
A

On the Impact of UML Analysis Models on Source Code
Comprehensibility and Modifiability

GIUSEPPE SCANNIELLO, University of Basilicata
CARMINE GRAVINO, University of Salerno
MARCELA GENERO, University of Castilla - La Mancha
JOSE’ A. CRUZ-LEMUS, University of Castilla - La Mancha
GENOVEFFA TORTORA, University of Salerno

We carried out a family of experiments to investigate whether the use of UML models produced in the
requirements analysis process helps in the comprehensibility and modifiability of source code. The family
consists of a controlled experiment and three external replications, carried out with students and profession-
als from Italy and Spain. 86 participants with different abilities and levels of experience with the UML took
part. The results of the experiments were integrated through the use of a meta-analysis. The results of both
the individual experiments and the meta-analysis indicate that UML models produced in the requirements
analysis process influence neither the comprehensibility of source code nor its modifiability.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General; D.2.7 [Software Engineer-
ing]: Maintenance; D.3.2 [UML]: Experiments

General Terms: Documentation, Design, Experimentation, Human Factors

Additional Key Words and Phrases: Analysis models, UML, controlled experiment, family of experiments,
maintenance, comprehensibility, modifiability, replicated experiments

ACM Reference Format:
ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 26 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The Unified Modeling Language (UML) [OMG 2010] is the de facto standard for object-
oriented software analysis and design modeling [Erickson and Siau 2007] [Grossman
et al. 2005]. However, there is still a significant resistance to model-based development
in many software organizations because the UML is perceived to be difficult to learn
and use for novice developers [Agarwal and Sinha 2003], expensive and not necessarily
cost-effective [Arisholm et al. 2006]. This is even worse for organizations that use lean
processes to develop software [Cohen et al. 2004]. It is thus important, if not crucial, to
investigate whether the use of the UML can make a practical difference and justify the
implied costs. It is also important to study in which context and under which conditions
the UML makes or does not make a practical difference.

Although there are a number of empirical studies on the UML [Budgen et al. 2011],
few evaluations of the benefits derived from its use in the whole software development
life cycle have been reported [Anda et al. 2006]. This lack is even more evident in the
software maintenance phase with respect to the benefits of UML models in source code
comprehension and modification. The results of the survey presented by Scanniello et

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:2 G. Scanniello et al.

al. [2010] showed that the core business of the interviewed companies mainly con-
cerns the development and the maintenance of software systems modeled using the
UML and implemented using object-oriented programming languages. With regard to
the maintenance phase, very often the software maintainers have at their disposal
only the models produced in the requirements analysis process. The survey presented
by Dobing and Parsons [2006] showed that many of the respondents (e.g., members
of the OMG organization) found the models produced in the requirements elicitation
phase useful to perform maintenance operations. In particular, 68% and 61% of the re-
spondents rated, respectively, use case narratives and use case diagrams as useful for
software maintenance. Weidenhaupt et al. [1998] claimed that in industry, use cases
are not only useful in the requirements engineering phase, but in the whole system
development process including software maintenance. The results were obtained from
application scenarios in 15 industrial projects. In an early paper [Lubars et al. 1993],
the results of a series of structured interviews with the practitioners are presented.
This study aimed to find out how software organizations deal with the definition, in-
terpretation, analysis, and use of requirements for their software systems and prod-
ucts. These practitioners were employees of 10 software organizations, who worked on
23 projects from different domains. One of the most interesting results is that models
produced in the requirements engineering process are used in software reuse and inte-
gration. Based on the findings above, we have therefore performed a series of empirical
investigations (i.e., a family of controlled experiments) with the goal of verifying the
following research question:

— Do the software models produced in the requirements analysis process aid in the com-
prehensibility and modifiability of source code?

To obtain an initial insight into the usefulness of these models, some of the authors of
this paper carried out an experiment as a pilot study (with 16 third year Bachelor stu-
dents from the University of Basilicata in Italy) [Gravino et al. 2010]. They considered
the method proposed by Bruegge and Dutoit [2003], in which functional requirements
are represented by: functional models, object (or conceptual) models, and dynamic mod-
els. Use case diagrams and use cases were employed to represent functional require-
ments. Class diagrams were used to abstract the objects from the problem domain (i.e.,
the object or conceptual model), while sequence diagrams were employed to model the
dynamic and/or functional behavior of both the users and the system. For brevity, in
the remainder of this paper we shall use the term “UML analysis models” (or analysis
models) to indicate these models.

The results of the pilot study revealed that the comprehension of source code slightly
improves when it is added with UML analysis models (about 1%). In order to increase
external validity, we carried out a family of experiments to investigate whether this
result also holds in different contexts. The family does not include the pilot study
[Gravino et al. 2010] and consists of one experiment (conducted in Italy at the Univer-
sity of Basilicata with students) and three external replications (performed in Spain
at the University of Castilla La Mancha with students and practitioners). In order to
take into account the differences between experiments and to obtain the overall effect
of analysis models, we have integrated the results of the experiments by performing a
meta-analysis.

This paper is organized as follows. In Section 2, we present the family of the experi-
ments, while the results obtained are presented in Section 3 and discussed in Section
4. The threats to validity and the related work are highlighted in Section 5 and Section
6, respectively. The paper is concluded with our final remarks and future work.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:3

Table I. Participants in the family of experiments grouped by experiment
Experiment Context Description Number Type
E-UBAS University of Basilicata Original experiment 24 1st year MSc Students
R1-UCLM University of Castilla La Mancha Replication of E-UBAS 22 2nd year MSc Students
R2-UCLM University of Castilla La Mancha Replication of E-UBAS 22 1st year MSc Students
R3-UCLM Practitioners in Spain Replication of E-UBAS 18 -

2. THE FAMILY OF EXPERIMENTS
Families of experiments allow researchers to answer questions that are beyond the
scope of individual experiments and to generalize findings across studies, thus provid-
ing evidence with which to confirm or reject specific hypotheses [Basili et al. 1999].
In addition, families of experiments can contribute to the conception of important and
relevant hypotheses that may not be suggested by individual experiments.

To show that a given finding is robust, external replications1 can be conducted to
get additional confidence that the original results were not affected by experimenters’
bias. The choice and the numbers of the factors to be varied is relevant because a larger
number of variations could make it less likely that observed results are traced to the
factor of interest [Shull et al. 2008]. Variations in the experience of the participants
and in the environmental factors in replications can contribute some confidence that
the effect is not limited to one particular setting.

We carried out a family of experiments consisting of an experiment and three ex-
ternal replications. Table I summarizes the experiments of our family. The original
experiment (denoted E-UBAS) was carried out at the University of Basilicata in 2010
with 24 first year students from the Master’s program in Computer Science. This ex-
periment was replicated three times at the University of Castilla La Mancha in Spain
in the same year by varying the experience of the participants. These latter experi-
ments were denominated as R1-UCLM, R2-UCLM, and R3-UCLM. The participants
in R1-UCLM were 22 second year students from the Master’s program in Computer
Science. R2-UCLM was performed with 22 first year students from the Master’s in
Computer Science. R3-UCLM was conducted with a group of 18 practitioners. All the
professionals had at least a Bachelor degree in Computer Science.

Features that made the experiments in the family distinct from the pilot study were
the experimental design and the dependent variables used. We also renewed and im-
proved the material and experimental objects. The experimental material used in the
pilot and in E-UBAS was in Italian. The replications were performed after a native
Spanish speaker had translated all the material (e.g., documentation and identifiers
of the source code) from Italian into Spanish. All of the participants in our family of
experiments had more experience than the people who took part in the pilot study pre-
sented by Gravino et al. [2010]. The data of the pilot study are not analyzed together
with those of the family of experiments presented here.

The experiments were carried out by following the recommendations provided by
Juristo and Moreno [2001], Kitchenham et al. [2002], and Wohlin et al. [2000]. The
experiments were reported according to the guidelines suggested by Jedlitschka et al.
[2008]. For replication purposes, we made an experimental package available on the
web at http://www2.unibas.it/gscanniello/ExpAMvsSC/ This package also includes
the raw data of the experiments and additional analyses.

In the following subsections, we describe the experimental process followed to carry
out the family of experiments.

1These experiments can also be considered differentiated replications of the original experiment. In fact,
they introduce a variation in the essential aspects of the experimental conditions, i.e., the kind of partici-
pants involved.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:4 G. Scanniello et al.

2.1. Goal
The goal of our family of experiments can be formalized as follows, according to the
GQM (Goal Question Metrics) template by Basili and Rombach [1988]:

analyze the use of UML analysis models
for the purpose of understanding their utility
with respect to the comprehensibility and modifiability of source code
from the point of view of the maintainer
in the context of students in Computer Science and practitioners.

The GQM formalism ensures that important aspects are defined before the planning
and the execution took place [Wohlin et al. 2000].

2.2. Context selection
We used two systems in the family of experiments:

S1.. A software system to sell and manage CDs/DVDs in a music shop;
S2.. A software system to book and buy theater tickets.

Both the systems were desktop applications based on the Model-View-Controller
(MVC) architectural model. The documentation of these two systems was created
within a course on Advanced Object Oriented Programming (AOOP) by its lecturer,
who was not involved in the study presented here. The documentation (i.e., require-
ments analysis document, system design document, and object design document) was
developed adopting an incremental development process similar to the one suggested
by Bruegge and Dutoit [2003]. One of the authors reviewed the documentation of the
two systems to find possible issues. No remarkable modifications were needed to im-
prove the documentation (e.g., typographical errors from the models were removed)
and source code (e.g., the source code was indented).

