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Abstract

The main focus in this thesis is on the aspects related to the implementation of
integer and non-integer sampling rate conversion (SRC). SRC is used in many
communication and signal processing applications where two signals or systems
having different sampling rates need to be interconnected. There are two basic
approaches to deal with this problem. The first is to convert the signal to analog
and then re-sample it at the desired rate. In the second approach, digital signal
processing techniques are utilized to compute values of the new samples from
the existing ones. The former approach is hardly used since the latter one
introduces less noise and distortion. However, the implementation complexity
for the second approach varies for different types of conversion factors. In
this work, the second approach for SRC is considered and its implementation
details are explored. The conversion factor in general can be an integer, a ratio
of two integers, or an irrational number. The SRC by an irrational numbers
is impractical and is generally stated for the completeness. They are usually
approximated by some rational factor.

The performance of decimators and interpolators is mainly determined by
the filters, which are there to suppress aliasing effects or removing unwanted
images. There are many approaches for the implementation of decimation and
interpolation filters, and cascaded integrator comb (CIC) filters are one of them.
CIC filters are most commonly used in the case of integer sampling rate conver-
sions and often preferred due to their simplicity, hardware efficiency, and rela-
tively good anti-aliasing (anti-imaging) characteristics for the first (last) stage of
a decimation (interpolation). The multiplierless nature, which generally yields
to low power consumption, makes CIC filters well suited for performing con-
version at higher rate. Since these filters operate at the maximum sampling
frequency, therefore, are critical with respect to power consumption. It is there-
fore necessary to have an accurate and efficient ways and approaches that could
be utilized to estimate the power consumption and the important factors that
are contributing to it. Switching activity is one such factor. To have a high-level
estimate of dynamic power consumption, switching activity equations in CIC
filters are derived, which may then be used to have an estimate of the dynamic
power consumption. The modeling of leakage power is also included, which is
an important parameter to consider since the input sampling rate may differ
several orders of magnitude. These power estimates at higher level can then be
used as a feed-back while exploring multiple alternatives.

Sampling rate conversion is a typical example where it is required to deter-
mine the values between existing samples. The computation of a value between
existing samples can alternatively be regarded as delaying the underlying signal
by a fractional sampling period. The fractional-delay filters are used in this
context to provide a fractional-delay adjustable to any desired value and are
therefore suitable for both integer and non-integer factors. The structure that
is used in the efficient implementation of a fractional-delay filter is know as
Farrow structure or its modifications. The main advantage of the Farrow struc-
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ture lies in the fact that it consists of fixed finite-impulse response (FIR) filters
and there is only one adjustable fractional-delay parameter, used to evaluate
a polynomial with the filter outputs as coefficients. This characteristic of the
Farrow structure makes it a very attractive structure for the implementation. In
the considered fixed-point implementation of the Farrow structure, closed-form
expressions for suitable word lengths are derived based on scaling and round-off
noise. Since multipliers share major portion of the total power consumption, a
matrix-vector multiple constant multiplication approach is proposed to improve
the multiplierless implementation of FIR sub-filters.

The implementation of the polynomial part of the Farrow structure is in-
vestigated by considering the computational complexity of different polynomial
evaluation schemes. By considering the number of operations of different types,
critical path, pipelining complexity, and latency after pipelining, high-level com-
parisons are obtained and used to short list the suitable candidates. Most of
these evaluation schemes require the explicit computation of higher order power
terms. In the parallel evaluation of powers, redundancy in computations is re-
moved by exploiting any possible sharing at word level and also at bit level.
As a part of this, since exponents are additive under multiplication, an ILP
formulation for the minimum addition sequence problem is proposed.



Populärvetenskaplig sammanfattning

I system där digitala signaler behandlas så kan man ibland behöva ändra da-
tahastigheten (samplingshastighet) på en redan existerande digital signal. Ett
exempel kan vara system där flera olika standarder stöds och varje standard
behöver behandlas med sin egen datahastighet. Ett annat är dataomvandlare
som ut vissa aspekter blir enklare att bygga om de arbetar vid en högre hastig-
het än vad som teoretiskt behövs för att representera all information i signalen.
För att kunna ändra hastigheten krävs i princip alltid ett digitalt filter som kan
räkna ut de värden som saknas eller se till att man säkert kan slänga bort vissa
data utan att informationen förstörs. I denna avhandling presenteras ett antal
resultat relaterat till implementeringen av sådana filter.

