] −0.832+0.027
−0.060

+0.018
−0.013

+0.058
−0.057

+0.007
−0.007 −0.802+0.024

−0.052
+0.000
−0.000

+0.059
−0.059

+0.006
−0.007

〈P ′5〉[6,8] −0.934+0.024
−0.047

+0.021
−0.022

+0.039
−0.038

+0.005
−0.005 −0.880+0.020

−0.039
+0.000
−0.000

+0.045
−0.044

+0.005
−0.005

Table 3. SM predictions for the observables P1, P2, P ′4, P ′5 in various bins, computed in scheme 1,

where the soft form factors are determined from (V ,A1,A2). First error is parametric, second is form

factors, third is factorisable power corrections and fourth is non-factorisable power corrections. The

first column (KMPW) is obtained with LCSR input from ref. [25] and the second one (BZ) from

ref. [44]. Slight differences in the central values with respect to refs. [7, 39] are due to a different

numerical value for the charm pole mass, which we take here as mc = 1.47± 0.20 GeV.
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Figure 3. SM predictions for the observables P1, P2, P ′4, P ′5 obtained as described in the text.

The bands correspond, from darker to lighter, to uncertainties from parametric, form factor, fac-

torisable and non-factorisable power corrections, added sequentially in quadrature. The data points

correspond to experimental data from LHCb [1, 2]. Blue dashed boxes are predictions in scheme 2.

corrections are typically smaller. For “non-optimised observables“ uncertainties are dom-

inated by the form factor input as expected. For input taken from BZ, the uncertainties

stemming from the form factors are generally smaller, in particular they are completely

negligible for optimised observables. In figure 3 we illustrate the predictions corresponding

to table 3 in the case of KMPW form factors, together with the experimental data points

from the LHCb analyses of refs. [1, 2]. In these figures we add sequentially and quadrati-

cally the four different sets of uncertainties as in table 3. We include also the predictions

in scheme 2 for comparison, noting that they generally lead to larger uncertainties in P1,

P2, P ′4, P ′5.

5.2 Impact of cc̄ loops

Our computation includes contributions from cc̄ loops, through factorisable contributions

as well as non-factorisable contributions with hard-gluon exchanges. As already mentioned

in the introduction, the size of the remaining long-distance contribution from cc̄ loops

is a debated issue, with some contributions considered in ref. [25] for B → K∗µµ and

further work (unfortunately only for B → Kµµ) in ref. [53]. We have not considered

these contributions up to now explicitly, even though they are partly encoded in the power

corrections discussed in the previous sections. Indeed, these contributions do not stand

on the same footing as the factorisable power corrections discussed in section 3. While we
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presented a systematic procedure to estimate the size in the latter case, here we can only

rely on a partial computation existing in the literature [25].

In ref. [25] the soft-gluon contribution originating from the insertion of 4-quark op-

erators Oc1,2 and penguin operators O3−6 induces a positive contribution inside Ceff
9 . For

an overall estimate of non-perturbative contributions from hadronic operators, we take

the terms ∆C9 in ref. [25], which include the LO perturbative contribution from O1,2 to-

gether with non-factorisable soft-gluon emission from the charm loop. In order to separate

the long-distance contribution, we subtract the perturbative contribution from ∆C9 (us-

ing eq. (7.14) and table 2 of ref. [25]), to obtain the (three) functions g̃(q2) according to

eq. (5.6) of ref. [25]. The results should match well the functions g̃, at least below 4 GeV2,

computed for mc = 1.05 GeV. In order to gauge the possible shift in our central values

(computed at the reference value mc = 1.47 GeV), we shift g̃ by −35% as indicated in table

1 of ref. [25]. This gives three ranges of variations (one for each function g̃), from which

we construct a single band using the following parametrization [7]:

δCLD
9 (q2) =

a+ bq2(c− q2)

q2(c− q2)
(5.1)

with a ∈ [2, 7] GeV4, b ∈ [0.1, 0.2] and c ∈ [9.3, 9.9] GeV2. The resulting band contains all

three g̃ functions (and their errors) in the range 1 < q2 < 9 GeV2. We add this contribution

to each amplitude AL,Ri by substituting:

C9 → C9 + siδC
LD
9 (q2) . (5.2)

The parameters si are varied independently in the range [−1, 1] so that: (i) the contri-

butions to different amplitudes are not artificially correlated, (ii) the possibility of long-

distance contribution with opposite signs in the different amplitudes is considered. We

emphasize that this method might be overestimating the effect due to (ii) (only one sign

corresponds to the computation in ref. [25], the other is only considered here to remain

conservative and is not supported by the results of this reference). We also note that the

perturbative charm-loop contributions are already included in our predictions up to NLO,

while the effects discussed here are the soft-gluon contributions and the non-perturbative

extrapolation to q2 > 4 GeV2.

All binned observables are then computed, fixing all parameters to their central values,

except for a, b, c and s⊥,‖,0, which are varied within the given ranges. We perform a random

scan over these parameters and obtain maximum and minimum values for each observable.

Comparing these values to the results with si = 0 (which correspond to the central values

of our predictions in table 3) we obtain the positive and negative error bars collected in

table 4. This procedure will be called approach A in the following. Table 4 summarizes our

estimates of these effects. We also show our results in figure 4 where the long-distance cc̄

correction is displayed as a separate band. These plots constitute our predictions including

charm-loop effects.

In order to be conservative in estimating these error we have also followed another

approach B, where we evaluate all relevant observables and check on the difference between
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Observable [0.1,2] [2,4.3] [4.3,8.68] [1,6] [1,2] [4.3,6] [6,8]