The documentation of S1 and S2 was used by groups of 4 or 5 students to imple-
ment these software systems in Java as a laboratory activity of the AOOP course. In
the software industry the software engineers who design a system may be different
from those that will develop it. The documentation of S1 and S2 can be considered
realistic enough for small-sized development projects of the following kinds: in-house
software (the system is developed inside the software company for its own use) or
sub-contracting (a sub-contractor develops or delivers part of a system to a main con-
tractor) [Lauesen 2002]. The students that developed these systems did not participate
in the experiments. In these experiments, we used the source code that the lecturer of
the AOOP course selected from among the software systems developed in the academic
year 2004-2005 and 2005-2006. We did not have any control on the selection process of
these systems. However, we asked the lecturer to choose the implementation he con-
sidered the best for S1 and for S2. He opted for the implementations of the students
who achieved the best grade in the AOOP course. For each experiment in the family,
the design choices above reduced internal and external validity threats.

We selected the two experimental objects within S1 and S2 keeping in mind a trade-
off between complexity and relevance of the functionality chosen. For S1, we selected
the feature search for a singer: the user inserts a string (e.g., the surname of the
singer), than the system searches for all the singers that satisfy the search criterion
and shows them in a list with the associated information. For S2, we considered buy a
theater ticket: the system shows the list of the available tickets for a given theater and
performance and then the user chooses the ticket and inserts data about the spectator.
A functionality is represented with the successful use case. Both for S1 and S2, excep-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:5

tional and/or boundary conditions (e.g., if there is no singer that satisfies the search
criteria specified by the user) were taken into account.

We selected the analysis models and the associated source code so that a compre-
hension and modification task on them needed about one hour. The use of incomplete
documentation and of a subset of the entire software system on which a maintenance
operation impacts is quite common in the software industry. The documentation could
be incomplete for several reasons. Examples are when only part of the documentation
exists (e.g., in lean development processes), is up to date, or is useful to perform a
maintenance operation (since it impacts only on few subsystems) [Bruegge and Du-
toit 2003], [McDermid 1991]. This is also the case when traceability management is
exploited in a software development project [Asuncion et al. 2007], [Lindvall and San-
dahl 1996]. The experimental objects were selected to be similar to each other.

Analysis models accompanied chunks of source code implementing the specific func-
tionality of S1 and S2 consisting of 463 and 378 LOCs (Lines of Code), respectively. The
experimental object selected in S1 constituted 6 classes, while the other 5. We removed
the comments within the source code of the two chunks of S1 and S2 to avoid biasing
the results. The analysis models for S1 contained: a use case diagram, two use cases
described according to the template suggested by Bruegge and Dutoit [2003], a con-
ceptual model (detailed information on each of the four selected classes was provided
through a table that also included a short summary on the meaning and the role of the
class), and two sequence diagrams (one was for the main success scenario, while the
other was for a boundary condition). Similarly to S1, we gave for S2 a document with:
a use case diagram, two use cases, a conceptual model, and two sequence diagrams.

We conducted all the experiments in research laboratories under controlled condi-
tions. For each experiment, the participants had the following characteristics:

E-UBAS. The participants were students of a Software Engineering II course. Dur-
ing the Bachelor program in Computer Science at the same university, the partici-
pants had passed all the exams related to the following courses: Software Engineer-
ing I and Object Oriented Programming I and II, and Data Bases.
R1-UCLM. The participants were students of a Software Engineering II course.
The vast majority of the students had passed all the exams related to the following
courses: Software Engineering I, Object Oriented Programming I and II, and Data
Bases.
R2-UCLM. This replication was carried out as part of a Software Engineering II
course. Most of the participants had passed the exams related to the Software En-
gineering I and Object Oriented Programming I courses. The students of R1-UCLM
and R2-UCLM were enrolled in different curricula. The modeling experience of
these participants was less than those of R1-UCLM.
R3-UCLM. This replication was performed with practitioners contracted in re-
search projects in the Alarcos Research Group at the University of Castilla-La Man-
cha. Half of them had started working approximately a month before the replication
took place, while the rest had work experience of between 5 months and 8. The mod-
eling experience of these participants was higher than that of the participants in the
other experiments. We asked the practitioners to participate in the experiment as
part of their work hours. This choice was made to encourage them to participate in
the experiment.

The students participated in the experiments on a voluntary basis: we neither forced
then to participate nor paied them for their participation in the experiments.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:6 G. Scanniello et al.

2.3. Variable selection
We considered the students who were given source code without comments and with-
out UML analysis models as the Control Group, while the Treatment Group comprised
students who were given source code (without comment) with UML analysis models.
Then, Method is the independent variable (the main factor from here on). It is a nom-
inal variable that can assume the following two values: AM (Analysis Models plus
source code) and SC (Source Code alone).

The selected dependent variables are:

Comp Level. This denotes the comprehension level of the source code achieved by
a software engineer.
Modi Level. This denotes the capability of a maintainer to modify source code.

We used two questionnaires to obtain a quantitative evaluation of Comp Level and
Modi Level, respectively. The questionnaires were composed of questions, each of
which demanded an open answer. A sample question (here translated into English
from Italian) of the comprehension task on S2 is: In case the user selects a ticket for an
already booked chair, what is the method invoked and what is the message shown to the
user? On the other hand, a sample question of the modification task on S2 is: Which
methods have to be modified to add an entry “Help” to the Start Menu and to change
the theater name? The complete list of questions of the comprehension and modification
tasks for S1 and S2 are reported in the appendix.

We used an information retrieval based approach [Baeza-Yates and Ribeiro-Neto
1999] to quantitively assess the answers obtained. Each answer is provided as a set of
string items (for example a sequence of method/class names and/or the text messages
shown to a user), which are compared in turn with the expected items. Minor spelling
issues in the string items are not considered as mistakes (e.g., actionPerformed() vs.
actionPerform()). The correctness of the obtained answers was measured with the pre-
cision measure, while the completeness was measured with the recall measure. These
measures are defined as follows:

recalls,i =
|answerss,i ∩ correcti|

|correcti|
(1)

precisions,i =
|answerss,i ∩ correcti|

|answerss,i|
(2)

where answerss,i is the set of string items provided as the answer to the question i
by the participant s, and correcti is the correct set of string items expected for the
question i. In order to obtain a balance between correctness and completeness of an
answer, we computed the harmonic mean of precision and recall (i.e., F-Measure).

To obtain a single measure representing the quality of the responses to all the ques-
tions of a questionnaire, we computed the overall average of the F-Measure values.
Both Comp Level and Modi Level are ratio scale measures.

We also analyzed the effect of the other independent variables (also called co-factors,
from here on):

System. This factor indicates the system (i.e., S1 or S2) used as the experimental
object. The effect of the System factor should not be confounded with that of the
main factor. Therefore, we selected well-known domains and experimental objects
with a similar size and complexity.
Run. The participants were asked to accomplish two tasks in two subsequent lab-
oratory runs (or trials). We analyzed whether passing from the first laboratory run
to the next one might affect the results.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:7

Table II. Experiment Design

Run Group 1 Group 2 Group 3 Group 4
First S1, AM S1, SC S2, AM S2, SC
Second S2, SC S2, AM S1, SC S1, AM

Ability. The students from the University of Basilicata with average marks2 below
24/30 were classified as low ability participants, otherwise students were classified
as high. In the replications conducted with students and professionals in Spain, the
threshold was 9/10 of the exams passed. Those participants with average marks be-
low 9/10 were therefore classified as low, otherwise high. We used different thresh-
old values in the experiments conducted in Italy and Spain because different grad-
ing systems are used in these countries. Our approach is similar to that proposed
by Ricca et al. [2010] and by Abrahão et al. [2012].

2.4. Hypotheses formulation
The following two null hypotheses have been formulated and tested:

Hn0. The Method (AM or SC) used does not significantly affect the participants’
level of comprehensibility (Comp Level) when performing source code comprehen-
sion tasks.
Hn1. The Method (AM or SC) used does not significantly affect the participants’
level of modifiability (Mod Level) when performing source code modification tasks.

The goal of the statistical analysis is to reject these null hypotheses and possibly to
accept the alternative ones (i.e., Ha0 = ¬Hn0 and Ha1 = ¬Hn1), which can easily be
derived because they admit a positive effect of Method. Both hypotheses are two sided
because the results of our pilot study.

2.5. Design of the experiment
In contrast to the pilot study, in E-UBAS and its replications we used the within-
participants counterbalanced experimental design (see Table II). This ensures that
each participant worked on different experimental objects (S1 or S2) in two runs, using
each of the methods ones. This design was preferred to the original one, since it is
particularly suitable for mitigating possible carry-over effects3 and allows the effect of
co-factors (e.g., System) to be studied. In addition, it represents the best choice when
the number of participants is not so large.

All the experiments are balanced with respect to the number of participants as-
signed to AM and SC and the assignment of the participants to each group in Table
II has been performed using Ability as blocking factor. Within E-UBAS, the number
of participants in each group were 6 (3 high and 3 low, respectively). As for R1-UCLM
and R2-UCLM, we assigned 6 students to Group 1 and Group 2 each and 5 students
to Group 3 and Group 4 each. The number of high ability participants was the same
in each group (i.e., 2) in R1-UCLM and R2-UCLM, respectively. Within R3-UCLM, we
assigned 5 participants to Group 1 and Group 2 each. The other groups contained 4
participants. In this way, we had 36 observations in R3-UCLM: 18 for AM and 18 for
SC. For AM and SC, 9 participants accomplished the task on S1 and 9 on S2. The num-

2In Italy, the exam grades are expressed as integers and assume values between 18 and 30. The lowest
passing grade is 18, while the highest is 30. On the other hand, grades assume values between 5 and 10 in
Spain. The lowest grade is 5, while the highest is 10.
3If a participant is tested first under the condition A and then under the condition B, he/she could potentially
exhibit better or worse performances under the condition B. In the first case we talk of learning effect, while
in the second case of fatigue effect.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:8 G. Scanniello et al.

ber of observations in our family of experiments can be easily derived, namely 172 in
total.