Den första klassen av filter är så kallade CIC-filter. Dessa används flitigt
då de kan implementeras med enbart ett fåtal adderare, helt utan mer kost-
samma multiplikatorer som behövs i många andra filterklasser, samt enkelt kan
användas för olika ändringar av datahastighet så länge ändringen av datatak-
ten är ett heltal. En modell för hur mycket effekt olika typer av implemente-
ringar förbrukar presenteras, där den största skillnaden jämfört med tidigare
liknande arbeten är att effekt som förbrukas genom läckningsströmmar är med-
tagen. Läckningsströmmar blir ett relativt sett större och större problem ju mer
kretsteknologin utvecklas, så det är viktigt att modellerna följer med. Utöver
detta presenteras mycket noggranna ekvationer för hur ofta de digitala värdena
som representerar signalerna i dessa filter statistiskt sett ändras, något som har
en direkt inverkan på effektförbrukningen.

Den andra klassen av filter är så kallade Farrow-filter. Dessa används för
att fördröja en signal mindre än en samplingsperiod, något som kan användas
för att räkna ut mellanliggande datavärden och därmed ändra datahastighet
gotdtyckligt, utan att behöva ta hänsyn till om ändringen av datatakten är
ett heltal eller inte. Mycket av tidigare arbete har handlat om hur man väljer
värden för multiplikatorerna, medan själva implementeringen har rönt mindre
intresse. Här presenteras slutna uttryck för hur många bitar som behövs i imple-
menteringen för att representera allt data tillräckligt noggrant. Detta är viktigt
eftersom antalet bitar direkt påverkar mängden kretsar som i sin tur påverkar
mängden effekt som krävs. Utöver detta presenteras en ny metod för att ersätta
multiplikatorerna med adderare och multiplikationer med två. Detta är intres-
sant eftersom multiplikationer med två kan ersättas med att koppla ledningarna
lite annorlunda och man därmed inte behöver några speciella kretsar för detta.

I Farrow-filter så behöver det även implementeras en uträkning av ett po-
lynom. Som en sista del i avhandlingen presenteras dels en undersökning av
komplexiteten för olika metoder att räkna ut polynom, dels föreslås två olika
metoder att effektivt räkna ut kvadrater, kuber och högre ordningens heltalsex-
ponenter av tal.
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Preface

This thesis contains research work done at the Division of Electronics Systems,
Department of Electrical Engineering, Linköping University, Sweden. The work
has been done between December 2007 and December 2011, and has resulted
in the following publications.

Paper A

The power modeling of different realizations of cascaded integrator-comb (CIC)
decimation filters, recursive and non-recursive, is extended with the modeling
of leakage power. The inclusion of this factor becomes more important when
the input sampling rate varies by several orders of magnitude. Also the im-
portance of the input word length while comparing recursive and non-recursive
implementations is highlighted.

? M. Abbas, O. Gustafsson, and L. Wanhammar, “Power estimation of re-
cursive and non-recursive CIC filters implemented in deep-submicron tech-
nology,” in Proc. IEEE Int. Conf. Green Circuits Syst., Shanghai, China,
June 21–23, 2010.

Paper B

A method for the estimation of switching activity in cascaded integrator comb
(CIC) filters is presented. The switching activities may then be used to estimate
the dynamic power consumption. The switching activity estimation model is
first developed for the general-purpose integrators and CIC filter integrators.
The model was then extended to gather the effects of pipelining in the carry
chain paths of CIC filter integrators. The correlation in sign extension bits
is also considered in the switching estimation model. The switching activity
estimation model is also derived for the comb sections of the CIC filters, which
normally operate at the lower sampling rate. Different values of differential
delay in the comb part are considered for the estimation. The comparison of
theoretical estimated switching activity results, based on the proposed model,
and those obtained by simulation, demonstrates the close correspondence of
the estimation model to the simulated one. Model results for the case of phase
accumulators of direct digital frequency synthesizers (DDFS) are also presented.