〈P1〉 +0.067
−0.091

+0.041
−0.051

+0.088
−0.061

+0.026
−0.031

+0.089
−0.120

+0.041
−0.028

+0.087
−0.061

〈P2〉 +0.004
−0.003

+0.052
−0.065

+0.057
−0.048

+0.052
−0.060

+0.011
−0.011

+0.064
−0.063

+0.051
−0.042

〈P ′4〉
+0.237
−0.185

+0.095
−0.092

+0.057
−0.089

+0.091
−0.087

+0.118
−0.108

+0.064
−0.076

+0.055
−0.085

〈P ′5〉
+0.093
−0.133

+0.098
−0.114

+0.062
−0.082

+0.088
−0.102

+0.090
−0.125

+0.066
−0.079

+0.058
−0.078

〈P3〉 +0.004
−0.003

+0.009
−0.006

+0.008
−0.006

+0.007
−0.005

+0.007
−0.005

+0.006
−0.004

+0.006
−0.005

〈P ′6〉
+0.010
−0.011

+0.005
−0.005

+0.005
−0.005

+0.005
−0.004

+0.008
−0.011

+0.003
−0.003

+0.004
−0.004

〈P ′8〉
+0.016
−0.018

+0.005
−0.005

+0.003
−0.004

+0.005
−0.005

+0.009
−0.009

+0.002
−0.003

+0.003
−0.003

〈AFB〉 +0.017
−0.010

+0.021
−0.020

+0.051
−0.041

+0.023
−0.021

+0.022
−0.020

+0.034
−0.030

+0.050
−0.042

〈FL〉 +0.062
−0.044

+0.018
−0.019

+0.037
−0.045

+0.021
−0.021

+0.039
−0.039

+0.024
−0.026

+0.037
−0.044

〈S3〉 +0.015
−0.021

+0.004
−0.005

+0.014
−0.010

+0.003
−0.004

+0.014
−0.018

+0.005
−0.003

+0.015
−0.010

〈S4〉 +0.049
−0.038

+0.021
−0.019

+0.017
−0.021

+0.022
−0.019

+0.026
−0.022

+0.017
−0.017

+0.016
−0.020

〈S5〉 +0.032
−0.053

+0.035
−0.039

+0.032
−0.037

+0.034
−0.037

+0.046
−0.060

+0.028
−0.033

+0.031
−0.036

〈S6s〉 +0.013
−0.022

+0.027
−0.028

+0.055
−0.068

+0.029
−0.031

+0.026
−0.030

+0.040
−0.046

+0.056
−0.067

Table 4. Estimates for the errors in binned observables arising from long-distance charm-loop

effects, as described in the text.

Figure 4. SM predictions for the observables P1, P2, P ′4, P ′5 obtained as described in the text (with

form-factor input from [25]). The bands correspond to all uncertainties added in quadrature, not

including (dark) and including (light) our estimate of long-distance charm-loop effects. The data

points correspond to experimental data from LHCb [1, 2].
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the central values obtained including and not including the long-distance contribution

described in ref. [25]. In order to do this comparison, we took the charm contribution

at the same order and also at the indicated reference mass mc(2mc) = 1.05 GeV as in

ref. [25]. The result of this comparison gives us an estimate of the size of the associated

error. Assuming a linear dependence onmc for the normalisation of the functions g̃(1 GeV2)

as given in table 1 in ref. [25], and translating this into a linear dependence of ∆C9(1 GeV2)

in eq. (7.14) of the same reference, we have also studied the impact of varying mc from

1.05 GeV up to 1.5 GeV. We found that this approach yields an uncertainty substantially

smaller than the default approach A outlined above.

Several comments are in order in relation with figure 4 and table 4. First, it appears

that the impact of the long-distance contribution remains small up to 8 GeV2 (even a little

bit above 8 GeV2 the effect is not very significant). Secondly, even if the computation done

in ref. [25] implies a definite sign for δCcc̄,LD
9 , following approach A the errors are enlarged

to cover the values corresponding to the opposite sign, as we interpret the δCcc̄,LD
9 extracted

from ref. [25] as the expected size of long-distance charm-loop effects rather than taking

it at face value. As a third remark, we find that for some observables the slope is more

important for the induced uncertainties than the proximity to the resonance region. In

other words, an observable with a steep slope like P ′5 has a larger error in the intermediate

region (from 2 to 6 GeV2), due to the significant uncertainty on its slope in this region,

than in the plateau (from 6 to 8 GeV2) where the uncertainty is limited. In the case of P ′5
in the [6-8] bin, the contribution computed in ref. [25] would tend to enhance the anomaly:

however, there is not much space left below the SM prediction without long-distance charm

contributions, so that the impact of the latter is small. A similar situation occurs in P ′4
but not for P2.

Other approaches to estimate the uncertainties due to cc̄ long-distance contributions

could have been followed, but in our opinion, they could yield misleading estimates. First,

the original calculation done in ref. [25] re-expresses these long-distance effects, entering in

all observables via Ceff
9 as done here. Other approaches (e.g. ref. [41]) choose to transfer the

long-distance effect to C7. Even though this can always be done in principle, one should be

careful to distinguish an estimate of the impact of cc̄-loop contributions on C7 from that on

actual observables, as the latter have generally different (and bin-dependent) sensitivities to

C7. Including a specific estimate for charm-loop corrections in C7 might thus overestimate

the uncertainties induced in observables in some energy ranges and underestimate in others.

A second comment concerns the symmetrisation of errors. In the above procedure, we

have split ∆C9 into the contributions from short and long distances in the cc̄ contributions

as given ref. [25]. Our errors are obtained varying the sign of the long-distance contri-

bution only (the short-distance part being known from perturbation theory). We would

have obtained artificially enhanced uncertainties, if we had varied the sign of the whole

∆C9 contribution, which would have corresponded to a “wrong” sign for the perturbative

contribution.
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5.3 Comparison with direct form factor approach

As already mentioned, there exist in general two options how to treat the form factors in

calculations of B → K∗µ+µ− observables. Our method, to which we will refer here as

method I, uses soft form factors complemented with symmetry-breaking O(αs)-corrections

and factorisable power corrections. Alternatively (method II) one can directly use the full

QCD form factors, obtained in some particular non-perturbative approach like LCSR which

already contain factorisable O(αs)- and power corrections (see ref. [6]). In both cases one

should add also corrections from non-factorisable O(αs)- and power corrections, including

non-perturbative charm-loop effects.

The main difference between the two approaches consists in the fact that method I

automatically implements the dominant correlations among form factors via the large-

recoil symmetry relations, while method II includes correlations only to the extent they

are implemented in the chosen form factor input. This leads to the following consequences:

• Method I can be applied to any given determination of the form factors, without the

need of knowing specific details about the computation. Obviously, if correlations are

available, they could be included in the extraction of the soft form factors. Method

II requires a detailed access of the different steps of the computation chosen, and it

cannot be applied unless correlations have been given (or recomputed) as we have

illustrated in figure 1. This strongly limits the scope of method II.

• While method II relies on the full set of seven hadronic form factors, method I needs

as input only a subset of two form factors forming a soft basis. Method I is thus less

sensitive to the form factor input.

• In method I, correlations are explicitly manifest in the splitting between soft form

factors and symmetry-breaking corrections. Effects of these correlations can therefore

be studied analytically, for example through an explicit cancellation of soft form

factors in optimised observables. If correlations are included in method II, they

cannot be read off from the analytic expressions because they only work numerically,

once a correlated variation of the form factor uncertainties is performed.

• Switching off symmetry-breaking corrections in method I, one can easily reproduce

the exact large-recoil symmetry limit. Comparison with the full result gives a quanti-

tative estimate of the validity of large-recoil symmetries and of the size of symmetry-

breaking effects. This information is not accessible with method II.

Method II has been applied in refs. [6, 8] for form factor input from ref. [44] using

additional (non-public) information on correlations among the form factor uncertainties.

This control of correlations is certainly an advantage of the results in refs. [6, 8] compared

to our predictions which rely on (correlation-improved) dimensional arguments. Note,

however, that origin and extent of the form factor correlations used in refs. [6, 8] are not

completely transparent due to the non-public character of the corresponding details of the

LCSR calculation. Our results have been given not only for the set of form factors from
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ref. [44], but in addition also for input from ref. [25]. Furthermore we provide all details of

the analysis that are needed in order to reproduce our results.