2.6. Experimental tasks
We asked the participants to perform the following three tasks:

(1) Comprehension task: The participants were asked to fill in a questionnaire com-
posed of 5 questions.

(2) Modification task: We also asked the participants to fill in a questionnaire to
assess their capability in performing modification operations on source code. This
questionnaire was composed of 4 questions. Note that the participants had to an-
swer the questionnaire, but did not have to carry out the real modifications of
source code.

(3) Post-experiment task: At the end of the second run, we asked the participants
to fill in the post-experiment questionnaire shown in Table III. The goal of this
questionnaire was to obtain feedback about the participants’ perceptions of the
experiment execution and possibly explain quantitative results. The answers to
questions Q1, Q2, Q3, Q6, and Q7 were based on a five-point Likert scale [Oppen-
heim 1992]: from strongly agree (1) to strongly disagree (5). Questions Q4 and Q5
demanded answers according to a different five-point Likert scale: from very high
(A) to very low (E).

2.7. Experiment operation
The participants first attended an introductory lesson in which the experimenters pre-
sented detailed instructions on the experiment. Details on the experimental hypothe-
ses were not provided, and the participants were informed that their grade on the
course would not be affected by their performance (i.e., Comp Level and Modi Level).
However, we rewarded the students for their participation with a bonus in their final
mark. To familiarize then with the experimental procedure, the participants accom-
plished an exercise similar to that which would appear in the experimental tasks. The
system used in that exercise was the poker game. The participants were provided with
analysis models accompanied with a chunk of source code implementing the use case:
adding a new game. We did not impose any time limit to accomplish that exercise. The
participants were also informed that the data collected in the experiments were used
for research purposes and treated confidentially.

After the introductory lesson, we assigned the participants to Group 1, Group 2,
Group 3, and Group 4 (Table II). No interaction was permitted among the participants,
both within each laboratory run and while passing from the first run to the second one.
No time limit for performing each of the two runs was imposed.

To carry out the experiment, the participants first received the material for the first
laboratory run and, when they had finished, the material for the second run was pro-

Table III. Post-experiment Survey Questionnaire
Id Question Possible Answers
Q1 I had enough time to perform the tasks (1-5)
Q2 The task objectives were perfectly clear to me (1-5)
Q3 The questions to be answered in the tasks were perfectly clear to me (1-5)
Q4 Judge the difficulty of the tasks related to the system related to “search for a singer” (A-E)
Q5 Judge the difficulty of the task related to the system related to buy a “theater ticket” (A-E)
Q6 The analysis models were useful to comprehend the source code (1-5)
Q7 The analysis models were useful to maintain the source code (1-5)
1 = strongly agree; 2 = agree; 3 = neutral; 4 = disagree; 5 = strongly disagree
A = very high; B = high; C = medium; D = low; E = very low

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:9

vided. After the completion of both the runs, they were given the post-experiment ques-
tionnaire.

2.8. Analysis procedure
To perform the data analysis, we carried out the following steps:

(1) We undertook the descriptive statistics of the measures of the dependent variables,
i.e., Comp Level and Modi Level.

(2) We planned to test the null hypotheses using unpaired analyses (each participant
executed the two tasks on two different experimental objects). Then, we opted for
the unpaired t-test in case data are normally distributed. The normality of the data
is tested by the Shapiro-Wilk W test [Shapiro and Wilk 1965] (Shapiro test in the
following). The non-parametric Wilcoxon rank-sum test (also known as the Mann
Whitney test) [Conover 1998] was the chosen alternative to the unpaired t-test.
To strengthen the results of each experiment, we decided to integrate them using
a meta-analysis. Meta-analysis is a set of statistical techniques for combining the
different effect sizes of the experiments to obtain a global effect of a factor on a
dependent variable (e.g., Method on Comp Level and Method on Modi Level). For
each dependent variable, we computed the mean value obtained by the participants
when using AM, minus the mean value they obtained with SC. We used these
values to compute the Hedges’ g metric [Hedges and Olkin 1985] [Kampenes et al.
2007]. To obtain the overall conclusion, we calculated the Z score based on the mean
and standard deviation of the Hedges’ g statistics of the experiments. Therefore,
the global effect size was obtained by using the Hedges’ g metric, with the weights
proportional to the experiment size:

Z̄ =

∑
i

wizi∑
i

wi
(3)

wi = 1/(ni − 3) and ni is the sample size of the i-th experiment. The higher the
value of Hedges’ g, the higher is the corresponding mean difference. An effect size
of 0.5 indicates that the mean value obtained when using analysis models is half
a standard deviation larger than the mean when not using them. As suggested
by Kampenes et al. [2007], the effect size can be classified as: small (S) for values
between 0 and 0.37, medium (M) for values between 0.38 and 1.0, and large (L) for
values above 1.00. The results of the meta-analysis are summarized by means of
forest plots [Hedges and Olkin 1985].

(3) We also analyzed the influence of the co-factors. We planned to use a two-way Anal-
ysis of Variance (ANOVA) [Devore and Farnum 1999] if the data are normally dis-
tributed and if their variance is constant. We decided to use the tests of Shapiro
and Levene [1960] to verify these two assumptions, respectively. In case these as-
sumptions were not verified, we opted for a two-way permutation test [Baker 1995],
a non-parametric alternative to the two-way ANOVA.

(4) The responses to the post-experiment questionnaire were analyzed by using the
median of the answers to each question. In addition, we verified whether the par-
ticipants consistently agreed with each statement of that questionnaire using sta-
tistical tests (i.e., the Mann Whitney test). We tested the null hypothesis that the
responses are not significantly less than the mid-value (i.e., neutral or medium).
This was possible because of the ordinal scales of the possible responses: (i) from
“strongly agree” to “strongly disagree” and (ii) from “very high” to “very low”. Both
these scales are encoded with integers from 1 to 5. Note that in this case only non-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:10 G. Scanniello et al.

parametric analyses are possible because the distribution of the mid-values is not
normal.

In all the statistical tests performed, we decided (as customary) to accept a prob-
ability of 5% of committing a Type-1-Error [Wohlin et al. 2000] and used R (www.
r-project.org) as the environment for statistical computing. To perform the meta-
analysis, we used the Meta-Analysis v2 tool [Biostat 2006].

2.9. Differences between pilot study and the family of experiments
Our experience with the pilot study led us to make the following changes:

— The participants in all the experiments were more experienced than those in the
pilot study. This alteration was made to better analyze the effect of more highly
experienced participants on the comprehensibility and modifiability of the source
code when performing a maintenance task.

— We modified the questionnaires used to assess the source code comprehensibility
and modifiability in the pilot study, by making the questions open rather than
closed. The rationale for this modification was based on the fact that open questions
should, to as great an extent as possible, reduce the possibility of the participants
guessing and hence giving correct answers by chance [Scanniello et al. 2011].

— We organized the questions into two groups: comprehensibility and modifiability.
This change was made to analyze the effect of the analysis models on the compre-
hension of source code and on the participants’ capacity to modify it. Therefore, two
new dependent variables were introduced.

— We used a within-participant counterbalanced experimental design in all the exper-
iments of the family. This alteration was made to better study the effect of Method
and its interaction with the co-factors.

— We extended and modified the data analysis. In particular, the new dependent vari-
ables required the introduction of two new null hypotheses.

— A different group of experimenters conducted R1-UCLM, R2-UCLM, and R3-UCLM.

2.10. Documentation and Communication
Issues such as documentation [Shull et al. 2004] and communication among the exper-
imenters [Vegas et al. 2006] may influence the success or the failure of replications. To
handle these issues and to ensure consistency across the different experimenters, we
used laboratory packages, knowledge sharing mechanisms, and communication me-
dia. In particular, with regard to the documentation, a native speaker translated all
the experimental material, which was initially written in Italian, into Spanish. The
replicators supported the native speaker and helped him when needed (e.g., for trans-
lation of technical terms). Clarifications were asked of original experimenters when
needed. The material to be translated included: the post-experiment survey question-
naire, the comprehension and modification questionnaires, the data collection forms,
and the software artifacts used in the experiments (i.e., analysis models and source
code). We also shared: (i) a document to provide a common background in order to re-
produce the same experimental conditions in all the experiments and (ii) the paper in
which the pilot study was presented [Gravino et al. 2010].

We began with an initial face-to-face meeting in which the main ideas of the ex-
periments were discussed and reported in minutes. We exchanged the minutes of this
meeting by e-mail in order to agree to a shared common research plan. This phase was
relevant to sharing knowledge among the experimenters and to discussing possible
issues related to the study.

We used instant messaging tools and e-mails to establish a communication channel
in all the phases of the study (including the execution of the laboratory runs). We

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:11

Table IV. Descriptive statistics for Comp Level

Exp ID AM SC
Med. Mean Std. Dev. Med. Mean Std. Dev.

E-UBAS 0.765 0.728 0.155 0.725 0.731 0.132
R1-UCLM 0.580 0.556 0.233 0.625 0.625 0.234
R2-UCLM 0.255 0.332 0.256 0.585 0.586 0.200
R3-UCLM 0.475 0.479 0.229 0.625 0.606 0.225

Table V. Descriptive statistics for Modi Level

Exp ID AM SC
Med. Mean Std. Dev. Med. Mean Std. Dev.