? M. Abbas, O. Gustafsson, and K. Johansson, “Switching activity estima-
tion for cascaded integrator comb filters,” IEEE Trans. Circuits Syst. I,
under review.

A preliminary version of the above work can be found in:

? M. Abbas and O. Gustafsson, “Switching activity estimation of CIC filter
integrators,” in Proc. IEEE Asia Pacific Conf. Postgraduate Research in
Microelectronics and Electronics, Shanghai, China, Sept. 22–24, 2010.
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Paper C

In this work, there are three major contributions. First, signal scaling in the
Farrow structure is studied which is crucial for a fixed-point implementation.
Closed-form expressions for the scaling levels for the outputs of each sub-filter
as well as for the nodes before the delay multipliers are derived. Second, a
round-off noise analysis is performed and closed-form expressions are derived.
By using these closed-form expressions for the round-off noise and scaling in
terms of integer bits, different approaches to find the suitable word lengths to
meet the round-off noise specification at the output of the filter are proposed.
Third, direct form sub-filters leading to a matrix MCM block is proposed, which
stems from the approach for implementing parallel FIR filters. The use of a
matrix MCM blocks leads to fewer structural adders, fewer delay elements, and
in most cases fewer total adders.

? M. Abbas, O. Gustafsson, and H. Johansson, “On the implementation
of fractional delay filters based on the Farrow structure,” IEEE Trans.
Circuits Syst. I, under review.

Preliminary versions of the above work can be found in:

? M. Abbas, O. Gustafsson, and H. Johansson, “Scaling of fractional delay
filters using the Farrow structure,” in Proc. IEEE Int. Symp. Circuits
Syst., Taipei, Taiwan, May 24–27, 2009.

? M. Abbas, O. Gustafsson, and H. Johansson, “Round-off analysis and
word length optimization of the fractional delay filters based on the Farrow
structure,” in Proc. Swedish System-on-Chip Conf., Rusthållargården,
Arlid, Sweden, May 4–5, 2009.

Paper D

The computational complexity of different polynomial evaluation schemes is
studied. High-level comparisons of these schemes are obtained based on the
number of operations of different types, critical path, pipelining complexity,
and latency after pipelining. These parameters are suggested to consider to
short list suitable candidates for an implementation given the specifications. In
comparisons, not only multiplications are considered, but they are divided into
data-data multiplications, squarers, and data-coefficient multiplications. Their
impact on different parameters suggested for the selection is stated.

? M. Abbas and O. Gustafsson, “Computational and implementation com-
plexity of polynomial evaluation schemes,” in Proc. IEEE Norchip Conf.,
Lund, Sweden, Nov. 14–15, 2011.

Paper E

The problem of computing any requested set of power terms in parallel using
summations trees is investigated. A technique is proposed, which first generates
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the partial product matrix of each power term independently and then checks
the computational redundancy in each and among all partial product matrices
at bit level. The redundancy here relates to the fact that same three partial
products may be present in more than one columns, and, hence, all can be
mapped to the one full adder. The testing of the proposed algorithm for different
sets of powers, variable word lengths, and signed/unsigned numbers is done to
exploit the sharing potential. This approach has achieved considerable hardware
savings for almost all of the cases.

? M. Abbas, O. Gustafsson, and A. Blad, “Low-complexity parallel evalua-
tion of powers exploiting bit-level redundancy,” in Proc. Asilomar Conf.
Signals Syst. Comp., Pacific Grove, CA, Nov. 7–10, 2010.

Paper F

An integer linear programming (ILP) based model is proposed for the compu-
tation of a minimal cost addition sequence for a given set of integers. Since
exponents are additive for a multiplication, the minimal length addition se-
quence will provide an efficient solution for the evaluation of a requested set of
power terms. Not only is an optimal model proposed, but the model is extended
to consider different costs for multipliers and squarers as well as controlling the
depth of the resulting addition sequence. Additional cuts are also proposed
which, although not required for the solution, help to reduce the solution time.