6 Conclusions

The rare B → K∗µ+µ− decay has been under recent scrutiny after the LHCb experiment

reported deviations with respect to the Standard Model in several observables at large

K∗ recoil. Following an analysis based on QCD factorisation, these observables P
(′)
i have

been designed to be less sensitive to hadronic uncertainties than the angular coefficients

of the differential decay rate. The central issue consists in separating soft contributions

O(Λ) from hard contributions O(mb) in the expressions of the B → K∗ hadronic form

factors and subsequently the helicity amplitudes involved in B → K∗µ+µ− decay, leading

to a cancellation of the soft form factors in suitable ratios of angular observables. This

cancellation is however only valid at the leading order in QCD factorisation, and the

sensitivity to hadronic form factors re-enters through subleading corrections, either hard

(computable as a series in αs) or soft (estimated on dimensional grounds as Λ/mb).

It was recently claimed that the latter corrections, also known as power corrections,

could yield much larger uncertainties than expected for the observables measured at LHCb.

This would naturally decrease the sensitivity of these observables to New Physics and re-

duce the significance of the observed deviations. We have reassessed this claim by adopting

and improving the analysis strategy described in ref. [41] to extract the size of the factoris-

able power corrections, related to the re-expression of the QCD form factors in terms of soft

form factors. We consider sets of QCD form factors obtained from light-cone sum rules,

identify two soft form factors and compute the central values of factorisable power correc-

tions by taking the difference between QCD form factors and their representation as the

sum of soft form factors and perturbative corrections. In order to estimate the uncertainties

from factorisable power corrections, we start from a conservative estimate of their overall

size based on dimensional arguments. We improve this estimate by systematically taking

into account all correlations among the form factors which arise from kinematic identities

and from the definition of the renormalisation scheme for the soft form factors. After the

QCD form factors are split in their various constituents (soft form factors, perturbative

corrections and power corrections), we have shown how to compute observables making

the maximal use of the information on the non-zero central values, the uncertainties and

the correlations of the power corrections.

It has been demonstrated that in the analysis of factorisable power corrections, the

choice of a renormalisation scheme to define the soft form factors out of the QCD form

factors has an important impact on the results. Choosing an inappropriate renormalisation

scheme, generating large, weakly correlated power corrections for the most relevant form

factors for the observables of interest, might lead the factorisable power corrections to

induce abnormally large errors for the B → K∗µ+µ− angular observables. We have shown

that another (well-documented) scheme yields significantly smaller power corrections than

the one chosen in ref. [41] for two different sets of QCD form factors, corresponding to the

most recent determinations of QCD form factors based on light-cone sum rules. We have
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computed angular observables within this renormalisation scheme, keeping track of the

correlations between the various parameters describing the factorisable power corrections.

The results for angular observables are collected in table 3 (with a decomposition into the

various sources of uncertainties) and illustrated in figure 3 (where results for two different

schemes are presented, including non-factorisable corrections). We have also discussed the

(small) impact of long-distance contributions from charm loops based on estimates available

in the literature, as seen in table 4 and figure 4.

In the process of writing this paper, other issues have been raised concerning the role

played by long-distance cc̄ loops both for B → Kµ+µ− and B → K∗µµ, which are discussed

in the appendix of this paper. Both discussions (on the size of power corrections and on

the impact of long-distance charmonium dynamics) are useful to reduce the uncertainties

attached to the predictions for B → K∗µ+µ− angular observables. A thorough check of

the uncertainties attached to these observables is essential to assess the anomaly currently

observed in LHCb data, and ultimately confirm its connection with New Physics.
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A Can charm loops always mimic New Physics?

In a recent article [28], it has been claimed that the observed anomaly in P ′5 could be solved

thanks to a 350% correction with respect to the factorisation approximation coming from

charm-resonance effects.13 We will not discuss here all the implicit and model-dependent

assumptions involved in this approach and necessary to relate e+e− data with the dynamics

of charmonia in B → Kµ+µ−, if the resonance model chosen (with a sum of Breit-Wigner

charmonia) can be extrapolated far from the resonance peaks, whether two constant “fudge

factors” are enough to capture all the departures of B → Kµ+µ− data from this specific

resonance model in both low- and large-K recoil regimes, or if the same fudge factors

hold unchanged for B → Kµ+µ− and B → K∗µ+µ−. Instead we will take the solution

proposed in ref. [28], which implies a very specific q2-dependent form for long-distance

cc̄ contributions and propose three different tests that can be implemented to assess the

validity of this proposal.

A fit to all b→ s`` observables including this model of contribution for long-distance cc̄

loops could shed some light on the global coherence of such a proposal, even though a likely

outcome of this fit would be a slight improvement compared to the standard modelisation,

13For simplicity, we call “charm-resonance effects” a contribution from charm loops following ref. [28],

irrespectively of its origin (long-distance QCD and/or new b̄scc̄ structures). The term “New Physics” will

be used exclusively to refer to a new high-scale contribution to one of the Wilson coefficients C
(′)
i i = 7, 9, 10.
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as it would include two new free parameters. In this situation, more specific observables

could provide a more clear-cut test of this model for charm-loop contributions. We start

defining the semileptonic coefficients as in ref. [28]

Ceff
9 = C9 + afacηchc(q

2) + hrest(q
2), C ′eff

9 = C ′9 + afacη
′
chc(q

2), (A.1)

where afac ∼ 0.6 stems from factorisation, ηc and η′c are pre-factor parameters found to

be large and negative from the analysis of low-recoil B → Kµ+µ− differential branching

ratio (whereas the standard expectations would be ηc = 1, η′c = 0). The function hc(q
2)

describes long- and short-distance from charm loops, through a dispersive relation applied

to a Breit-Wigner model for the observed cc̄ resonances in σ(e+e− → hadrons). hrest(q
2)

stands for the sub-leading contributions from other flavours which are very tiny and will

be neglected for the rest of the discussion.

It was argued in ref. [28] that the result of fitting the data at low recoil for B(B+ →
K+µ+µ−), sensitive to the sum C+

9 = Ceff
9 + C ′eff

9 , imposes

ηc + η′c ∼ −2.5 (A.2)

It is important to remark at this point that ref. [28] assumes implicitly that the Standard

Model holds in order to obtain eq. (A.2) by combining e+e− data with B(B+ → K+µ+µ−)

data. Indeed, if New Physics affected B → Kµ+µ− data, the sum eq. (A.2) could be re-

duced substantially, so that charm-resonance effect could not accommodate the P ′5 anomaly

contrary to what is stated in ref. [28].

Our approach here is to explore patterns in designed observables that cannot be ex-

plained in the Standard Model by the modification of the prefactors ηc and η′c to the

charm-loop contribution entering Ceff
9 and C ′eff

9 as proposed in ref. [28]. Such patterns

would thus require New Physics even if the charm loop model of ref. [28] is valid. In the

following, we will mostly work under the hypothesis of no New Physics

CNP7,9,10 = 0, C ′7,9,10 = 0. (A.3)

Within this framework C ′eff
9 would contain only afacη

′
chc(q

2) but not New Physics. However,

in some cases we will relax this hypothesis and allow for New Physics to illustrate how

certain conditions change.