E-UBAS 0.81 0.77 0.203 0.71 0.709 0.152
R1-UCLM 0.52 0.531 0.23 0.565 0.558 0.154
R2-UCLM 0.3 0.376 0.243 0.44 0.449 0.26
R3-UCLM 0.48 0.474 0.215 0.56 0.517 0.266

also executed teleconferences to share knowledge among the research groups and to
discuss the experimental procedure to be used in the external replications. The results
of the interactions were reported in a common document where all the decisions were
recorded. This also reduced consistency issues across the experimenters.

3. RESULTS
In this section, we present the data analysis following the procedure presented above.

3.1. Descriptive statistics and exploratory analysis
Table IV and Table V show the descriptive statistics of Comp Level and Modi Level,
respectively (i.e., median, mean, and standard deviation), grouped by Method:

— Comp Level: on average the participants achieved slightly better results when em-
ploying source code alone. Better median values for SC were achieved in all the
experiments, except for E-UBAS. The difference in favor of SC is more evident for
R2-UCLM and R3-UCLM.

— Modi Level: in the three replications (i.e., R1-UCLM, R2-UCLM, and R3-UCLM)
the participants achieved better results when using source code alone (see mean
and median values). However, for E-UABS the modifiability levels obtained by those
participants employing UML analysis models was higher than the level obtained by
the participants using source code alone.

We can observe that for Comp Level there is a clear tendency in favor of using source
code alone (see the mean values). For Modi Level, the results are less evident, and in
three out of the four experiments the participants obtained better Modi Level when
using source code alone. On both the dependent variables, the worst results were
achieved in R3-UCLM. This difference with the respect to the former experiments
could be due to the participants’ experience in programming and software modeling.

3.2. Influence of Method
3.2.1. Testing Hn0. For all the experiments, the Shapiro test returned p-values greater

than 0.05 and so we used the unpaired t-test for Hn0. The results shown in Table VI
indicated that there was no statistically significant difference when the participants
did or did not employ analysis models to perform a comprehension task. This holds for
all the experiments in the family with the exception of R2-UCLM, where a significant
difference in favor of SC for Comp Level was observed (p-value = 0.001; 95% confidence
interval, -0.395 to -0.115). In this case, the value of the statistical power4 was 0.893.

4Statistical power is the probability that a test will reject a null hypothesis when it is actually false. The
highest value is 1, while 0 is the lowest. The value 0.80 is considered as a standard for the adequacy [Ellis

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:12 G. Scanniello et al.

Table VI. Unpaired t-test results for Comp level and Modi level

Exp ID Dependent #obs p-value Statistical
β-value # of AM > SC # of AM < SC # of AM = SCVariable Power

E-UBAS Comp Level 48 No (0.944) 0.031 0.969 12/24 11/24 1/24
Modi Level 48 No (0.09) 0.197 0.803 15/24 8/24 1/24

R1-UCLM Comp Level 44 No (0.335) 0.225 0.775 9/22 12/22 1/22
Modi Level 44 No (0.654) 0.064 0.936 10/22 12/22 0/22

R2-UCLM Comp Level 44 Yes (0.001) 0.893 0.107 5/22 17/22 0/22
Modi Level 44 No (0.344) 0.131 0.869 11/22 11/22 0/22

R3-UCLM Comp Level 36 No (0.105) 0.327 0.673 8/18 10/18 0/18
Modi Level 36 No (0.594) 0.068 0.932 8/18 9/18 1/18

The β-values are always high, when the null hypotheses have not been rejected. The
highest value was obtained for E-UBAS (0.969), while the lowest for R3-UCLM (0.673).

Table VI also shows the number of participants that achieved better Comp Level
values when using: UML analysis models and source code together (# of AM > SC);
and the source code alone (# of AM < SC). The number of participants that obtained
the same Comp Level values using AM and SC (# of AM = SC) is also shown. For all
the experiments, with the exception of E-UBAS, the number of participants achieving
better results with source code alone was greater.

3.2.2. Testing Hn1. We used the unpaired t-test because the data were normally dis-
tributed: the Shapiro test returned p-values greater than 0.05 in all the experiments.
The null hypothesis Hn1 cannot be rejected for Modi Level (see Table VI). As with
Comp Level, we analyzed the number of participants that achieved better/worse val-
ues for Modi Level with AM or SC. For E-UBAS, the number of participants who
obtained better scores with AM was greater than the number of participants who
achieved better scores using SC. For the three experiments in Spain, the number of
participants who achieved better scores with SC was greater than the number of par-
ticipants who obtained better scores with AM.

The results suggest that there was no statistically significant difference on
Modi Level when the participants did or did not employ UML analysis models.
Nonetheless, the β-values are always greater than 0.8.

3.2.3. Integrating the obtained results through meta-analysis. Figures 1 and 2 show the forest
plots for Comp level and Modi Level, respectively. The squares indicate the individual
effect size of each experiment and the diamond (on the bottom) shows the global effect
size. The squares and diamonds are proportional in size to each study’s weight under
the fixed effect model (see the “Relative weight” column). The figures also show the
values of both the Hedges’ g metric and the global effect size. Positive values of the
Hedges’ g metric indicate that the use of analysis models improves the comprehensi-
bility and modifiability of source code, while negative values signify that source code
alone is the improving treatment. This implies that the models have a negative ef-
fect on Comp Level and Modi Level. In all the cases, with the exception of E-UBAS on
Modi Level, the participants achieved better values in both the dependent variables
when using source code alone.

The global effect size was statistically significant only for Comp Level (see Figure
1). The value obtained for the Hedge’s g metric (-0.451) indicates a medium size for the
global effect. The negative value reveals that the participants’ level of comprehensibil-
ity is better when using source code alone. This effect is statistically significant and
has a large effect size for R2-UCLM.

2010]. That power is computed as 1 minus the Type 2 error rate (i.e., β-value). This kind of error rate is used
to estimate the probability of accepting the null hypothesis when it is false. Therefore, when null hypotheses
cannot be rejected, it is meaningful to consider β-values in the discussion of the results.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:13

Table VII. Analysis on the co-factors for Comp Level and Modi Level
Exp ID Dependent variable System Run Ability

E-UBAS Comp Level No (0.852) No (0.551) No (0.425)
Modi Level (*) Yes (0.014) No (0.623) No (0.372)

R1-UCLM Comp Level Yes (< 0.001) No (0.214) No (0.372)
Modi Level No (0.125) No (0.137) Yes (0.021)

R2-UCLM Comp Level Yes (0.041) Yes (0.009) No (0.145)
Modi Level Yes (0.005) Yes (0.034) No (0.345)

R3-UCLM Comp Level Yes (< 0.001) No (0.584) No (0.122)
Modi Level Yes (0.025) Yes (0.025) No (0.061)

(*) These results were obtained using a two-way permutation test.

With regard to Modi Level, most of the squares in Figure 2 are on the left-hand side,
thus showing a tendency in favor of the use of SC. However, despite this tendency, the
global effect size is not statistically significant.

3.3. Analysis of co-factors
The results of the analysis of the co-factors is summarized in Table VII. For each exper-
iment, this table reports whether or not a co-factor has any effect on each of the two
dependent variables. The obtained p-values are shown in brackets and are obtained
with a two-way ANOVA. We could apply a two-way ANOVA in all the cases with the
only exception of E-UBAS, where we applied a two-way permutation test. The normal-
ity assumption was not verified for E-UBAS, Modi Level, and AM. In fact, the p-value
returned by the Shapiro test was 0.008. We report the results about the interaction
between Method and Run only for R2-UCLM on Comp Level: in all the other cases
there was not a statistically significant interaction between Method and the co-factors
on both the dependent variables.

3.3.1. System. We discuss below the results of the analysis of the co-factor System for
the two dependent variables Comp Level and Modi Level.

Comp Level. The results show that the effect of System on Comp Level was not sta-
tistically significant for E-UBAS, while it was statistically significant for the three
replications (p-values are < 0.001, 0.041, and < 0.001, respectively). The results sug-
gested that the participants in the replications obtained better Comp Level values
when performing the task on S1 both using SC and AM.

Modi Level. There was a positive effect of System in all the experiments with the
exception of R1-UCLM. The p-values are 0.014, 0.005, and 0.025, respectively. The

Fig. 1. Meta-analysis of Comp Level

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:14 G. Scanniello et al.

Fig. 2. Meta-analysis of the Modi Level

source code of S1 seemed to be more difficult to modify than the source code of S2. This
result is in contrast with the one achieved on Comp Level.

3.3.2. Run. We show below the results of the analysis conducted for Run on the two
dependent variables.

Comp Level. The results indicated that in all the experiments (with the exception
of R2-UCLM) the effect of the co-factor Run was not statistically significant. This sig-
nifies that the participants in the second run did not obtain significantly larger or
smaller results when using AM and SC on Comp Level. With regard to R2-UCLM, the
participants in the second run obtained significantly better results (p-value = 0.009).
An interaction between Method and Run was also present (p-value = 0.004).

Modi Level. The effect of Run was not statistically significant for E-UBAS and R1-
UCLM. For R2-UCLM and R3-UCLM, the effect of Run was statistically significant (p-
values are 0.034 and 0.025, respectively). The participants in each of these experiment
obtained better Modi Level values in the second run.

3.3.3. Ability. For the factor Ability, the results for the dependent variables are re-
ported below.

Comp Level. In all the experiments the effect of Ability was not statistically sig-
nificant on Comp Level. This signifies that high and low participants did not obtain
significantly larger or smaller differences on Comp Level.

Modi Level. The effect of Ability was not statistically significant on Modi Level for
E-UBAS, R2-UCLM, and R3-UCLM. The effect of Ability was statistically significant
for R1-UCLM (p-value = 0.021). High ability participants achieved significantly better
results than low ability ones on Modi Level.