? M. Abbas and O. Gustafsson, “Integer linear programming modeling of
addition sequences with additional constraints for evaluation of power
terms,” manuscript.

Paper G

Based on the switching activity estimation model derived in Paper B, the model
equations are derived for the case of phase accumulators of direct digital fre-
quency synthesizers (DDFS).

? M. Abbas and O. Gustafsson, “Switching activity estimation of DDFS
phase accumulators,” manuscript.

The contributions are also made in the following publication but the contents
are not directly relevant or less relevant to the topic of thesis.

? M. Abbas, F. Qureshi, Z. Sheikh, O. Gustafsson, H. Johansson, and K. Jo-
hansson, “Comparison of multiplierless implementation of nonlinear-phase
versus linear-phase FIR filters,” in Proc. Asilomar Conf. Signals Syst.
Comp., Pacific Grove, CA, Oct. 26–29, 2008.
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Chapter 1

Introduction

Linear time-invariant (LTI) systems have the same sampling rate at the input,
output, and inside of the systems. In applications involving systems operating
at different sampling rates, there is a need to convert the given sampling rate to
the desired sampling rate, without destroying the signal information of interest.
The sampling rate conversion (SRC) factor can be an integer or a non-integer.
This chapter gives a brief overview of SRC and the role of filtering in SRC.

Digital filters are first introduced. The SRC, when changing the sampling
rate by an integer factor, is then explained. The time and frequency-domain
representations of the downsampling and upsampling operations are then given.
The concept of decimation and interpolation that include filtering is explained.
The description of six identities that enable the reductions in computational
complexity of multirate systems is given. A part of the chapter is devoted to
the efficient polyphase implementation of decimators and interpolators. The
fractional-delay filters are then briefly reviewed. Finally, the power and energy
consumption in CMOS circuits is described.

1.1 Digital Filters

Digital filters are usually used to separate signals from noise or signals in dif-
ferent frequency bands by performing mathematical operations on a sampled,
discrete-time signal. A digital filter is characterized by its transfer function, or
equivalently, by its difference equation.

1.1.1 FIR Filters

If the impulse response is of finite duration and becomes zero after a finite
number of samples, it is a finite-length impulse response (FIR) filter. A causal

1
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x(n)
z−1 z−1 z−1 z−1

h(3)h(2)h(1)h(0) h(N − 1) h(N)
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Figure 1.1: Direct-form realization of an N -th order FIR filter.
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h(2)

z−1 z−1
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h(N − 1)h(N)
y(n)

Figure 1.2: Transposed direct-form realization of an N -th order FIR filter.

FIR filter of order N is characterized by a transfer function H(z), defined as [1, 2]

H(z) =

N∑

k=0

h(k)z−k, (1.1)

which is a polynomial in z−1 of degree N . The time-domain input-output
relation of the above FIR filter is given by

y(n) =

N∑

k=0

h(k)x(n − k), (1.2)

where y(n) and x(n) are the output and input sequences, respectively, and
h(0), h(1), . . . , h(N) are the impulse response values, also called filter coefficients.
The parameter N is the filter order and total number of coefficients, N + 1,
is the filter length. The FIR filters can be designed to provide exact linear-
phase over the whole frequency range and are always bounded-input bounded-
output (BIBO) stable, independent of the filter coefficients [1–3]. The direct
form structure in Fig. 1.1 is the block diagram description of the difference
equation (1.2). The transpose structure is shown in Fig. 1.2. The number of
coefficient multiplications in the direct and transpose forms can be halved when
exploiting the coefficient symmetry of linear-phase FIR filter. The total number
of coefficient multiplications will be N/2 + 1 for even N and (N + 1)/2 for odd
N .

1.1.2 IIR Filters

If the impulse response has an infinite duration, i.e., theoretically never ap-
proaches zero, it is an infinite-length impulse response (IIR) filter. This type
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Figure 1.3: Direct-form I IIR realization.

of filter is recursive and represented by a linear constant-coefficient difference
equation as [1, 2]

y(n) =

N∑

k=0

bkx(n − k) −
N∑

k=1

aky(n − k). (1.3)

The first sum in (1.3) is non-recursive and the second sum is recursive. These
two parts can be implemented separately and connected together. The cascade
connection of the non-recursive and recursive sections results in a structure
called direct-form I as shown in Fig. 1.3.

