
ON THE IMPLEMENTATION OF AMBIT /G: A GRAPHICAL PROGRAMMING LANGUAGE*

P. D. Rovner
M . I . T . L inco ln Laboratory

Lex ing ton , Massachuse t ts

D. A. Henderson , Jr.
Project MAC

Massachuse t ts Ins t i t u te of Technology
Cambr idge , Massachuse t ts

Summary

This paper deals w i t h the implementat ion
of an i n te rac t i ve g raph ica l programming language
for the man ipu la t ion of d i rec ted g raphs . I n t e res t
ing aspects of the des ign and a user ' s v i e w of the
f a c i l i t i e s are p resented . The language is a m o d i
f i ed ve rs ion of A M B I T / G ; 1 a br ie f desc r i p t i on of
AMBIT/G is conta ined in the i n t r o d u c t i o n .

In t roduct ion

AMBIT/G is a g raph ica l programming l a n
guage , developed by Ch r i s t ensen , for the
man ipu la t ion of d i rec ted g raphs . The data upon
wh i ch an AMBIT/G program operates is a t w o -
d imens iona l network of nodes and d i rec ted l i n ks
between nodes . Each node in t h i s data graph has
an assoc ia ted shape, and each shape has a
number of spec ia l points from wh i ch l i nks are
a l l owed to emanate. Each of these l i nk departure
points (LDP's) may have at most one depart ing l i n k .
An arb i t ra ry number of l i nks may terminate at any
node . Each node in the data graph may have a
name; no two nodes may have the same name.
Each "ups t ream" node in the data graph (a node at
wh i ch no l i n ks terminate) must have a name.

L ike SNOBOL3 and A M B I T / S , 2 AMBIT/G is
a pat tern matching language. W h i l e SNOBOL and
AMBIT/S dea l w i t h ID patterns (s t r i ngs) , AMBIT /G
deals w i t h 2D patterns (graphs) .

An AMBIT/G program cons is t s of a number
of statements in a 2 - D g raph ica l f o r m , each
spec i f y ing

(1) a subgraph to be found in the data g raph ,
(2) changes to make to the l inkages in the data

graph i f the subgraph is f ound ,
(3) the statement to execute next i f the subgraph

is f o u n d , and
(4) the statement to execute next i f the subgraph

is not f ound .

The a lgor i thm for " f i n d i n g " a subgraph in
the data graph is s imp l i f i ed by a requirement tha t
each upstream node in the subgraph have a name.

* This work was sponsored by the U . S . Advanced
Research Projects Agency.

Since named nodes are unique in the data g raph ,
a l l upstream nodes in the subgraph can be d i rec t l y
assoc ia ted w i t h the corresponding nodes in the
data g raph , and then a node by node match tes t
may be done for downstream nodes . This f a c i l
i ta tes very e f f i c i en t (but res t r ic ted) graph ma tch ing .

As an examp le , F i g . 1 shows a t y p i c a l
data g raph , and F i g . 2 shows a t y p i c a l AMBIT/G
s ta tement . In F i g . 2 , the name of the statement is
at the top of the p i c t u r e , and the names of the
statements to execute next in case of match suc
cess or match fa i l u re are at the bo t tom. The double
l i nk ind ica tes a l inkage change to make in the
data graph i f the subgraph matches s u c c e s s f u l l y .

The AMBIT/G language af fords an easy and
natura l way to express a lgor i thms for bu i l d i ng and
pruning t ree s t ruc tu res , garbage c o l l e c t i n g a l i s t -
s t ruc tu re , ma in ta in ing a f ree-s to rage a l l o c a t i o n
f a c i l i t y , e t c . T y p i c a l l y , a user ' s na tura l v i ew of
such data st ructures and st ructure manipu la t ion
a lgor i thms corresponds w i t h the g raph ica l rep re
sentat ions of these in the AMBIT/G language.

Several s t ra igh t - fo rward mod i f i ca t ions to
the o r ig ina l de f i n i t i on of the language (see
Reference 1) were made in the course of t h i s w o r k .