3.4. Post-experiment survey questionnaire results
Table VIII reports the median values of the answers to the post-experiment question-
naire grouped by experiment together with the p-values returned by the Mann Whit-
ney test. The analysis of the responses revealed that the time needed to carry out the
comprehension and modification tasks was considered appropriate, and the objectives
of the tasks were clear for all the experiments. In particular, for all the experiments,
the medians of the answers for Q1 and Q2 were 1 (strongly agree) and 2 (agree), respec-
tively, and the p-values are less than 0.05. This signifies that the responses are signif-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:15

Table VIII. Post questionnaire answers

Quest. E-UBAS R1-UCLM R2-UCLM R3-UCLM
median p-value median p-value median p-value median p-value

Q1 1 YES (< 0.001 ) 2 YES (< 0.001) 1 YES (< 0.001) 2 YES (< 0.001)
Q2 1 YES (< 0.001) 2 YES (0.002) 2 YES (< 0.001) 2 YES (< 0.001)
Q3 2 YES (< 0.001) 2.5 NO (0.07) 3 NO (0.117) 2 NO (0.117)
Q4 3 YES (0.026) 3 YES (< 0.001) 2 YES (0.001) 2 YES (0.001)
Q5 3 NO (0.629) 3 YES (0.034) 3 NO (0.056) 3 NO (0.056)
Q6 2 YES (< 0.001) 2 YES (< 0.001) 2 YES (< 0.001) 1 YES (< 0.001)
Q7 2.5 NO (0.08) 3 NO (0.284) 2 YES (< 0.001) 2 YES (< 0.001)

icantly less than 3 (neutral), namely the greater part of the participants answered
strongly agree or agree.

The questions to be answered in each task were generally considered to be clear
in all the experiments because the medians for Q3 were in between 2 (agree) and 3
(neutral), extremes included. For E-UBAS, the p-value is less than 0.001. In all the
other experiments, we could not reject the null hypothesis that the responses are not
significantly less than 3 (neutral).

The analysis of the answers to Q4 and Q5 indicated that the participants found the
difficulty of the comprehension and modification tasks to be either medium or high
(i.e., the values of the medians were 2 or 3). This finding is confirmed by the quantita-
tive analysis on the responses. As for Q4, we could reject the null hypothesis that the
responses are not significantly less than 3 (medium). In contrast, the null hypothesis
for Q5 was not rejected (i.e., the participants found the tasks on S2 harder to perform).
This held for all the experiments with the only exception being R1-UCLM.

Finally, the participants generally considered UML analysis models to be useful
when performing the comprehension and the modification tasks. The medians of the
answers to question Q6 ranged from 1 (strongly agree) to 2 (agree) and the p-values
are always less than 0.001. The medians of the answers to Q7 ranged from 2 (agree) to
3 (neutral). As for R2-UCLM and R2-UCLM, we rejected the null hypothesis that the
responses are not significantly less than 3 (neutral). For E-UBAS and R1-UCLM, the
hypothesis was not rejected.

4. DISCUSSION
Although we were not able to reject the null hypotheses defined in each experiment, the
meta-analysis highlighted that the participants obtained better scores for Comp Level
when using SC. Therefore, we can conclude that analysis models did not help the par-
ticipants to comprehend source code although these models provided additional infor-
mation on the functionality implemented. This result might be because the models
did not refer to objects of the solution domain, but to objects (or entities) of the prob-
lem domain. Even though the meta-analysis improves the findings for the individual
studies, we cannot provide conclusive findings on whether analysis models helped in
comprehending source code in the context of graduate and novice practitioners with
respect to systems related to well-known domains and when only a part of the whole
documentation and code is available.

With regard to Modi Level, the meta-analysis did not allow us to obtain definitive re-
sults. However, the descriptive statistics reported in Table V showed a slight tendency
in favor of SC. Similarly to Comp Level, it might be possible that the participants did
not adequately pay attention to the source code because distracted by the the docu-
mentation and the analysis models. We can postulate that the UML analysis models
referred to objects of the problem domain and then did not provide any useful informa-
tion on the implementation.

It is also worth mentioning that the results of the family of experiments differ from
those obtained in the pilot study [Gravino et al. 2010], in which we observed a slight

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:16 G. Scanniello et al.

tendency in favor of UML analysis models. This difference might be owing to the vari-
ous improvements made (i.e., design and material) in all the experiments.

With regard to Ability, high ability participants achieved better results than low
ability ones. For all the experiments, the comprehension achieved by high ability par-
ticipants was better than that achieved by low ability participants when using AM.
This result indicates that a particular ability is needed to not have analysis models
affecting the participants’ comprehension in case of undergraduate and graduate stu-
dents and novice practitioners. To better analyze these differences, we computed the
mean percentage differences5. For example, the differences of Comp Level between
high and low ability participants ranged from 1% for E-UBAS to 55% for R2-UCLM.
As for Modi Level, high ability participants achieved higher scores than low ability
ones. The mean percentage differences on AM for Modi Level ranged from 6% for R2-
UCLM to 61% for R1-UCLM. The high ability participants got higher Comp Level
values than low ability ones, when analysis models were not used. The mean percent-
age differences ranged from 9% for E-UBAS and R3-UCLM to 14% for R1-UCLM. As
for Modi Level, these differences ranged from 1% for E-UBAS to 46% for R3-UCLM.

We also observed that for the three replications performed in Spain, S2 seemed to
be more difficult than S1 in terms of comprehensibility, while the same participants
achieved better results when performing the modification task on S2. These results
did not allow us to provide a definitive conclusion about the influence of the co-factor
System (i.e., whether S1 was more/less difficult than S2). This result could be justi-
fied by the participants’ varying levels of familiarity with the problem and solution
domains of the systems S1 and S2. This finding suggests that in the selected context
the familiarity with the problem domain could affect comprehensibility and modifia-
bility more than the presence or the absence of analysis models. This point deserves
specially conceived future investigations.

4.1. Implications of the Study
We adopted a perspective-based approach [Basili et al. 1996] to judge the implications
of our family of experiments. In particular, we based our discussion on the practi-
tioner/consultant (simply practitioner in the following) and researcher perspectives
[Kitchenham et al. 2008]. The main practical implications of our study can be summa-
rized as follows.

— The use of UML analysis models seems useless in the performance of maintenance
operations. This result is relevant from both the practitioner and the researcher per-
spectives. From the practitioner perspective, this result is relevant because it could
be useless to give additional information to maintainers, when performing small
maintenance operations (e.g., corrective). From the researcher perspective, it is in-
teresting to investigate whether variations in the context (e.g., larger systems and
more or less experienced maintainers) might lead to different results and why anal-
ysis models could be not useful. Taking into consideration the results by Arisholm
et al. [2006] (see the related work section) and those presented in this paper, it could
be possible that combining UML analysis models with models produced in the later
phases of the development process (i.e., design models) improves comprehensibility
and modifiability of source code. In fact, analysis models provide information on the
software system from the perspective of the functionality to be implemented, while
design models give details on the implementation. Analysis models and design mod-
els have different objectives that somehow complement each other. Although this
perhaps might be not surprising, this study poses the basis of future investigations

5Given two values (a, b), the mean percentage difference of a and b is computed as (a− b)/b ∗ 100.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:17

on how the combination of analysis and design UML models supports software en-
gineers in the maintenance phase.

— UML analysis models seem to distract the participants while performing compre-
hension and modification tasks. This result is relevant for the researcher because it
is interesting to investigate why participants (independently from the experience)
do not get an improved comprehension of source code when it is combined with
analysis models. A plausible justification for this result is that entity names have
changed between the models and the code, and relationships between the models
and the code have changed to become so much more intricate than what the mod-
els predicted. Again, combining analysis models with design models could make the
difference.

— High ability participants benefit more from UML analysis models than low ability
ones. This result is relevant for practitioners and researchers. Although the differ-
ence between high and low participants is not always statistically significant (see
Section 3.3.3 and Section 4), they achieved on average better values for Comp Level
and Modi Level when using AM. A possible justification for this result is that the
UML is just a notation and then provides a weak support for semantics [Booch et al.
2005]. For example, in the context of class diagrams, a conceptual model mostly
shows relationships between some entities, but the rationale behind those relation-
ships (rooted in the domain rich information) or the meaning of those relationships,
is not conveyed. Then, it could be possible that high ability participants are more
proficient than low ability ones in inferring and/or deducing the rationale/meaning
of those relationships and the semantics behind these models.

— The study is focused on desktop applications for selling CDs/DVDs in a music shop
and booking theater tickets. The documentation of these applications could be con-
sidered as developed in the following kinds of projects: in-house software or subcon-
tracting [Lauesen 2002]. The researcher and the practitioner could be interested in
answering the question: do the results observed hold for different kinds of software
systems developed in different kind of projects? Our study represents the first step
in this concern.

— Although we are not sure that our findings scale to real projects, the obtained results
could be true in all the cases in which the documentation is incomplete (e.g., in lean
development processes) and the maintenance operation is executed on a subset of
the source code of the entire system.

— Since in 6 out of 8 cases the effect of System is statistically significant, it seems that
the familiarity with the problem domain of a software system has more effect on
comprehensibility and modifiability of source code than the presence or the absence
of UML analysis models (see Sections 3.2.1, 3.2.2, and 3.3.1). This result could be of
interest for both researchers and practitioners. Both of them could be interested in
investigating if the previous expertise of a maintainer with the domain could posi-
tively or negatively affect comprehensibility and modifiability of source code when
completed with UML analysis models. Our justification about the familiarity with
the problem domain cannot be completely concluded from our results and so further
investigations are needed.