Compared with an FIR filter, an IIR filter can attain the same magnitude
specification requirements with a transfer function of significantly lower order [1].
The drawbacks are nonlinear phase characteristics, possible stability issues, and
sensitivity to quantization errors [1, 4].

1.2 Sampling Rate Conversion

Sampling rate conversion is the process of converting a signal from one sampling
rate to another, while changing the information carried by the signal as little as
possible [5–8]. SRC is utilized in many DSP applications where two signals or
systems having different sampling rates need to be interconnected to exchange
digital signal data. The SRC factor can in general be an integer, a ratio of
two integers, or an irrational number. Mathematically, the SRC factor can be
defined as

R =
Fout

Fin
, (1.4)
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where Fin and Fout are the original input sampling rate and the new sampling
rate after the conversion, respectively. The sampling frequencies are chosen in
such a way that each of them exceeds at least two times the highest frequency
in the spectrum of original continuous-time signal. When a continuous-time
signal xa(t) is sampled at a rate Fin, and the discrete-time samples are x(n) =
xa(n/Fin), SRC is required when there is need of x(n) = xa(n/Fout) and the
continuous-time signal xa(t) is not available anymore. For example, an analog-
to-digital (A/D) conversion system is supplying a signal data at some sampling
rate, and the processor used to process that data can only accept data at a
different sampling rate. One alternative is to first reconstruct the corresponding
analog signal and, then, re-sample it with the desired sampling rate. However,
it is more efficient to perform SRC directly in the digital domain due to the
availability of accurate all-digital sampling rate conversion schemes.

SRC is available in two flavors. For R < 1, the sampling rate is reduced and
this process is known as decimation. For R > 1, the sampling rate is increased
and this process is known as interpolation.

1.2.1 Decimation

Decimation by a factor of M , where M is a positive integer, can be performed
as a two-step process, consisting of an anti-aliasing filtering followed by an
operation known as downsampling [9]. A sequence can be downsampled with a
factor of M by retaining every M -th sample and discarding all of the remaining
samples. Applying the downsampling operation to a discrete-time signal, x(n),
produces a downsampled signal y(m) as

y(m) = x(mM). (1.5)

The time index m in the above equation is related to the old time index n
by a factor of M . The block diagram showing the downsampling operation is
shown in Fig. 1.4a The sampling rate of new discrete-time signal is M times
smaller than the sampling rate of original signal. The downsampling operation
is linear but time-varying operation. A delay in the original input signal by
some samples does not result in the same delay of the downsampled signal.
A signal downsampled by two different factors may have two different shape
output signals but both carry the same information if the downsampling factor
satisfies the sampling theorem criteria.

The frequency domain representation of downsampling can be found by tak-
ing the z-transform to both sides of (1.5) as

Y (ejωT ) =
+∞∑

−∞

x(mM)e−jωT m =
1

M

M−1∑

k=0

X(ej(ωT −2πk)/M ). (1.6)

The above equation shows the implication of the downsampling operation on
the spectrum of the original signal. The output spectrum is a sum of M uni-
formly shifted and stretched versions of X(ejωT ) and also scaled by a factor of
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Figure 1.4: M -fold downsampler and decimation.
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Figure 1.5: Spectra of the intermediate and decimated sequence.

1/M . The signals which are bandlimited to π/M can be downsampled without
distortion.

Decimation requires that aliasing should be avoided. Therefore, the first
step is to bandlimit the signal to π/M and then downsampling by a factor M .
The block diagram of a decimator is shown in Fig. 1.4b. The performance of
a decimator is determined by the filter H(z) which is there to suppress the
aliasing effect to an acceptable level. The spectra of the intermediate sequence
and output sequence obtained after downsampling are shown in Fig. 1.5. The
ideal filter, as shown by dotted line in Fig. 1.5, should be a lowpass filter with
the stopband edge at ωsT1 = π/M .