(1) Node-shape c lasses were i n t roduced . This
f a c i l i t y a l l ows the user to def ine a symbol to
represent a c lass of node shapes . He may
use such a symbol in a subgraph as a bound
v a r i a b l e . Only cer ta in " v a l u e s " may be
assumed by th i s va r i ab le : nodes from the
spec i f i ed c lass o f node shapes . In the s u b
graph matching procedure , when a c lass
symbol is encountered in the subgraph, the
corresponding node in the data graph is
examined . If i ts shape is a member of the
ind ica ted c lass of node shapes , then the
node is " ass i gned " to the ind ica ted v a r i a b l e ,
and the matching procedure c o n t i n u e s . Other
w i s e , the matching procedure f a i l s . This
feature in t roduces a s i gn i f i can t convenience
when many near dup l i ca te statements wou ld
normal ly be requ i r ed . Figures 3, 4 , and 5
show an example of the use of node shape
c l a s s e s .

(2) Several spec ia l node shapes were in t roduced .
For examp le , the reserved shape

- 9 -

may be used to predicate on the absence of
a l i n k from an ind ica ted LDP, or to d i s
connect a l i n k from an ind ica ted LDP. F i g . 6
shows a statement w h i c h w i l l succeed only
i f the ind ica ted LDP does not l i nk to any
node; F i g . 7 shows a statement w h i c h w i l l
d i sconnec t the i nd i ca ted LDP i f i t l i n ks to
a b o x .

(3) A way to combine AMBIT /G statements in to
subrout ines was i n t r oduced . This led to a
f a c i l i t y for g raph ica l s p e c i f i c a t i o n o f con t ro l
f l ow l i nkages between program subpar ts .
One resu l t of t h i s was a ca re fu l re fo rmu la
t i o n o f program s t ruc tu re .

A program in the language cons is ts of a
con t ro l ent ry p o i n t , and a number of c a l l s on a
l ib ra ry of sub rou t i nes . Each subrout ine has a
unique name. A program is represented g r a p h i
c a l l y as a 2 - D network of " s u b r o u t i n e - c a l l
symbo ls " and con t ro l f l ow l i n e s . A " sub rou t i ne -
c a l l s ymbo l " is a box w h i c h conta ins the name of
the subrout ine and severa l " c o n t r o l - f l o w ex i t
p o i n t s " . F i g . 8 shows the g raph ica l rep resen ta
t i o n of a t y p i c a l program. Each c o n t r o l - f l o w ex i t
po in t may have at most one f l ow l ine leav ing i t .
A l s o , con t ro l may leave a subrout ine c a l l through
on ly one o f i t s e x i t po in ts (i . e . , pa ra l l e l i sm i s
not a l l o w e d) . A subrout ine c a l l may have an
arb i t rary number of f l ow l ines enter ing i t (at most
one of these may ever be a c t i v e) .

A subrout ine may have one of t w o forms:
(1) a statement

A statement in the language is represented
in a 2 - D g raph ica l f o rm , spec i f y i ng
(a) the name of the s ta tement ,
(b) a subgraph to be found in the data

g r a p h , and
(c) changes to make to the l inkages in the

data graph i f the subgraph is f o u n d .
The s u b r o u t i n e - c a l l symbol fo r a s t a t e
ment has two c o n t r o l - f l o w ex i t po in t s :
one to be taken i f the subgraph is found
(lower l e f t) , and one to be taken i f the
subgraph is not found (lower r i g h t) .
F i g . 9 shows a t y p i c a l s tatement and
i t s subrout ine c a l l s y m b o l .

(2) a subprogram
A subprogram has a name and a con t ro l entry
p o i n t , and is represented g raph i ca l l y as a
t w o - d i m e n s i o n a l network o f subrout ine c a l l
s y m b o l s , con t ro l f l o w l i n e s , and "subprogram
e x i t p o i n t s " . These po in ts correspond to the
con t ro l f l o w e x i t po in ts on the subrout ine
c a l l symbol for the subprogram. F i g . 10
shows a t y p i c a l subprogram and i t s s u b
rou t ine c a l l s y m b o l . A subprogram may c a l l
o ther subprograms and may c a l l i t s e l f
r e c u r s i v e l y .

A pre l im inary ve rs i on of the AMBIT /G
language w i t h the ex tens ions ou t l i ned above has
been implemented on the TX-2 computer . The
ava i l ab le f a c i l i t i e s on the TX-2 for i n te rac t i ve
g r a p h i c s 4 ' 7 are w e l l su i ted for such an imp lement
a t i o n .

The ove ra l l goa l in the work reported here
is the c rea t ion of an exper imenta l f a c i l i t y for both
the development and imp lementa t ion of AMBIT /G
language c o n s t r u c t s . F l e x i b i l i t y is o f pr imary
importance; mod i f i ca t ions and extens ions to the
implementat ion should be easy to make . For t h i s
reason , the LEAP s y s t e m 5 * 6 was used to create
the AMBIT/G f a c i l i t y . LEAP has h i g h - l e v e l too ls
for doing i n te rac t i ve i n p u t , d i s p l a y ou tpu t , and
da ta -s t ruc tu re man ipu la t i ons .