The authors of ref. [28] find in agreement with ref. [7] that in order to explain the

B → K∗µ+µ− anomaly, a scenario is favoured where the (effective) Wilson coefficients

Ceff
9 and C ′eff

9 receive new contributions with ∆Ceff
9 ' ∆C ′eff

9 . They claim that these new

contributions could be generated from resonant charm loops rather than from high-scale

new physics. In this appendix we discuss three tests on the forthcoming data which could

disentangle the two proposals. The first test will consist in identifying an observable for

which the charm-loop contribution eqs. (A.1)–(A.2) alone cannot mimic the contribution

from a New Physics source. The second test is based on observing the presence of these

charm contributions in the related b→ d transition decay B → πµ+µ−. Finally, the third

more qualitative test aims at disentangling the effect of two large negative parameters ηc, η
′
c

from a true New Physics contribution to C9 and C ′9.

– 24 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
5

A.1 Test 1: P1 strikes back

Our first test will focus on B → K∗µ+µ− angular observables for which specific values

cannot be accommodated by the charm-loop model eqs. (A.1)–(A.2) but are allowed in

New Physics models. If eq. (A.2) holds, the largest impact of this charm-loop model

should be expected in observables sensitive to C+
9 . In the context of the B → K∗µ+µ−

decay the inspection of the transversity amplitudes (see [5]) suggests that an observable

proportional to AL,R⊥ will do the job, such as

Q[6≤q2≤8](q
2) = 1 + P1(q2) =

2|A⊥|2

|A⊥|2 + |A‖|2
(A.4)

where it is understood that |Ai|2 = |ALi |2 + |ARi |2 is the sum of the corresponding left and

right transversity amplitudes and the subscript indicates the relevant range for q2. From

this observable Q one immediately obtains two more observables

R = Q× FT = FT + 2S3, S = R× dΓ/dq2.

As a probe of the Wilson coefficients, S plays in B → K∗µ+µ− a similar role to B(B →
Kµ+µ−). Both are only a function of C+

9 = Ceff
9 + C ′eff

9 , contrary to B(B → K∗µ+µ−)

which is a function of C+
9 and C−9 = Ceff

9 − C ′eff
9 .

LHCb [2] found for the wide third bin

Q[4.3≤q2≤8.68] ∼ 1.36± 0.30 (A.5)

There is also a previous measurement by CDF [46, 47] but with a very large uncertainty.

One can understand the discriminating power of this observable with the following

argument.14 In the SM within the large-recoil range but for q2 not small (between 6

to 8 GeV2), the electromagnetic piece of the amplitude proportional to C7 is subleading

and the semileptonic contributions linked to C9,10 dominate. At leading order one can

approximate this observable in this region as

Q[6≤q2≤8](q
2) ∼ |C+

9 |2 + |C10|2

|C+
9 |2/2 + |C−9 |2/2 + |C10|2

(A.6)

In the standard case ηc = 1, η′c = 0 which implies C+
9 = C−9 andQ[6≤q2≤8] ∼ 1 (in agreement

with our SM prediction of P
[6,8]
1 = 0.015+0.088

−0.080).

Under the hypothesis that future data will significantly increase the significance of the

deviation from one of eq. (A.5) we will explore the implication of the condition Q[6≤q2≤8] >

1, which translates using eq. (A.6) into the constraint

ReCeff
9 C ′eff∗

9 > 0 ⇒ (C9 + afacηcRehc)(afacη
′
cRehc) > 0 (A.7)

where hc is real in this region according to ref. [28]. This equation requires the same sign

for Ceff
9 and C ′eff

9 , which implies two solutions for ηc, η
′
c:

14We will not consider the impact of power corrections here. In any case, we have seen that at most they

tend to shift up P1 approximately by +0.11 in this bin, which can be expected to be the maximum value

above zero reached by this bin within the SM. A scan over ηc and η′c satisfying eq. (A.2) confirms this

expectation.
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I. η′c < 0 (both coefficients negative): then using eq. (A.2) and eq. (A.7) one finds

−2.5 < ηc < Max[−C9/(afacRehc)][6≤q2≤8] = −2.6

This condition is obviously impossible to fulfil. The right-hand side term reaches its

maximum at q2 =8 GeV2 defining the most favourable situation, still impossible to

satisfy. This is not surprising because the sign of Ceff
9 can be changed only for very

large negative ηc. Notice that even if at first sight a NP contribution of the type

CNP9 < 0 could extend the allowed range and allow this solution, one should first

reassess the determination of ηc + η′c which was performed in the SM, and second,

check that this value of ηc allows for a zero in AFB (see Test 3 below).

II. η′c > 0 (both coefficients positive): then using the same equations one gets

−2.5 > ηc > Min[−C9/(afacRehc)][6≤q2≤8] = −4.3

This range of values for ηc is also excluded because for these values of ηc, P2 (or AFB)

has no zero (see Test 3).

The power of this test can be illustrated by the cases considered in ref. [28]. One of the

illustrative examples (ηc = 0, η′c = −2.5) in ref. [28] yields Q ∼ 0.5 in the bin [4.3,8.68]15

which is disfavoured by LHCb measurements, and another one (ηc = −2.5, η′c = 0) is also

disfavoured due to the lack of zero in AFB (or P2) (see Test 3 and figure 12 in ref. [28]).

In summary, if an accurate measurement of the last bin of P1 (bin [6,8]) shows a clear

preference for Q[6,8] > 1, it cannot be accommodated by the solution ηc + η′c ∼ −2.5 with

no New Physics contributions.

A value of Q[6,8] exceeding its SM prediction Q ∼ 1.11 can be attained in the presence

of certain NP, for example in the presence right-handed currents. The subleading terms

in Q[6,8] can become important when NP is present: for instance, if C ′7 ∼ 0.06, C ′10 ∼ −1

and CNP9 ∼ −1 (allowed at 2σ according to ref. [7]) a large deviation of order Q ∼ 1.4

is generated while keeping ηc = 1 and η′c = 0. Notice that if NP is also switched on, a

solution with ηc 6= 1 and η′c 6= 0 is allowed. This test (if Q > 1) provides an explicit example

where eqs. (A.1)–(A.2) alone would fail in giving an explanation, unless New Physics is

allowed. In this sense this first test should be understood more as a test on the presence

of New Physics generating Q > 1 that cannot be polluted by charm loop than a test of

eqs. (A.1)–(A.2) themselves. In the case where Q ∼ 1 the test loses its discriminating

power.

Finally, let us recall that P1 is constrained by P ′4 by P1 ≤ 1−P ′24 [48]. A measurement

of the [6,8] bin of P ′4 constrains Q[6≤q2≤8] ≤ 2− P ′24 [6≤q2≤8] (up to small corrections due to

binning).

15P1 and consequently Q can be inferred from the values of P2 and P ′4,5 in [48] (see also eq. (A.12)) or

determined by direct computation.