— The achieved results (see Section 3.3.1) also suggest that comprehensibility and
modifiability are not directly related: the source code of S1 was easier to compre-
hend and more difficult to modify, while the source code of S2 was easier to modify
and more difficult to comprehend. The study presented here poses the basis of fu-
ture investigations in the direction of investigating the relationships between com-
prehensibility and modifiability of source code. Therefore, this result is interesting
from the researcher and practitioner perspectives.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:18 G. Scanniello et al.

— The UML is widely used in the software industry [Dobing and Parsons 2006], [Scan-
niello et al. 2010]. The achieved results are then useful for all the companies that
exploit that notation as a support for software maintainers/developers to execute
maintenance operations. Nowadays studies on the UML are required to understand
in which cases its use improves comprehensibility and maintainability of source
code. There are only a few evaluations as we will discuss in the related work sec-
tion.

5. THREATS TO VALIDITY
5.1. Internal validity
Internal validity threats are diminished by the design of the experiments we adopted.
Each group of participants involved in the experiments worked on two different tasks,
with and without analysis models. Nevertheless, there is still the risk that the partic-
ipants might have learned how to improve their performances (i.e., comprehensibility
and modifiability values) when passing from the first laboratory run to the second one.
In all the experiments, the scores achieved by the participants were not significantly
better in the second run (except for R2-UCLM on Comp Level and Modi Level and for
R3-UCLM on Modi Level).

Another possible threat to external validity concerns the fact that no time limit was
imposed to perform the tasks. It could be possible that the experiments were not able
to reveal differences because the participants had enough time to answer the questions
on the comprehension and modification questionnaires. We opted for this design choice
because this is quite common in experiments similar to ours [Sjøberg et al. 2005] and
because most experienced participants could have difficulty performing tasks under a
time limit [Mendonça et al. 2008].

For each experiment, the internal validity threat was also mitigated because the par-
ticipants had a similar amount of experience with the UML, software system modeling,
and computer programming. Furthermore, all the participants found the material pro-
vided, the tasks, and the goals of the experiment to be clear, as the post-experiment
survey questionnaire results showed.

Another issue concerns the exchange of information among the participants. The
participants were not allowed to communicate with each other. We prevented this by
monitoring them both during the runs and during the break between the two labora-
tory runs. When the experiment was concluded, the participants were asked to give
back all the experimental material.

5.2. External validity
External validity may be threatened when experiments are performed with students,
thus leading to doubts concerning the representativeness of the participants with re-
gard to software professionals. However, the tasks to be performed did not require a
high level of industrial experience, so we believed that the use of students as partici-
pants could be considered appropriate, as suggested in literature [Carver et al. 2003]
[Höst et al. 2000]. Working with students also implies various advantages, such as the
fact that the students’ prior knowledge is rather homogeneous, there is the possible
availability of a large number of participants [Verelst 2004], and there is the chance
to test experimental design and initial hypotheses [Sjøberg et al. 2005]. An additional
advantage of using students is that the cognitive complexity of the objects under study
is not hidden by the participants’ experience. Nonetheless, in order to strengthen the
external validity, we replicated the original experiment using 18 practitioners (R3-
UCLM). Although the number of practitioners is not so large it is compatible with
that of other similar empirical investigations (e.g., [Abrahão et al. 2012], [Arisholm

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:19

et al. 2006]). It was hard for us to find a larger number of practitioners because of
their availability and the restrictions of the research projects where we recruited the
participants involved.

Another threat to external validity concerns the experimental objects used. The orig-
inal experimenters, and then the external replications, were not involved in the real-
ization of the software documentation used and in the implementation of the system
used in the experiments. The size of the experimental objects could also threaten the
external validity of the results. The rationale for selecting the used experimental ob-
jects relies on the need to simulate actual comprehension tasks related to small main-
tenance operations that novice software engineers and/or junior programmers may
perform in a software company. Larger experimental objects could excessively over-
load the participants, thus biasing the experiments and their results. Also, the use
of the source code printout to execute the tasks (both using SC and AM) could have
threatened external validity: the participants could only statically analyze the source
code. This design choice was taken because the effect of executing the systems to solve
comprehensibility/modifiability tasks could be confounded with the effect of the main
factor. To confirm the results, we are going to conduct case studies in real software
development projects, with practitioners in their own projects and over a much longer
period of time. Using both controlled experiments and industrial case studies will allow
us to obtain a more credible body of knowledge on the effect of UML analysis models.
Nevertheless, from a pragmatic perspective, controlled experiments allow better un-
derstanding of issues and factors to be considered afterwards in the industrial case
studies [Arisholm et al. 2006]. This is because we opted for a family of experiments
and conducted it before industrial case studies.

5.3. Construct validity
Construct validity may be influenced by the measures used to obtain a quantitative
evaluation of comprehensibility and modifiability, the questionnaires to assess these
concerns, the post-experiment survey questionnaire, and social threats. We used a
well-known and widely used measure to obtain a quantitative evaluation of compre-
hensibility and modifiability (e.g., [Ricca et al. 2010], [Scanniello et al. 2011]). One
of the authors defined the questionnaires used to assess these aspects. Furthermore,
the comprehension/modification questionnaires were formulated to condition their an-
swers in favor of neither SC nor AM. The questions were also sufficiently complex
without being too obvious and were formulated in a similar form.

In all the experiments of our family, we considered two experimental objects. There-
fore, the construct is underrepresented: the tasks which are measured could fail to
include important dimensions or facets of the construct [Wohlin et al. 2000]. We delib-
erately varied only the experience of the participants and the environments because
changing a larger number of factors among the experiments could have a negative
effect on tracing the results onto the main factor [Shull et al. 2008].

We conducted external replications to mitigate construct validity. In order to reduce
consistency issues across the different experimenters, we carefully managed commu-
nication among the experimenters (see Section 2.10).

Other possible threats to construct validity could be related to: the translation of
the experimental material and social threats. To reduce the first kind of threat, we
involved a native speaker to translate all the material used. To avoid social threats
(i.e., evaluation apprehension), we did not grade the students on the results obtained
in the experiments.

To support and explain the quantitative results of the experiments we used a post-
experiment survey questionnaire. It was designed using standard approaches and
scales [Oppenheim 1992].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:20 G. Scanniello et al.

5.4. Conclusion validity
Conclusion validity threats concern the issues that affect the ability to draw a correct
conclusion. We used statistical tests to reject the null hypotheses. In particular, we ex-
ploited parametric statistical tests, when normality was verified, and non-parametric
statistical tests otherwise. A power analysis has been also performed.

Regarding the selection of the populations, we drew fair samples and conducted our
experiments with participants belonging to these samples. Another threat could be
related to the number of participants. This threat has been mitigated by conducting
our investigation with a large number of participants: 86 participants in the family
(and 16 participants in the pilot study). Due to the experimental design, the number of
observations in our family of experiments was 172 in total. The results of the original
experiment were confirmed with stronger evidence in all the replications.

The reliability of the used measures is another possible threat to conclusion valid-
ity. The used measures allowed us to assess in an objective and repeatable way the
concerns under study: comprehensibility and modifiability.

6. RELATED WORK
The benefits of software documentation for comprehending and modifying source code
have been largely studied (e.g., [Abbes et al. 2011], [Scanniello et al. 2010], [de Souza
et al. 2005], [Tilley and Huang 2003], [Tryggeseth 1997]). In this scenario, we present
hereafter research work related to our study. For example, Tryggeseth [1997] reported
an experiment carried out with 34 participants in Norway. The object under study was
a system comprising of 2.7K lines of code and around 100 pages of documentation,
mostly textual documentation including requirements specification, design documen-
tation, a test report, and a user manual. These participants were asked to record the
time they spent on different enhancement-maintenance tasks on that system. The fol-
lowing empirical findings were reported: (1) the aid of having documentation available
during system maintenance reduces the time needed to understand the system and
the changes implied by a change request, and (2) it also enables the maintainer with
more time and better knowledge to implement more detailed changes.

With respect to the usefulness of documenting design pattern instances to compre-
hend source code, only a few studies have been reported. Prechelt et al. [2002] pre-
sented two experiments to investigate whether maintainers are better supported in
the comprehension of source code when design pattern instances are or are not explic-
itly documented. The experiment was performed on Java source code by 74 German
graduate students, while the replication was on C++ source code using 22 American
undergraduate students. The results revealed that maintenance tasks were completed
faster and with fewer errors if design pattern instances were explicitly documented.
Gravino et al. [2011] performed two experiments with Master students in Computer
Science at two Italian universities. The 24 participants in the original experiment per-
formed a comprehension task with and without graphically-documented (with UML
class diagrams) design pattern instances. Design pattern instances textually docu-
mented in the source code (as comments) were provided or were not to the 17 par-
ticipants to perform a comprehension task within the replication. The results of this
empirical investigation provided evidence that maintainers achieved better compre-
hension of the source code when design pattern instances are graphically documented
and provided as a complement to the source code. This kind of documentation has
a statistically significant effect on the task completion time and on the efficiency to
accomplish that task. The replication results suggested that the effect of textually
documented design pattern instances was not statistically significant on source code
comprehension. However, descriptive statistics indicated a trend in favor of this kind

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:21

of documentation. Subsequently, the same authors [Gravino et al. 2012] conducted a
further replication with 25 professional software developers. In that replication, the
participants were divided into three groups. Depending on the group, each partici-
pant was or was not provided with graphical (with UML class diagrams) or textual
(source code comments) representations of the design pattern instances within the
source code. The results revealed that participants provided with the documentation
of the design pattern instances (both textual and graphical) achieved a significantly
better comprehension than the participants with source code alone. Summarizing, the
results achieved in these three studies suggest that documentation is useful for soft-
ware maintenance.