The remainder of t h i s report w i l l present a
user 's v i e w of the AMBIT/G implementat ion on TX-2
and a desc r i p t i on of the LEAP data s t ructure used
as the in te rna l representa t ion for AMBIT/G programs.
The des ign of the input ana lyzer for AMBIT/G
programs and data graphs is d i s c u s s e d , and some
of the problems of us ing such an i n te rac t i ve
f a c i l i t y in t ime -sha r i ng on TX-2 are a n a l y z e d .

A User ' s View

The equipment ava i l ab le to a user at a
TX-2 conso le inc ludes a keyboard and t y p e w r i t e r ,
a compute r -d r i ven d i s p l a y , and a Sy lvania Tab le t .
A user of extended AMBIT/G employs these too ls
to input and ed i t h is 2 - D program and d a t a , to
con t ro l the execu t ion of h is program and to examine
output d a t a .

Input
The Sy lvan ia Tablet is the pr imary input

dev i ce ; i t i s used to draw in the work ing a r e a ,
and point to l i gh t targets at the s ides of the w o r k
ing area (see Photos 1 and 2) . Drawn characters
are ana lyzed by a cha rac te r - recogn i t i on program,
wh i ch then d ispatches to corresponding ac t i on
r o u t i n e s . Some drawn characters cause the p ic tu re
in the work ing area to be mod i f i ed ; others are
in terpreted as con t ro l commands. For examp le , a
drawn s t ra igh t l i ne w i l l cause a l i nk segment to be
added to a statement in the work ing area; a drawn
" 0 " w i l l cause a re turn to the t i m e - s h a r i n g mon i to r .

L ight targets appear at the s ides of the
work ing a r e a , and are used e i ther as con t ro l
commands (targets at the r i g h t) , or as prototype
se lec t i on ind ica tors (targets a t the l e f t) . For
examp le , targets a t t he r igh t i nc lude e x p l i c i t
ac t i on commands (e . g . RUN) and d e f i n i t i o n mode
se lec tors (e . g . SHAPE, DATA, CLASS, STATEMENT,
SUBPROGRAM). Targets at t he l e f t i nc lude sma l l
p ic tures o f the de f ined node shapes .

W h i l e a user is wo rk ing in a d e f i n i t i o n
mode, he deals w i t h p i c t u r e s . A p i c tu re conta ins

-10 -

e i ther a prototype node shape, a data page , a node
shape c lass d e f i n i t i o n , a s ta tement , or a s u b
program. A p ic ture may be d e f i n e d , e d i t e d , or
d e l e t e d . A t w o - d i m e n s i o n a l syntax check may be
performed on a p ic tu re ; i f there are e r ro rs ,
ind ica tors are d i sp layed at the appropr iate p laces
in the work ing a rea . For examp le , a statement
p ic ture i s checked for dang l ing l i n k s , i l l e g a l l i nk
sequences , and unreachable nodes .

After a new p ic ture is d e f i n e d , or a f ter an
o ld p ic tu re is e d i t e d , the user must po in t to the
FILE l i gh t target i f he w ishes to f i n a l i z e h i s w o r k .
I f he ins tead at tempts a command that w o u l d
cause the work ing area to be c l e a n e d , he w i l l be
n o t i f i e d , and h is command w i l l be i gno red . Any
subsequent command w i l l be obeyed . This a l l ows
the user to e a s i l y change h is mind and i t he lps to
protect h im aga ins t inadver tent b lunde rs . I f a new
prototype node shape is f i l e d , a sma l l p ic ture of
i t w i l l be appended to the l i s t o f l i gh t targets a t
the le f t of the work ing a rea . The user may then
type in the name of a new node of that shape.
The new prototype node name w i l l appear as a
l i gh t ta rget be low the ind ica ted node shape. I f
the l i s t o f l i gh t targets gets too long to f i t in the
work ing a rea , a c i r cu la r buf fer o f l i gh t targets w i l l
be c rea ted , and the TURNPAGE l i gh t ta rget (at the
r ight) w i l l appear . Point ing to TURNPAGE w i l l
cause the "nex t " por t ion of the l i s t o f prototype
node shapes to be shown at the l e f t . When a
p ic ture i s f i l e d , on ly g raph ica l in format ion i s
saved; connec t i v i t y in fo rmat ion is generated from
the g raph ica l in format ion in a separate step
(ca l led "accep tance") pr ior to program e x e c u t i o n .