– 26 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
5

A.2 Test 2: B+ → π+µ+µ−

This test relies on the similarities and differences between B+ → K+µ+µ− and B+ →
π+µ+µ− decays. Since B+ → K+µ+µ− is a b→ s transition while B+ → π+µ+µ− comes

from b → d, New Physics will affect them differently: in certain models one could expect

to see a deviation in the b → s transition and no deviation in the corresponding b → d

decay. Under these circumstances, the large impact of the charm loop model eqs. (A.1)–

(A.2) should affect both decays and could be tested directly. One would expect to see

the same pattern in B(B+ → K+µ+µ−) and in B(B+ → π+µ+µ−) in the low-q2 region

(1 ≤ q2 ≤ 8 GeV2), namely values below the SM prediction due to the large destructive

charm-loop interference.

One should however take care of the different CKM structure involved in the two

decays. The charm loop has the CKM coefficient VcbV
∗
cD = −VtbV ∗tD(1 + VubV

∗
uD/VtbV

∗
tD)

(with D = d, s). Whereas the second term is doubly Cabibbo-suppressed for D = s, it

remains Cabibbo-allowed for D = d and should be included in the discussion, as shown in

eq. (16) of ref. [49]. When moving from b→ s to b→ d the coefficient in front of the charm

loop inside Ceff
9 becomes

h(mc, q
2)→

(
1− Rb

Rt
eiα
)
h(mc, q

2) (A.8)

Taking Rb/Rt ∼ 0.4 and α ∼ 90◦ the real part of the coefficient remains positive and

dominates. Thus, following ref. [28] and substituting hc by ηchc (with ηc a large negative

parameter), one would expect to see a suppression of B(B+ → π+µ+µ−) with respect to

the SM prediction with ηc = 1, η′c = 0. Indeed, as can be seen from ref. [49], this branching

ratio involves |C+
9 |2, and an illustrative back-of-the-envelope computation indicates that

for q2=8 GeV2, one has C+
9 ∼ 0.2 + i1.6 and |C+

9 |2 ∼ 2.5 for ηc + η′c = −2.5, whereas

C+
9 ∼ 5.6 − i0.6 and |C+

9 |2 ∼ 32.1 for ηc + η′c = 1, confirming the expected suppression

of B(B+ → π+µ+µ−) with respect to the SM prediction with ηc = 1, η′c = 0. Also one

should take into account when comparing those modes the possible impact of annihilation

contributions (see, for instance, [50] for B → K case).

In summary, a measurement of B(B+ → π+µ+µ−) in the low-q2 region (1 ≤ q2 ≤
8 GeV2) above the SM or in perfect agreement with SM would disfavour the charm-loop

destructive effect eqs. (A.1)–(A.2). On the contrary if data in this region is below the SM

prediction as in B(B+ → K+µ+µ−), one cannot disentangle between a charm loop effect

or a New Physics effect affecting also the b → d transition. The present situation is that

there is a first measurement done by LHCb [51] in the entire range of q2

B(B+ → π+µ+µ−) = (2.3± 0.6(stat.)± 0.1(syst.))× 10−8

and two compatible SM theory predictions B(B+ → π+µ+µ−) = (1.88+0.32
−0.21) × 10−8 [49]

and B(B+ → π+µ+µ−) = (2.0 ± 0.2) × 10−8 [52]. Even if this comparison would seem to

be already now in conflict with the model in ref. [28], we insist that the comparison must

be done only in the low-q2 region, where the discussion is much simpler due to the absence

of resonances. According to ref. [49] the SM prediction is, with ηc = 1, η′c = 0,

B(B+ → π+µ+µ−)[1≤q2≤8] = (0.58+0.09
−0.06)× 10−8
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If LHCb measures this bin with a measurement above or in agreement with this value, the

charm-loop model eqs. (A.1)–(A.2) would need to be revised.

A.3 Test 3: zeroes and branching ratio

This third category of tests will be focused on identifying observables able to disentangle

the large contributions from the long-distance charm-loop model eqs. (A.1)–(A.2) from a

New Physics contribution to the short-distance Wilson coefficients. We will focus first on

the zero/zeroes of the observable P2 and consider later the behaviour of the branching ratio

of B → Kµ+µ− at the upper end of the large-recoil region. We should remark that this

last category of tests is extremely challenging experimentally.

An independent constraint on ηc in the SM comes from the existence of a zero in P2

(or AFB).16 At leading order, ηc must fulfil the equation

− 2mbMBC
eff
7

1

si
= C9 + afacηcRehc(si) (A.9)

where si stands for the zero(es) in q2. We can impose that there must exist a zero at

leading order (at NLO the position of the zero is typically shifted by ∼ 1 GeV2) between,

say, 2 and 6 GeV2 (a smaller allowed range in q2 implies a stronger constraint on ηc). Using

our inputs and the variation of hc in this range, we find that

ηc & −2 (A.10)

Combining this bound with the solution eq. (A.2) advocated in ref. [28], we see that η′c
cannot vanish. If New Physics is allowed only in C9 and C ′9 (but not in C ′10), eq. (A.9) is

unchanged but the bound becomes more constraining in the case of a negative New Physics

contribution to C9, reducing substantially the impact of the charm loop on Ceff
9 :

ηc & −2− CNP9 /(afacRehc(si)) (A.11)

Using appendix B of ref. [5] one can easily generalise this expression to NP affecting other

Wilson coefficients.

Eq. (A.9) also shows that for a subset of negative values for ηc fulfilling the bound

eq. (A.10), a second zero in P2 would arise at a higher value of q2 still within the large-

recoil region. Notice that there is no second zero if ηc = 1, with or without New Physics.

The observation of a second zero below 8 GeV2 would give a strong hint in favour of the

charm-loop model eqs. (A.1)–(A.2). Conversely, not finding this second zero does not

disprove directly this model, but it would push η′c towards large negative values implying

a large negative C ′eff
9 that has to be tested against other observables. However, checking if

such a second zero exists so close to 8 GeV2 seems very challenging from the experimental

point of view.

Further comments are in order concerning how a value of ηc 6= 1 would affect various

observables at the upper end of the large-recoil region. One can also see that P2 and P ′5
should vanish at the J/ψ peak — and the speed at which they tend to zero is related to

16LHCb [1] found a zero in AFB at q2
0 = 4.9± 0.9 GeV2.
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hc. The reason is that in the numerator of these observables there is a cancellation of

the quadratic term in Ceff
9 (see appendix B in [5]) which implies that the numerator is at

most linear in the function hc(s). This cancellation does not occur in the denominator

that contains terms proportional to hc(s)
2. If ηc = 1 the divergent behaviour of hc(s) is

not visible until q2 > 8.5 GeV2 but for large and negative ηc the effect of the divergence is

enhanced and the tendency to zero should be more evident before 8 GeV2. Let us stress that

this vanishing behaviour is different from the second zero of P2 discussed in the previous

paragraph.