Regarding the use of the UML as part of the documentation of an object-oriented
software system, two systematic literature reviews have recently been published. Bud-
gen et al. [2011] studied empirical investigations on the widely used UML notations
and their usefulness. Fernández-Saez et al. [2000] collected the existing literature fo-
cused on the quality of UML models. Both systematic literature reviews show that
comprehensibility and modifiability are the major concerns. It was also shown that
there are few evaluations on how UML models support software engineers in the whole
software development life cycle. In particular, very few papers report the use of UML
in the maintenance of source code. In particular, Dzidek et al. [2008] presented the
results of two controlled experiments carried out with students from different uni-
versities. Unlike us, they considered UML documents including: a use case diagram,
sequence diagrams for each use case, and class diagrams. The quantitative results
showed that UML models did not make a significant impact on the time needed to per-
form the modification tasks, both excluding and including the time needed to update
the documentation. The quality of the modifications was greater when the participants
had UML models. The effect of participants’ ability and experience is not analyzed. Ar-
isholm et al. [2006] presented the results of a controlled experiment carried out to
assess the impact of UML design models on software maintenance. Software profes-
sionals were involved. The authors analyzed the time taken to perform the modifica-
tions to the system, the time spent on maintaining the models, and the quality of the
modifications performed. The results of the quantitative analysis revealed no signifi-
cant difference in the time spent making the modifications. Similarly to Dzidek et al.
[2008], they observed that the quality of the modifications was higher for those partic-
ipants who were furnished with UML models. In some sense, our work fills in a gap in
that work, explicitly considering models produced in a given phase of the development
process: models produced in the requirement engineering process and design phase
have been considered together [Arisholm et al. 2006]. Another difference with respect
to our study is that the authors analyzed the effect of UML based documentation (a use
case diagram, sequence diagrams for each use case, and a class diagram) on modifica-
tion tasks performed both on UML diagrams and source code. Again our work fills in a
gap in that work by considering the effect of analysis models on the comprehensibility
of source code. Similar to Dzidek et al. [2008], the participants’ ability and experience
were not analyzed with respect to comprehensibility and modifiability of source code.

The research work presented in this paper is different from previous work, since it
pursues a different goal. In particular, the focus here is on the UML models produced
in the early phases of the development process: requirements elicitation and analysis.
The results shown here, and those of the studies discussed just above, suggest that
software documentation is useful in comprehending and modifying source code only
when it includes models that represent aspects of the solution domain and that provide
information on the implementation of the system under maintenance.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:22 G. Scanniello et al.

7. CONCLUSION AND FUTURE WORK
Many software projects do not develop a complete set of models throughout the en-
tire software development life cycle. This implies that in many projects the only mod-
els that are available are those produced in the requirements analysis process [Anda
et al. 2006], which could also provide an incomplete abstraction of the functionality to
be implemented in the software system under-development. Therefore, we decided to
carry out a pilot study and a family of experiments to investigate whether the use of
UML models produced in the requirements elicitation and analysis phases supports
software engineers in comprehending and modifying source code.

The family consisted of four experiments, carried out with students and practitioners
from Italy and Spain. We used controlled experiments because a number of confound-
ing and uncontrollable factors could be present in real project settings. In real projects,
it may be impossible to control factors such as learning and/or fatigue effects and to
select specific tasks. Controlled experiments also reduce failure risks related to long
term empirical investigations (as in our case). Although questions about the external
validity (e.g., generalization to realistic comprehension tasks on object oriented source
code) may arise, controlled experiments are often conducted in the early steps of em-
pirical investigations that take place over years (e.g., [Arisholm et al. 2006], [Colosimo
et al. 2009]).

The results suggested that the UML analysis models seemed to not improve the com-
prehensibility of source code. The results regarding modifiability are less conclusive,
although there was a slight tendency towards confirming the results found as regards
comprehensibility. The questionable utility of the UML in our experimental context
might be caused by the kind of models used: they do not provide any information on the
implementation, so need to be combined with design models. These results are perhaps
not overly surprising, but it is acceptable as evidence needs to be verified/reaffirmed
through empirical studies [Basili et al. 1999], [Kitchenham et al. 2002], [Shull et al.
2008].

Possible future directions for our research are: (i) performing further experimenta-
tion considering different and larger software systems related to unknown domains to
verify whether the findings obtained are still valid; (ii) studying the effect of providing
the participants with information in an incremental manner; (iii) analyzing the effect
of different UML notations (e.g., activity diagrams) and models (e.g., design models);
and (iv) investigating the effect of the same notions as we used here on non-source code
comprehension tasks.

ACKNOWLEDGMENTS

This research has been partially funded by GEODAS-BC project (Ministerio de Economa y Competitividad
and Fondo Europeo de Desarrollo Regional FEDER, TIN2012-37493-C03-01).

REFERENCES
ABBES, M., KHOMH, F., GUEHENEUC, Y.-G., AND ANTONIOL, G. 2011. An empirical study of the impact of

two antipatterns, blob and spaghetti code, on program comprehension. In Proc. of European Conference
on Software Maintenance and Reengineering. IEEE Computer Society, Washington, DC, USA, 181–190.

ABRAHÃO, S. M., GRAVINO, C., PELOZO, E. I., SCANNIELLO, G., AND TORTORA, G. 2012. Assessing the
effectiveness of sequence diagrams in the comprehension of functional requirements: Results from a
family of five experiments. IEEE Trans. on Soft. Eng. PrePrints.

AGARWAL, R. AND SINHA, A. P. 2003. Object-oriented modeling with uml: a study of developers’ perceptions.
Commun. ACM 46, 9, 248–256.

ANDA, B., HANSEN, K., GULLESEN, I., AND THORSEN, H. K. 2006. Experiences from introducing UML-
based development in a large safety-critical project. Empirical Software Engineering 11, 4, 555–581.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:23

ARISHOLM, E., BRIAND, L. C., HOVE, S. E., AND LABICHE, Y. 2006. The impact of UML documentation on
software maintenance: An experimental evaluation. IEEE Trans. on Soft. Eng. 32, 365–381.

ASUNCION, H. U., FRANÇOIS, F., AND TAYLOR, R. N. 2007. An end-to-end industrial software traceability
tool. In ESEC/SIGSOFT FSE. 115–124.

BAEZA-YATES, R. A. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

BAKER, R. 1995. Modern permutation test software. In E. Edgington Randomization Tests, New York, Mar-
cel Decker.

BASILI, V., SHULL, F., AND LANUBILE, F. 1999. Building knowledge through families of experiments. IEEE
Trans. Softw. Eng. 25, 4, 456–473.

BASILI, V. R., GREEN, S., LAITENBERGER, O., LANUBILE, F., SHULL, F., SØRUMGÅRD, L. S., AND
ZELKOWITZ, M. V. 1996. The empirical investigation of perspective-based reading. Empirical Software
Engineering 1, 2, 133–164.

BASILI, V. R. AND ROMBACH, H. D. 1988. The TAME project: Towards improvement-oriented software
environments. IEEE Trans. Software Eng. 14, 6, 758–773.

BIOSTAT. 2006. Comprehensive Meta-Analysis v2. Englewood, NJ, USA.
BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 2005. Unified Modeling Language User Guide, The (2nd

Edition). Addison-Wesley Professional.
BRUEGGE, B. AND DUTOIT, A. H. 2003. Object-Oriented Software Engineering: Using UML, Patterns and

Java, 2nd edition. Prentice-Hall.
BUDGEN, D., BURN, A. J., BRERETON, O. P., KITCHENHAM, B. A., AND PRETORIUS, R. 2011. Empirical

evidence about the UML: a systematic literature review. Software: Practice and Experience 41, 4, 363–
392.

CARVER, J., JACCHERI, L., MORASCA, S., AND SHULL, F. 2003. Issues in using students in empirical studies
in software engineering education. In Proc. of the International Symposium on Software Metrics. IEEE
Computer Society, 239–.

COHEN, D., LINDVALL, M., AND COSTA, P. 2004. An introduction to agile methods. Advances in Comput-
ers 62, 1–66.

COLOSIMO, M., DE LUCIA, A., SCANNIELLO, G., AND TORTORA, G. 2009. Evaluating legacy system migra-
tion technologies through empirical studies. Inf. Softw. Technol. 51, 12, 433–447.

CONOVER, W. J. 1998. Practical Nonparametric Statistics 3rd Edition Ed. Wiley.
DE SOUZA, S. C. B., ANQUETIL, N., AND DE OLIVEIRA, K. M. 2005. A study of the documentation es-

sential to software maintenance. In Proc. of the International Conference on Design of communication:
documenting & designing for pervasive information. ACM, New York, NY, USA, 68–75.

DEVORE, J. L. AND FARNUM, N. 1999. Applied Statistics for Engineers and Scientists. Duxbury.
DOBING, B. AND PARSONS, J. 2006. How UML is used. Communications of the ACM 49, 5, 109–113.
DZIDEK, W. J., ARISHOLM, E., AND BRIAND, L. C. 2008. A realistic empirical evaluation of the costs and

benefits of UML in software maintenance. IEEE Trans. on Soft. Eng. 34, 407–432.
ELLIS, P. 2010. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation

of Research Results. Cambridge University Press.
ERICKSON, J. AND SIAU, K. 2007. Theoretical and practical complexity of modeling methods. Commun.