Wh i l e work ing on a p i c t u r e , a user dea ls
w i t h g raph ica l e n t i t i e s . In SHAPE mode, the
en t i t i es are l i n e s , l i ne endpo in t s , and LDP
i n d i c a t o r s . In CLASS, DATA, and STATEMENT
modes, the en t i t i es are node shapes , l i n k s e g
ments , and l i nk segment endpo in t s . In SUB
PROGRAM mode, the en t i t i es are subrout ine c a l l
symbo ls , subprogram ex i t p o i n t s , l i nk segments ,
and l i nk segment endpo in ts .

Whi le work ing on a p i c t u r e , a user may
erase or move any e n t i t y . The erase command is
s imply a drawn scrub mark Ww) over the e n t i t y .
An en t i t y may be moved in the work ing area e i ther
by po in t ing to i t and then po in t ing to where i t
should move, or by enter ing MOVE mode (another
l i gh t target a t the r i g h t) , and then dragging the
en t i t y to i t s new pos i t i on w i t h the tab le t s t y l u s .
Once in MOVE mode, the user may move other
en t i t i es as w e l l . The user may re turn from MOVE
mode by po in t ing to the NORMAL l i gh t t a r g e t , a l so
on the r i g h t . Whenever an en t i t y is moved , the
re levant l inkage l ines s t re tch and con t rac t .

W h i l e wo rk ing on a p i c t u r e , a user may
create ce r ta in new e n t i t i e s . In SHAPE mode, a
drawn l i ne w i l l resu l t in a new l i ne for the shape .

Drawing a sma l l " x " w i l l produce an LDP ind ica tor .
In the other de f i n i t i on modes, a drawn l i ne w i l l
produce a l i nk segment, complete w i t h a r rowhead .
In STATEMENT mode, a l i ne drawn w i t h a loop (a)
w i l l produce a double l i nk segment , w i t h a r row
h e a d . In CLASS, DATA, and STATEMENT modes,
the user may point to a node-shape target on the
l e f t , then draw a number of " x ' s " in the work ing
a r e a . Each drawn " x " w i l l cause an ins tance o f
the ind ica ted node shape to appear in the p ic ture
at the ind ica ted p o s i t i o n . In SUBPROGRAM mode,
the targets on the le f t are the names of ex i s t i ng
statements and subprograms rather than prototype
node shapes . Each drawn " x " w i l l cause the
ind ica ted subrout ine c a l l symbol to appear a t the
ind ica ted p o s i t i o n . A drawn downward arrow w i l l
cause a subprogram ex i t point to appear near the
head of the a r row .

The user may save h is work between
sess ions on the computer; he may g i ve it a name
and w r i t e i t out on h is storage area by po in t ing to
the WRITE l i gh t target and then typ ing in the name;
he may read in a named program by po in t ing to the
READ l i gh t ta rget and then t yp ing in the .name.

Acceptance
When a user f i n i shes de f in ing and ed i t ing

h is program and data g raph , he may po in t to the
ACCEPT l i gh t t a r g e t . This w i l l cause a f i n a l syntax
check to be made on a l l o f h is i n p u t , and a l l
g raph ica l in format ion (pos i t ions of l i nk segments
and node shape i n s t a n c e s , for example) to be
processed to y i e l d connec t ion in fo rmat ion (a l i s t o f
nodes , L D P ' s , and l i nks from LDP's to nodes) . I f
errors are encountered dur ing t h i s p rocess , they
are ind ica ted and acceptance is abo r ted . I f the
program is f u l l y a c c e p t e d , i t may then be executed
by po in t ing to the RUN l i gh t t a rge t .

Execut ion
When an AMBIT/G program is " r u n " , the

AMBIT/G system in terprets the connec t ion i n f o rm
a t i on w h i c h was generated when the program was
" a c c e p t e d " . This in fo rmat ion inc ludes con t ro l
connec t ion i n fo rma t i on , w h i c h i s used to regulate
con t ro l f l o w . Statements are executed by f i r s t
a t tempt ing to match the spec i f i ed subgraph to the
current data g raph . A success fu l match w i l l cause
ind ica ted l inkage changes to be made in the data
g raph , and then the le f t (success) con t ro l f l ow path
to be t a k e n . An unsuccess fu l match w i l l s imply
cause the r igh t (fa i lure) con t ro l f l ow path to be
t a k e n . An error is i nd ica ted and execu t ion is
terminated i f a con t ro l f l ow path is a dead e n d . I f
the spec ia l statement named STOP is encountered ,
then execu t i on i s t e rm ina ted .