As a side remark it is interesting to notice that the zeroes of P2 are related to the sign

of P ′5. One can show easily using the relation [48]

P2 =
1

2

[
P ′4P

′
5 +

√
(−1 + P1 + P ′24 )(−1− P1 + P ′25 )

]
(A.12)

that at the point where P2 = 0, eq. (A.12) requires P ′5 to be negative (given that P ′4 > 0

in agreement with data), which implies by continuity that the curve of P ′5 is below P2 in

the vicinity of the points where P2 = 0. This should happen independently of the value of

ηc and at each zero. Interestingly, this might have implications on the relative positions of

P2 and P ′5 in the bins near the zero(es) of P2.

Finally, an important difference between refs. [28] and [7] comes from the q2-dependence

of the Wilson coefficients. In the charm-loop model eqs. (A.1)–(A.2), C+
9 decreases with

q2. The same occurs for Ceff
9 if ηc is negative. In ref. [7] where ηc = 1 and η′c = 0, both C+

9

and Ceff
9 increase with q2. If ηc + η′c turns out to be large and negative, this should be seen

in observables sensitive to C+
9 : for instance B(B → Kµ+µ−) or S should exhibit a more

pronounced suppression from [4.3,6] to [6,8] than expected from a standard calculation

using ηc = 1 (see figure 10 in ref. [53]).

In summary the tests proposed in this section aim at disentangling a New Physics

contribution to C9 from a charm loop effect. They rely on the behaviour induced by the

charm-loop model in ref. [28] in angular observables at the upper end of the large-recoil

region, where the sensitivity to a large negative ηc parameter (if any) should be more visible.

The required accuracy to perform such tests exceeds what can be achieved experimentally

for the moment, but presents very interesting challenges for the future.

B Factorisable αs corrections

In this appendix we collect the expressions for the factorisable αs corrections ∆Fαs ap-

pearing in the soft form factor representation eq. (2.1). They can be found in ref. [29]

where they have been derived for a renormalization scheme defining ξ⊥ and ξ‖ in terms of

V and A0. Translating their results to our preferred scheme with (ξ
(1)
⊥ , ξ

(1)
⊥ ) defined from
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(V,A1, A2) we obtain

∆V (1)αs = 0,

∆A
(1)αs

1 = ∆A
(1)αs

2 = O(α2
s),

∆A
(1)αs

0 =
E(q2)

mK∗
ξ

(1)
‖ (q2)

(
1

∆
− 1

)
,

∆T
(1)αs

1 = CFαs(µb) ξ
(1)
⊥ (q2)

[
log

m2
b

µ2
b

− L
]

+ CFαs(µb) δT1, (B.1)

∆T
(1)αs

2 = CFαs(µb)
2E(q2)

mB
ξ

(1)
⊥ (q2)

[
log

m2
b

µ2
b

− L
]

+ CFαs(µh) δT2,

∆T
(1)αs

3 = CFαs(µb)

(
ξ

(1)
⊥ (q2)

[
log

m2
b

µ2
b

− L
]
− ξ

(1)
‖ (q2)

[
log

m2
b

µ2
b

+ 2L

])
+ CFαs(µh) δT3 ,

where L = −(2E/(mB − 2E)) log(2E/mB), µb and µh are typical scales for hard processes

and ∆ is defined in eq. (66) of [30]. The spectator scattering terms are given by

δT1 =
mB

4E
∆F⊥, δT2 =

1

2
∆F⊥, δT3 = δT1 + 2

mK∗

mB

(mB

2E

)2
∆F‖, (B.2)

with ∆F⊥,‖ defined in eq. (59) of [29]. In the scheme with (ξ
(2)
⊥ , ξ

(2)
⊥ ) defined from (T1, A0)

we get

∆V (2)αs = −mB +mK∗

mB

{
CFαs(µb) ξ

(2)
⊥

[
log

m2
b

µ2
b

− L
]

+ CFαs(µh) δT1

}
,

∆A
(2)αs

1 = − 2E

mB +mK∗

{
CFαs(µb) ξ

(2)
⊥

[
log

m2
b

µ2
b

− L
]

+ CFαs(µh)δT1

}
,

∆A
(2)αs

2 = − mB

mB −mK∗

{
CFαs(µb) ξ

(2)
⊥

[
log

m2
b

µ2
b

− L
]
− (∆− 1)ξ

(2)
‖ + CFαs(µh) δT1

}
,

∆A
(2)αs

0 = ∆T
(2)αs

1 = 0,

∆T
(2)αs

2 = CFαs(µh)

(
δT2 −

2E

mB
δT1

)
,

∆T
(2)αs

3 = ξ
(2)
‖

{
∆

(
1 + CFαs(µb)

[
log

m2
b

µ2
b

+ 2L

])
− 1

}
+ CFαs(µh)(δT3 − δT1). (B.3)

C SM predictions for other B → K∗µ+µ− observables

Here we collect the SM predictions for other observables not given in section 5, as computed

following the approach explored in this paper. Again, we collect for references the results

in our preferred scheme 1, corresponding to defining the soft form factors from V , A1, A2.
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Observable KMPW - scheme 1 BZ - scheme 1