ACM 50, 8, 46–51.
FERNÁNDEZ-SAEZ, A., GENERO, M., NELSON, J., POELS, G., AND PIATTINI, M. 2000. A systematic litera-

ture review on the quality of UML models. J. Database Manag. 22, 3, 46–70.
GRAVINO, C., RISI, M., SCANNIELLO, G., AND TORTORA, G. 2011. Does the documentation of design pattern

instances impact on source code comprehension? results from two controlled experiments. In Proc. of the
Working Conference on Reverse Engineering. IEEE Computer Society, Washington, DC, USA, 67–76.

GRAVINO, C., RISI, M., SCANNIELLO, G., AND TORTORA, G. 2012. Do professional developers benefit from
design pattern documentation? A replication in the context of source code comprehension. In Proc. of In-
ternational Conference on Model Driven Engineering Languages and Systems. Springer-Verlag, Berlin,
Heidelberg, 185–201.

GRAVINO, C., TORTORA, G., AND SCANNIELLO, G. 2010. An empirical investigation on the relation between
analysis models and source code comprehension. In Proc. of the ACM Symposium on Applied Computing.
ACM, 2365–2366.

GROSSMAN, M., ARONSON, J. E., AND MCCARTHY, R. V. 2005. Does UML make the grade? Insights from
the software development community. Inf. Softw. Technol. 47, 6, 383–397.

HEDGES, L. AND OLKIN, I. 1985. Statistical Methods for Meta-Analysis. Academia Press.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:24 G. Scanniello et al.

HÖST, M., REGNELL, B., AND WOHLIN, C. 2000. Using students as subjects: comparative study of students
and professionals in lead-time impact assessment. Empirical Softw. Engg. 5, 3, 201–214.

JEDLITSCHKA, A., CIOLKOWSKI, M., AND PFAHL, D. 2008. Reporting experiments in software engineering.
In Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds.
Springer London, 201–228.

JURISTO, N. AND MORENO, A. 2001. Basics of Software Engineering Experimentation. Kluwer Academic
Publishers, Englewood Cliffs, NJ.

KAMPENES, V. B., DYBÅ, T., HANNAY, J. E., AND SJØBERG, D. I. K. 2007. A systematic review of effect size
in software engineering experiments. Inf. Softw. Technol. 49, 11-12, 1073–1086.

KITCHENHAM, B., AL-KHILIDAR, H., BABAR, M., BERRY, M., COX, K., KEUNG, J., KURNIAWATI, F., STA-
PLES, M., ZHANG, H., AND ZHU, L. 2008. Evaluating guidelines for reporting empirical software engi-
neering studies. Empirical Software Engineering 13, 97–121.

KITCHENHAM, B., PFLEEGER, S., PICKARD, L., JONES, P., HOAGLIN, D., EL EMAM, K., AND ROSENBERG,
J. 2002. Preliminary guidelines for empirical research in software engineering. IEEE Trans. on Soft.
Eng. 28, 8, 721–734.

LAUESEN, S. 2002. Software Requirements: Styles and Techniques. Addison-Wesley.
LEVENE, H. 1960. Robust tests for equality of variances. In Contributions to probability and statistics,

I. Olkin, Ed. Stanford Univ. Press., Palo Alto, CA.
LINDVALL, M. AND SANDAHL, K. 1996. Practical implications of traceability. Software, Practice and Expe-

rience 26, 10, 1161–1180.
LUBARS, M., POTTS, C., AND RICHTER, C. 1993. A review of the state of the practice in requirements mod-

eling. In Proc. of the International Symposium on Requirements Engineering. IEEE Computer Society
Press, 2–14.

MCDERMID, J. 1991. Software Engineer’s Reference Book. Butterworth-Heinemann, Linacre House, Jordan
Hill, Oxford, UK.

MENDONÇA, M. G., MALDONADO, J. C., OLIVEIRA, M. C. F. D., CARVER, J., FABBRI, S. C. P. F., SHULL, F.,
TRAVASSOS, G. H., HÖHN, E. N., AND BASILI, V. R. 2008. A framework for software engineering exper-
imental replications. In Proc. of the International Conference on on Engineering of Complex Computer
Systems. IEEE Computer Society, Washington, DC, USA, 203–212.

OMG. 2010. Unified modeling language (TM) url. Tech. rep., Object Management Group, (available at
http://www.uml.org).

OPPENHEIM, A. N. 1992. Questionnaire Design, Interviewing and Attitude Measurement. Pinter, London.
PRECHELT, L., UNGER-LAMPRECHT, B., PHILIPPSEN, M., AND TICHY, W. F. 2002. Two controlled experi-

ments assessing the usefulness of design pattern documentation in program maintenance. IEEE Trans.
Softw. Eng. 28, 6, 595–606.

RICCA, F., DI PENTA, M., TORCHIANO, M., TONELLA, P., AND CECCATO, M. 2010. How developers’ ex-
perience and ability influence Web application comprehension tasks supported by UML stereotypes: A
series of four experiments. IEEE Trans. on Soft. Eng. 36, 1, 96–118.

SCANNIELLO, G., GRAVINO, C., AND TORTORA, G. 2010. Investigating the role of UML in the software
modeling and maintenance - a preliminary industrial survey. In Proc. of the International Conference on
Enterprise Information Systems. SciTePress, 141–148.

SCANNIELLO, G., RICCA, F., AND TORCHIANO, M. 2011. On the effectiveness of the UML object diagrams:
A replicated experiment. In Proc. of International Conference on Evaluation and Assessment in Software
Engineering. IET digital library, 76–85.

SHAPIRO, S. AND WILK, M. 1965. An analysis of variance test for normality. Biometrika 52, 3-4, 591–611.
SHULL, F., CARVER, J. C., VEGAS, S., AND JUZGADO, N. J. 2008. The role of replications in empirical

software engineering. Empirical Software Engineering 13, 2, 211–218.
SHULL, F., MENDONCÇA, M. G., BASILI, V., CARVER, J., MALDONADO, J. C., FABBRI, S., TRAVASSOS,

G. H., AND FERREIRA, M. C. 2004. Knowledge-sharing issues in experimental software engineering.
Empirical Software Engineering 9, 1-2, 111–137.

SJØBERG, D. I. K., HANNAY, J. E., HANSEN, O., KAMPENES, V. B., KARAHASANOVIC, A., LIBORG, N., AND
REKDAL, A. C. 2005. A survey of controlled experiments in software engineering. IEEE Trans. on Soft.
Eng. 31, 9, 733–753.

TILLEY, S. AND HUANG, S. 2003. A qualitative assessment of the efficacy of UML diagrams as a form of
graphical documentation in aiding program understanding. In Proc. of the International Conference on
Documentation. ACM, New York, NY, USA, 184–191.

TRYGGESETH, E. 1997. Report from an experiment: Impact of documentation on maintenance. Empirical
Software Engineering 2, 2, 201–207.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



On the Impact of UML Analysis Models on Source Code Comprehensibility and Modifiability A:25

VEGAS, S., JURISTO, N., MORENO, A., SOLARI, M., AND LETELIER, P. 2006. Analysis of the influence of
communication between researchers on experiment replication. In Proc. of the International Symposium
on Empirical Software Engineering. ACM, New York, NY, USA, 28–37.

VERELST, J. 2004. The influence of the level of abstraction on the evolvability of conceptual models of in-
formation systems. In Proc. of the International Symposium on Empirical Software Engineering. IEEE
Computer Society, Washington, DC, USA, 17–26.

WEIDENHAUPT, K., POHL, K., JARKE, M., AND HAUMER, P. 1998. Scenarios in system development: Cur-
rent practice. IEEE Softw. 15, 34–45.

WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M., REGNELL, B., AND WESSLÉN, A. 2000. Experimen-
tation in Software Engineering - An Introduction. Kluwer.

APPENDIX A
The questionnaires (here translated into English from Italian) for S1 and S2 are shown
below. We first list the questions to obtain a quantitative evaluation of Comp Level
on S1, and then those to quantitatively asses Modi Level. The appendix concludes
reporting the questions of S2 for Comp Level first and then for Modi Level.

S1 - Comp Level
(1) If the operator introduces the name of a singer who is not in the shop database,

which is the method executed and what is the shown message? In case no name is
introduced, what is the message shown?

(2) When the Control class is instanced, which is the object the constructor class cre-
ates (i.e., Control())?

(3) Which are the class/es and method/s in charge of initializing the possible actions?
(4) Which is the class containing the field to be used to perform a search for a singer?
(5) Which are the class and the method in charge of handling exceptions with respect

to SearchBySinger?

S1 - Modi Level
(1) Which kind of classes should you create to add a new functionality for searching a

record by its identifier?
(2) Which method in which class should you modify to handle the exceptional condition

that an author is present in the database but no albums are associated?
(3) Which are the class/es to be modified in order to change the visualization of the

results for SearchBySinger?
(4) How should the Controller class be modified in order to trace the exceptional con-

ditions when loading an album list?

S2 - Comp Level
(1) In case the user selects a ticket for an already booked chair, what is the method

invoked and what is the message shown to the user?
(2) Which are the class/es and method/s in charge of initializing the graphical user

interfaces?
(3) Which are the class/es and method/s in charge of loading the list of tickets?
(4) Which are the class/es and method/s in charge of displaying the available tickets

that can be purchased?
(5) If the user does not select any ticket to purchase, which method of which class is

invoked? What is the displayed message?

S2 - Modi Level
(1) Which are the class/es in charge of handling the new exception conditions related

to TicketPurchase?

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:26 G. Scanniello et al.

(2) Which are the class/es and method/s to be coded when a new graphical interface
has to be added?

(3) Which methods have to be modified to add an entry “Help” to the Start Menu and
to change the theater name?

(4) Which method/s in which class/es should be modified if you wanted to change all
the error messages corresponding to the exception conditions of TicketPurchase?

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.