There are severa l execu t ion cont ro l opt ions
ava i l ab le as debugging a i d s . A user may interrupt
the execu t ion of h is program by po in t ing to the
HELP l i gh t t a rge t . He may cause his program to be
in ter rupted when a spec i f i ed statement is execu ted ,

- 1 1 -

or af ter a spec i f i ed number of statements are e x e
c u t e d . He may cause the name of a spec i f i ed
statement to be pr in ted whenever tha t statement is
execu ted , or he may request the names of a l l
executed statements to be e i ther pr in ted or d i s p l a y
ed in order of e x e c u t i o n .

Output
After a program has t e rm ina ted , or a f ter i t

has been in te r rup ted , a user may examine the
s ta te of the data g raph . He does t h i s by po in t ing
to the OUTPUT l i g h t t a rge t , w h i c h causes h im to
enter OUTPUT mode. The problem of au tomat i ca l l y
l ay ing out and d i sp l ay i ng an en t i re data graph has
been ca re fu l l y avo ided ; the user is required to
spec i f y sma l l parts of the data graph tha t he
w ishes to s e e , and he is encouraged to a id in the
layout o f t h e s e .

Upon enter ing OUTPUT mode, the node
shape and node name prototypes appear aga in as
l i gh t targets on the l e f t . The user may point to a
node name p ro to type , then draw an "x" in the
work ing a rea . An ins tance of the ind ica ted named
node w i l l appear . The user may then point to an
LDP on the new i n s t a n c e . I f a l i n k departs from
the corresponding LDP in the data g raph , both the
l i nk and an ins tance of the node of the end of the
l i nk w i l l be d i s p l a y e d . The program w i l l dec ide
where to d i s p l a y the new i n s t a n c e . The user may
overr ide t h i s dec i s i on when he points to an LDP
by immedia te ly d rawing a l i ne to a pos i t i on for the
new i n s t a n c e . I f a l i n k does not depart from the
corresponding LDP in the data g raph , a s tar (*) is
d i sp layed on the ind ica ted LDP.

The user may cont inue to po in t to other
LDP's in the work ing a r e a , or create ins tances of
other named nodes . He may use spec ia l drawn
characters to shr ink or expand h is p i c t u r e , and
t rans la te i t up or d o w n , le f t or r i g h t . He may
erase (by us ing a drawn scrub mark) any l i nk or
ins tance in h i s p i c t u r e . Any l i nks or ins tances
wh i ch are downstream w i l l a l s o be e rased .

When the user f i n i shes examin ing h is d a t a -
g raph , he may re turn from OUTPUT mode by po in t
ing to the DONE l i gh t t a rge t . He may resume
execu t ion of an in ter rupted program by po in t ing to
RESUME.

In te rna l Representat ion

An AMBIT/G program and data graph is
represented in te rna l l y by a LEAP data s t ruc tu re .
A br ie f in t roduc t ion to LEAP f o l l o w s .

A LEAP program deals w i t h i t e m s , t r i p l e s ,
and s e t s . An i tem is used to represent e i ther an
element in the data s t ructure or an a t t r i bu te w h i c h
re la tes two i t e m s . An i tem may have an a s s o c i
ated a lgebra ic da tum. A t r i p l e is an ordered
c o l l e c t i o n o f three i tems and is usua l l y used to
represent a fac t of the genera l form:

(1) ATTRIBUTE • OBJECT = VALUE
(ATTRIBUTE of OBJECT is VALUE.)

A set is an unordered c o l l e c t i o n of i t e m s .
Examples taken from the implementa t ion f o l l o w :

(a) An ins tance of a node shape in a
statement is represented i n te rna l l y by
an i tem hav ing a matr ix as i t s da tum.
This matr ix conta ins the d i sp lay coo r
d inates o f the i n s t a n c e .

(b) Every ins tance of a node shape is
assoc ia ted w i t h the node shape p ro to
type by a t r i p l e of the form:

(2) SHAPEOF.INSTANCE# =- SHAPE#
In (2) , SHAPE OF is a dec lared i t e m , and
INSTANCE* and SHAPE* are i tem t ype
des igna to rs ; i . e . a t r i p l e beginn ing w i t h
SH APEOF assoc ia tes a node shape ins tance
w i t h a node shape p ro to type .
(c) The dec lared set SHAPES is the set of

a l l node shape p ro to t ypes .