〈P3〉[0.1,2] −0.001+0.000
−0.000

+0.000
−0.000

+0.000
−0.000

+0.017
−0.018 −0.002+0.000

−0.000
+0.000
−0.000

+0.000
−0.001

+0.017
−0.019

〈P3〉[2,4.3] 0.002+0.001
−0.001

+0.004
−0.002

+0.003
−0.003

+0.005
−0.005 −0.003+0.000

−0.001
+0.000
−0.000

+0.003
−0.003

+0.003
−0.003

〈P3〉[4.3,8.68] 0.003+0.000
−0.003

+0.005
−0.002

+0.003
−0.002

+0.003
−0.002 −0.003+0.001

−0.000
+0.000
−0.000

+0.002
−0.002

+0.003
−0.002

〈P3〉[1,6] 0.002+0.001
−0.000

+0.003
−0.002

+0.003
−0.002

+0.005
−0.006 −0.003+0.000

−0.001
+0.000
−0.000

+0.002
−0.002

+0.004
−0.004

〈P3〉[1,2] −0.001+0.000
−0.000

+0.001
−0.000

+0.002
−0.002

+0.016
−0.017 −0.003+0.000

−0.001
+0.000
−0.000

+0.002
−0.002

+0.016
−0.018

〈P3〉[4.3,6] 0.003+0.002
−0.001

+0.004
−0.002

+0.003
−0.002

+0.001
−0.001 −0.002+0.000

−0.001
+0.000
−0.000

+0.002
−0.002

+0.002
−0.001

〈P3〉[6,8] 0.002+0.002
−0.004

+0.004
−0.002

+0.002
−0.002

+0.002
−0.002 −0.002+0.002

−0.001
+0.000
−0.000

+0.002
−0.001

+0.003
−0.002

〈P ′6〉[0.1,2] −0.071+0.022
−0.030

+0.012
−0.013

+0.004
−0.006

+0.014
−0.015 −0.074+0.024

−0.031
+0.001
−0.001

+0.005
−0.006

+0.015
−0.016

〈P ′6〉[2,4.3] −0.084+0.027
−0.036

+0.018
−0.020

+0.002
−0.002

+0.009
−0.008 −0.084+0.028

−0.035
+0.001
−0.001

+0.002
−0.002

+0.009
−0.008

〈P ′6〉[4.3,8.68] −0.067+0.039
−0.020

+0.020
−0.022

+0.003
−0.003

+0.011
−0.013 −0.063+0.037

−0.016
+0.001
−0.001

+0.003
−0.003

+0.012
−0.014

〈P ′6〉[1,6] −0.076+0.025
−0.036

+0.017
−0.019

+0.002
−0.002

+0.008
−0.007 −0.075+0.026

−0.033
+0.001
−0.001

+0.002
−0.002

+0.008
−0.007

〈P ′6〉[1,2] −0.089+0.026
−0.036

+0.015
−0.016

+0.006
−0.007

+0.015
−0.016 −0.093+0.029

−0.037
+0.001
−0.001

+0.007
−0.007

+0.016
−0.017

〈P ′6〉[4.3,6] −0.061+0.022
−0.039

+0.016
−0.020

+0.003
−0.003

+0.007
−0.007 −0.058+0.022

−0.036
+0.001
−0.001

+0.003
−0.003

+0.007
−0.008

〈P ′6〉[6,8] −0.059+0.055
−0.045

+0.017
−0.021

+0.003
−0.003

+0.012
−0.014 −0.056+0.052

−0.045
+0.001
−0.001

+0.003
−0.003

+0.013
−0.015

〈P ′8〉[0.1,2] 0.032+0.027
−0.017

+0.015
−0.014

+0.007
−0.006

+0.014
−0.015 0.034+0.027

−0.017
+0.001
−0.001

+0.007
−0.006

+0.014
−0.016

〈P ′8〉[2,4.3] 0.058+0.036
−0.023

+0.019
−0.015

+0.005
−0.005

+0.010
−0.012 0.057+0.034

−0.023
+0.001
−0.001

+0.004
−0.004

+0.010
−0.012

〈P ′8〉[4.3,8.68] 0.053+0.018
−0.041

+0.020
−0.016

+0.001
−0.001

+0.006
−0.008 0.049+0.015

−0.037
+0.001
−0.001

+0.002
−0.002

+0.006
−0.008

〈P ′8〉[1,6] 0.051+0.035
−0.021

+0.018
−0.014

+0.004
−0.004

+0.009
−0.010 0.050+0.032

−0.021
+0.001
−0.001

+0.004
−0.003

+0.009
−0.010

〈P ′8〉[1,2] 0.049+0.035
−0.022

+0.017
−0.015

+0.009
−0.008

+0.015
−0.018 0.052+0.034

−0.023
+0.001
−0.001

+0.009
−0.008

+0.016
−0.018

〈P ′8〉[4.3,6] 0.046+0.037
−0.019

+0.017
−0.013

+0.002
−0.002

+0.006
−0.007 0.043+0.034

−0.018
+0.001
−0.000

+0.002
−0.002

+0.006
−0.007

〈P ′8〉[6,8] 0.047+0.038
−0.059

+0.019
−0.015

+0.001
−0.001

+0.007
−0.008 0.044+0.036

−0.053
+0.001
−0.001

+0.001
−0.001

+0.006
−0.008

〈AFB〉[0.1,2] −0.131+0.002
−0.001

+0.068
−0.058

+0.005
−0.004

+0.000
−0.000 −0.123+0.004

−0.002
+0.007
−0.006

+0.007
−0.005

+0.000
−0.000

〈AFB〉[2,4.3] −0.080+0.020
−0.013

+0.052
−0.085

+0.032
−0.033

+0.005
−0.004 −0.047+0.017

−0.013
+0.004
−0.003

+0.029
−0.033

+0.005
−0.003

〈AFB〉[4.3,8.68] 0.175+0.024
−0.014

+0.173
−0.13

+0.022
−0.025

+0.002
−0.002 0.204+0.020

−0.012
+0.012
−0.014

+0.018
−0.024

+0.002
−0.002

〈AFB〉[1,6] −0.042+0.021
−0.012

+0.025
−0.027

+0.030
−0.031

+0.004
−0.003 −0.013+0.018

−0.010
+0.001
−0.000

+0.027
−0.031

+0.004
−0.003

〈AFB〉[1,2] −0.199+0.010
−0.006

+0.128
−0.21

+0.021
−0.019

+0.004
−0.002 −0.174+0.012

−0.009
+0.015
−0.014

+0.020
−0.018

+0.004
−0.003

〈AFB〉[4.3,6] 0.086+0.025
−0.011

+0.121
−0.066

+0.028
−0.031

+0.002
−0.002 0.118+0.020

−0.010
+0.008
−0.009

+0.024
−0.030

+0.002
−0.002

〈AFB〉[6,8] 0.202+0.028
−0.013

+0.184
−0.148

+0.021
−0.023

+0.002
−0.002 0.231+0.023

−0.011
+0.013
−0.015

+0.017
−0.022

+0.003
−0.002

Table 5. SM predictions for P3, P ′6, P ′8, AFB in various bins. Same notation as table 3.