The i tem type designators and prototype
t r i p l es for se lec ted parts of the in te rna l rep resen t
a t i on of a program and data graph are tabu la ted
b e l o w . Cer ta in i tem type des ignators need fur ther
exp lana t i on .

(a) L INE*
L inks in data pages and in statements
are composed of l i n e s . A l i ne in a
statement may be double (have the
DOUBLE proper ty) .

(b) DTAPG*
At ACCEPT t i m e , a l l data pages are
merged to generate the i n i t i a l data
g raph . Overconst ra in ts are noted and
repor ted .

(c) I LDP*
At ACCEPT t i m e , each LDP of each
ins tance in the s t ructure is examined
to determine i f i t is the star t po int o f
a l i n k . I f s o , an ILDP (Instance L ink
Departure Point) is generated and
assoc ia ted (via t r i p l es) w i t h the
ins tance and w i t h the ind ica ted LDP
on the node shape p ro to type .

Aspects of the Des ign

Several des ign dec i s ions were made a f te r
implement ing and exper iment ing w i t h var ious
a l t e rna t i ve des igns ; conven ience for the user was
the pr imary cons ide ra t ion in these d e c i s i o n s .

No push-but tons or togg le sw i tches are
used ; we f e l t tha t these are con fus ing and
d i s t r a c t i n g . Use of a s imple drawn character or
a l i gh t target is eas ie r .

The user does not draw node shape
i n s t a n c e s , but ra ther po in ts to the des i red shape
and then draws an " x " a t the des i red p o s i t i o n .
The spec ia l symbols tha t the user may draw are
s imple enough to recogn ize e a s i l y , and are qu i te

-12 -

conven ien t t o u s e .

There are two ways to move an en t i t y in the
work ing area: by drawing a "move character " or by
enter ing "move mode" and dragging the en t i t y w i t h
the tab le t s t y l u s . Experience has ind ica ted the
necess i t y for b o t h . The move character is use fu l
for a s ing le move command i f the des t i na t i on is
c l ea r . "Move mode" is use fu l i f many moves are
to be performed or i f the user wants response as
the en t i t y moves .

When the user draws in the work ing a rea ,
he is drawing on a square g r i d . That i s , the e n d -
points o f a l l l i nes and the centers o f a l l node
instances w i l l be au tomat i ca l l y put on the nearest
g r id p o i n t . This feature makes neat drawings and
does not r es t r i c t the user app rec i ab l y . He may be
reasonably s loppy in drawing a l i n k , for examp le ,
and the s tar tpo in t w i l l be made to co inc ide w i t h a
nearby LDP. There are two gr id s i z e s : one for
SHAPE mode, and one for the other modes. When
drawing a SHAPE d e c l a r a t i o n , i t is conven ient to
work on a f a i r l y gross gr id (the work ing area has
16 g r id points on a s ide in SHAPE mode; in the
other modes, i t has 64 gr id points on a s i d e) .

No automat ic g raph ica l syntax check is
made w h i l e the user is de f in ing h is program and
data g raph . The syntax of h is data graph and
program p ic tures is checked only upon e x p l i c i t
request from him or at ACCEPT t i m e . This a l l ows
h im to f i l e away a pa r t i a l l y completed p i c t u r e .
The system is cons iderab ly s imp l i f i ed by th i s
feature because i t needs on ly to remember a l i s t of
p ic ture parts and the i r pos i t ions u n t i l ACCEPT t i m e .
A l s o , a change made to a node shape dec la ra t ion
has no subt le e f fect on the connec t i v i t y of a p ro
gram statement in wh i ch there is an ins tance s ince
no connec t i v i t y in format ion is k e p t .

The program for d i sp l ay i ng the modi f ied
data graph was made as s imple as p o s s i b l e ,
p r imar i l y because any automat ic layout f a c i l i t y is
very d i f f i c u l t to implement and wou ld not be s i g n i f
i can t l y bet ter than the s imple scheme.

L ight targets are d i sp layed on ly when they
are re levant ; t h i s helps to min imize con fus ion and
provides an i nd i ca t i on of the s tate of the sys tem.

Conc lus ion

The pre l iminary system has been used to
implement two examp les .

(1) The l i s t - s t r u c t u r e garbage c o l l e c t i o n p r o
gram used as the example in Reference 1-

(2) A reduc t ions-ana l y s i s program for pars ing
an input s t r ing from a s imple grammar and
bu i l d i ng the computat ion t r e e .

The exper ience of us ing the system in t i m e
shar ing on TX-2 has po in ted out some major i n a d e
quac ies in the env i ronment . The programs are
f a i r l y large and t y p i c a l l y requi re fas t response and

a sma l l t ime s l i c e . When the t ime -sha r i ng system
has a medium to heavy l o a d , response l a g - t i m e
increases to 10 to 20 seconds . T y p i c a l l y , a user
must w a i t about 15 seconds af ter drawing a symbol
(or po in t ing to a l i gh t target) before he can draw
the next s y m b o l . For t h i s k ind of app l i ca t i on on
TX-2 e i ther the environment in t ime-sha r ing must
be reorganized or the machine must be used in
ded ica ted mode.

The poor response in t ime -sha r i ng is
caused p r imar i l y by the need to swap users in and
out of co re . The response l ag - t ime increases
d ramat i ca l l y as soon as the t o t a l ac t i ve user core
requirement exceeds ava i l ab le co re . This problem
is aggravated by two t h i n g s .

(1) The swapping mechanism being used is
very s low (i t is a FASTRAND II drum wh ich
is meant to be used for f i l e s to rage) .

(2) People tend to w r i t e very large programs
(the L inco ln Reckoner is a notable
except ion) because there is no convenient
way to segment programs. For examp le ,
the LEAP compi le r does not compi le r e
loca tab le code nor w i l l i t compi le s u b
rout ines separate ly from a main program.
There is no re loca tab le loader f a c i l i t y ;
even the assembler assembles n o n -
re loca tab le code .

Other fac tors wh i ch cont r ibute to system
overhead are:

(1) the main frame is used to process
in terrupts and t rack the two t a b l e t s .
I f both tab le ts are a c t i v e , t h i s overhead
is very l a rge .

(2) The d i sp lay s t ructures for a l l ac t i ve d i s
p lays res ide in core ; the d i sp lay generator
s tea ls memory cyc les to ref resh the d i s p l a y s .

In the course of t h i s w o r k , severa l ideas
for fur ther extens ions to the language have a r i s e n .
For examp le , a way to manipulate a lgebra ic va lues
is needed. A l s o , a f a c i l i t y for l i n k i ng to programs
w r i t t e n in other languages is d e s i r a b l e . Other
suggest ions inc lude the f o l l o w i n g :

(1) d i sp lay a se lec ted por t ion of the data
graph dynamica l l y as the program is
execu ted .

(2) D i sp lay the main con t ro l f l ow diagram and
b l i nk the subrout ine c a l l symbols wh i ch are
a c t i v e as the program r u n s .

(3) Improve the character recogn i t ion program
to the point where i t is eas ier to use than
the keyboard , and e l im ina te the keyboard .

(4) Take advantage of the t w o - d i m e n s i o n a l
con t ro l f l ow s p e c i f i c a t i o n t o a l l o w c o n
current con t ro l f l o w paths (pa ra l l e l i sm) .

The programming work was done en t i re ly in
t ime -sha r i ng us ing the LEAP language. Both of
these too ls were found to be c ruc i a l to the d e v e l
opment . Mach ine a v a i l a b i l i t y for e d i t i n g , debugg ing ,

-13-

and exper iment ing was very impor tant ; a t i m e
shar ing conso le was per fec t l y adequate and read i l y
a v a i l a b l e . The f a c i l i t i e s in LEAP for express ing
in te rac t i ve input and d i s p l a y output were found to
be very power fu l and very easy to u s e . The a b i l i t y
to make changes e a s i l y to the implementat ion made
much of the exper imenta t ion f e a s i b l e ; a program
w r i t t e n in LEAP is r e l a t i v e l y easy to read and under
s t a n d .

The language forms fo r bu i l d i ng and man ip
u la t i ng a data s t ructure in LEAP were used e x t e n
s i v e l y to create and process the in te rna l represen t
a t i on of an AMBIT /G program and data g raph . I t
was unnecessary to des ign and implement an
e laborate l i s t s t ructure to house the in te rna l
representa t ion ; we were free to concent ra te on the
des ign of i n te rac t i ve features because we were
insu la ted from many of the i n t r i ca te de ta i l s of the
data s t ructure imp lemen ta t i on . I ne f f i c i enc ies have
been in t roduced in to the AMBIT/G system by the
use of LEAP; these are no t i ceab le on ly when a large
computa t ion has to be made (when c h e c k i n g , a c
cep t ing or runn ing) . The programs cou ld be made
cons iderab ly smal le r and fas ter i f they were r e -
coded in machine language, but t h i s wou ld require
much work and w o u l d remove much f l e x i b i l i t y .
Acceptance t ime cou ld be decreased by main ta in ing
pa r t i a l connec t i v i t y in format ion as p ic tures are i n
pu t . This w o u l d compl i ca te the input programs,
but might improve ove ra l l response .