– 31 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
5

Observable KMPW - scheme 1 BZ - scheme 1

〈FL〉[0.1,2] 0.345+0.028
−0.022

+0.278
−0.229

+0.050
−0.045

+0.010
−0.008 0.400+0.030

−0.026
+0.029
−0.024

+0.048
−0.045

+0.011
−0.009

〈FL〉[2,4.3] 0.763+0.011
−0.009

+0.148
−0.294

+0.018
−0.021

+0.003
−0.003 0.784+0.011

−0.010
+0.018
−0.016

+0.016
−0.016

+0.002
−0.002

〈FL〉[4.3,8.68] 0.648+0.006
−0.003

+0.244
−0.298

+0.012
−0.013

+0.004
−0.004 0.638+0.008

−0.006
+0.024
−0.021

+0.014
−0.015

+0.004
−0.004

〈FL〉[1,6] 0.717+0.010
−0.010

+0.179
−0.305

+0.021
−0.022

+0.004
−0.003 0.736+0.011

−0.011
+0.021
−0.019

+0.019
−0.018

+0.003
−0.003

〈FL〉[1,2] 0.630+0.030
−0.025

+0.203
−0.32

+0.048
−0.049

+0.010
−0.008 0.688+0.027

−0.026
+0.023
−0.021

+0.039
−0.044

+0.009
−0.007

〈FL〉[4.3,6] 0.710+0.005
−0.004

+0.199
−0.302

+0.011
−0.013

+0.002
−0.002 0.708+0.008

−0.007
+0.022
−0.020

+0.013
−0.015

+0.002
−0.002

〈FL〉[6,8] 0.631+0.007
−0.004

+0.257
−0.297

+0.013
−0.013

+0.004
−0.004 0.617+0.009

−0.006
+0.024
−0.021

+0.015
−0.016

+0.004
−0.004

〈S3〉[0.1,2] 0.005+0.000
−0.000

+0.004
−0.003

+0.002
−0.002

+0.008
−0.010 0.007+0.001

−0.001
+0.000
−0.000

+0.002
−0.002

+0.007
−0.009

〈S3〉[2,4.3] 0.000+0.000
−0.000

+0.000
−0.001

+0.004
−0.004

+0.001
−0.001 −0.003+0.000

−0.000
+0.000
−0.000

+0.004
−0.005

+0.000
−0.000

〈S3〉[4.3,8.68] 0.002+0.000
−0.000

+0.005
−0.009

+0.011
−0.012

+0.000
−0.000 −0.018+0.000

−0.000
+0.001
−0.000

+0.013
−0.014

+0.000
−0.001

〈S3〉[1,6] 0.001+0.000
−0.000

+0.001
−0.001

+0.004
−0.005

+0.001
−0.001 −0.004+0.000

−0.000
+0.000
−0.000

+0.005
−0.006

+0.001
−0.001

〈S3〉[1,2] 0.000+0.000
−0.000

+0.005
−0.002

+0.003
−0.004

+0.005
−0.007 0.004+0.000

−0.000
+0.000
−0.000

+0.002
−0.002

+0.004
−0.005

〈S3〉[4.3,6] 0.002+0.000
−0.000

+0.004
−0.006

+0.009
−0.009

+0.000
−0.000 −0.011+0.000

−0.000
+0.000
−0.000

+0.010
−0.011

+0.000
−0.000

〈S3〉[6,8] 0.002+0.000
−0.000

+0.005
−0.009

+0.012
−0.012

+0.000
−0.000 −0.020+0.000

−0.000
+0.001
−0.001

+0.014
−0.015

+0.000
−0.001

〈S4〉[0.1,2] −0.072+0.003
−0.003

+0.028
−0.007

+0.006
−0.006

+0.001
−0.001 −0.067+0.004

−0.003
+0.000
−0.000

+0.008
−0.006

+0.002
−0.002

〈S4〉[2,4.3] 0.098+0.007
−0.006

+0.040
−0.050

+0.025
−0.024

+0.001
−0.001 0.123+0.007

−0.006
+0.004
−0.005

+0.022
−0.024

+0.001
−0.001

〈S4〉[4.3,8.68] 0.212+0.003
−0.002

+0.022
−0.086

+0.014
−0.015

+0.001
−0.001 0.236+0.002

−0.002
+0.003
−0.004

+0.012
−0.014

+0.001
−0.001

〈S4〉[1,6] 0.102+0.007
−0.006

+0.036
−0.049

+0.024
−0.023

+0.001
−0.001 0.125+0.006

−0.006
+0.003
−0.004

+0.021
−0.023

+0.001
−0.001

〈S4〉[1,2] −0.042+0.008
−0.006

+0.013
−0.007

+0.021
−0.016

+0.002
−0.002 −0.023+0.009

−0.006
+0.000
−0.000

+0.020
−0.019

+0.002
−0.002

〈S4〉[4.3,6] 0.186+0.004
−0.003

+0.034
−0.083

+0.017
−0.018

+0.001
−0.001 0.212+0.003

−0.003
+0.004
−0.005

+0.015
−0.017

+0.000
−0.001

〈S4〉[6,8] 0.221+0.002
−0.002

+0.018
−0.088

+0.012
−0.013

+0.001
−0.001 0.245+0.001

−0.002
+0.002
−0.003

+0.011
−0.012

+0.001
−0.001

〈S5〉[0.1,2] 0.207+0.004
−0.007

+0.008
−0.061

+0.012
−0.016

+0.004
−0.005 0.211+0.006

−0.009
+0.000
−0.001

+0.013
−0.018

+0.005
−0.005

〈S5〉[2,4.3] −0.167+0.018
−0.025

+0.068
−0.038

+0.040
−0.035

+0.006
−0.007 −0.172+0.016

−0.023
+0.006
−0.004

+0.034
−0.032

+0.005
−0.006

〈S5〉[4.3,8.68] −0.424+0.011
−0.019

+0.157
−0.021

+0.018
−0.015

+0.002
−0.002 −0.406+0.010

−0.016
+0.007
−0.005

+0.019
−0.018

+0.002
−0.002

〈S5〉[1,6] −0.178+0.016
−0.027

+0.069
−0.040

+0.038
−0.033

+0.005
−0.006 −0.177+0.015

−0.024
+0.005
−0.004

+0.032
−0.031

+0.005
−0.006

〈S5〉[1,2] 0.149+0.016
−0.023

+0.011
−0.045

+0.039
−0.041

+0.007
−0.008 0.135+0.018

−0.024
+0.003
−0.004

+0.038
−0.041

+0.007
−0.008

〈S5〉[4.3,6] −0.369+0.011
−0.024

+0.148
−0.038

+0.023
−0.020

+0.002
−0.002 −0.359+0.010

−0.020
+0.009
−0.007

+0.022
−0.021

+0.002
−0.002

〈S5〉[6,8] −0.445+0.011
−0.021

+0.161
−0.019

+0.016
−0.015

+0.002
−0.001 −0.424+0.010

−0.018
+0.006
−0.004

+0.019
−0.018

+0.002
−0.001

〈S6s〉[0.1,2] 0.174+0.002
−0.003

+0.078
−0.09

+0.006
−0.007

+0.000
−0.000 0.163+0.003

−0.005
+0.008
−0.009

+0.007
−0.009

+0.001
−0.001

〈S6s〉[2,4.3] 0.105+0.018
−0.026

+0.113
−0.069

+0.044
−0.043

+0.005
−0.007 0.062+0.017

−0.023
+0.005
−0.005

+0.044
−0.039

+0.005
−0.006

〈S6s〉[4.3,8.68] −0.235+0.018
−0.032

+0.173
−0.231

+0.034
−0.030

+0.003
−0.003 −0.273+0.016

−0.027
+0.018
−0.016

+0.033
−0.025

+0.003
−0.003

〈S6s〉[1,6] 0.055+0.016
−0.029

+0.036
−0.033

+0.042
−0.041

+0.004
−0.006 0.017+0.013

−0.025
+0.001
−0.001

+0.042
−0.037

+0.004
−0.005

〈S6s〉[1,2] 0.265+0.008
−0.014

+0.28
−0.171

+0.025
−0.028

+0.003
−0.005 0.231+0.013

−0.017
+0.018
−0.020

+0.024
−0.027

+0.004
−0.005

〈S6s〉[4.3,6] −0.116+0.015
−0.033

+0.089
−0.161

+0.042
−0.038

+0.003
−0.003 −0.159+0.013

−0.026
+0.012
−0.011

+0.041
−0.033

+0.002
−0.003

〈S6s〉[6,8] −0.270+0.017
−0.037

+0.198
−0.246

+0.031
−0.028

+0.003
−0.003 −0.309+0.015

−0.030
+0.020
−0.017

+0.030
−0.022

+0.003
−0.004

Table 6. SM predictions for FL, S3, S4, S5, S6s in various bins. Same notation as table 3.
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