References

C. Ch r i s t ensen , "An Example o f the M a n i p
u la t i on o f D i rec ted Graphs in the AMBIT/G
Programming Language" , Proc. of the Sympo
sium on In te rac t i ve Systems for Exper imental
Appl ied M a t h e m a t i c s , W a s h i n g t o n , D . C . ,
August 1967.
C . C h r i s t e n s e n , "On the Implementa t ion o f
AMBIT, A Language for Symbol M a n i p u l a t i o n " ,
C A C M , p . 5 7 0 - 5 7 3 , August 1966.
D. J. Farber, R. E. G r i s w a l d , and
I . P. Pa lansky , "SNOBOL, A Str ing M a n i p
u la t i on Language" , JACM !!_, p. 2 1 - 3 0 ,
January 1964.
J . W. Forg ie , e t a l . , "A T i m e - and Memory -
Sharing Execut ive Program" , Proc. of the
1965 Fa l l Joint Computer Con fe rence .
P. D. Rovner and J. A. Fe ldman, "The LEAP
Language and Data S t ruc tu re " , IFIPS 68 ,
Ed inburgh, Sco t l and , August 1968.
P. D. Rovner, "The LEAP Users M a n u a l " ,
M . I . T . L i nco ln Laboratory Techn ica l M e m o
randum 23L -0009 , December 1968.
W. R. Suther land, J . W. Fo rg ie , and
M . V . M o r e l l o , "Graph ics i n T ime-Shar ing :
A Summary of the TX-2 Expe r ience " , Proc. of
the 1969 Spring Joint Computer Con fe rence .

ITEM TYPE

SHAPE#

LINE#

LDP#

NAME#

INSTANCE#

#LDP*

PGMST#

DTAPG*

ALLOWED "PROPERTIES"* DATUM DATA TYPE

SET (of l ines)

MATRIX (graphica l info)

MATRIX (graph ica l info)

TEXT ARRAY

MATRIX (graphica l in fo)

TEXT ARRAY

TEXT ARRAY

NOTES

Each l i ne is a part of
the node shape p ro to
t y p e .

Relat ive pos i t i on in the
node shape p ro to type ,
data page , or s tatement

Relat ive pos i t i on in the
node shape p ro to type .

The name of a node .

Relat ive pos i t i on in the
data page or in the
s ta tement .

The name of the s t a t e
ment .

The name of the data
page .

TABLE 1 - SAMPLE ITEM TYPE DESIGNATORS

* In LEAP, proper t ies may be d e c l a r e d . A property may be ass igned to an i t e m .

PROTOTYPE TRIPLES

LDPSIN-SHAPE* = LDP#

DTAINST-NAME# = INSTANCE#

INSTIN • DTAPG# = I N S T A N C E * !
INSTIN • PGMST# = INSTANCE#

SHAPEOF-INSTANCE* = SHAPE#

NAMEOF-INSTANCE# = NAME#

LINESIN • DTAPG# = L I N E #)
LINESIN-PGMST# = LINE# J

ILDPSIN-INSTANCE# - ILDP#

CORR-ILDP* = LDP#

SCONN- ILDP* = INSTANCE#

D C O N N - I L D P * = INSTANCE#

NOTES

Assoc ia tes an LDP w i t h a node shape p ro to type .

Assoc ia tes the unique ins tance of a named node (in the data
graph) w i t h the named node .

Assoc ia tes an ins tance w i t h a data page or a s ta tement .

Assoc ia tes an ins tance w i t h i t s node shape p ro to type .

Assoc ia tes the ins tance of a named node w i t h the named node .

Assoc ia tes a l i n k segment (l ine) w i t h a data page or a s ta tement .

Assoc ia tes an ILDP w i t h an i n s t a n c e .

Assoc ia tes an ILDP w i t h the corresponding LDP in the node
shape prototype for the ind ica ted i n s t a n c e .

Represents an ex i s t i ng l i n k .

Represents an ex i s t i ng double l i n k .

TABLE 2 - SAMPLE PROTOTYPE TRIPLES

-18 -