1.2.2 Interpolation

Interpolation by a factor of L, where L is a positive integer, can be realized
as a two-step process of upsampling followed by an anti-imaging filtering. The
upsampling by a factor of L is implemented by inserting L − 1 zeros between
two consecutive samples [9]. An upsampling operation to a discrete-time signal
x(n) produces an upsampled signal y(m) according to

y(m) =

{
x(m/L), m = 0, ±L, ±2L, . . . ,
0, otherwise.

(1.7)

A block diagram shown in Fig. 1.6a is used to represent the upsampling op-
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Figure 1.6: L-fold upsampler and interpolator.
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Figure 1.7: Spectra of the original, intermediate, and output sequences.

eration. The upsampling operation increases the sampling rate of the original
signal by L times. The upsampling operation is a linear but time-varying oper-
ation. A delay in the original input signal by some samples does not result in
the same delay of the upsampled signal. The frequency domain representation
of upsampling can be found by taking the z-transform of both sides of (1.7) as

Y (ejωT ) =

+∞∑

−∞

y(m)e−jωT m = X(ejωT L). (1.8)

The above equation shows that the upsampling operation leads to L − 1 images
of the spectrum of the original signal in the baseband.

Interpolation requires the removal of the images. Therefore in first step,
upsampling by a factor of L is performed, and in the second step, unwanted
images are removed using anti-imaging filter. The block diagram of an interpo-
lator is shown in Fig. 1.6b. The performance of an interpolator is determined
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Figure 1.8: Noble identities for decimation.

by the filter H(z), which is there to remove the unwanted images. As shown in
Fig. 1.7, the spectrum of the sequence, x1(m), not only contains the baseband of
the original signal, but also the repeated images of the baseband. Apparently,
the desired sequence, y(m), can be obtained from x1(m) by removing these
unwanted images. This is performed by the interpolation (anti-imaging) filter.
The ideal filter should be a lowpass filter with the stopband edge at ωsT1 = π/L
as shown by dotted line in Fig. 1.7.

1.2.3 Noble Identities

The six identities, called noble identities, help to move the downsampler and
upsampler operations to a more desirable position to enable an efficient imple-
mentation structure. As a result, the arithmetic operations of additions and
multiplications are to be evaluated at the lowest possible sampling rate. In
SRC, since filtering has to be performed at the higher sampling rate, the com-
putational efficiency may be improved if downsampling (upsampling) operations
are introduced into the filter structures. In the first and second identities, seen
in Figs. 1.9a and 1.8a, moving converters leads to evaluation of additions and
multiplications at lower sampling rate. The third and fourth identities, seen
in Figs. 1.9b and 1.8b, show that a delay of M (L) sampling periods at the
higher sampling rate corresponds to a delay of one sampling period at the lower
rate. The fifth and sixth identities, seen in Figs. 1.9c and 1.8c, are generalized
versions of the third and fourth identities.
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Figure 1.9: Noble identities for interpolation.

1.3 Polyphase Representation

A very useful tool in multirate signal processing is the so-called polyphase repre-
sentation of signals and systems [5, 10]. It facilitates considerable simplifications
of theoretical results as well as efficient implementation of multirate systems. To
formally define it, an LTI system is considered with a transfer function

H(z) =

+∞∑

n=−∞

h(n)z−n. (1.9)

For an integer M , H(z) can be decomposed as

H(z) =
M−1∑

m=0

z−m
+∞∑

n=−∞

h(nM + m)z−nM =
M−1∑

m=0

z−mHm(zM ). (1.10)

The above representation is equivalent to dividing the impulse response h(n)
into M non-overlapping groups of samples hm(n), obtained from h(n) by M -
fold decimation starting from sample m. The subsequences hm(n) and the
corresponding z-transforms defined in (1.10) are called the Type-1 polyphase
components of H(z) with respect to M [10].

The polyphase decomposition is widely used and its combination with the no-
ble identities leads to efficient multirate implementation structures. Since each
polyphase component contains M − 1 zeros between two consecutive samples
and only nonzero samples are needed for further processing, zeros can be dis-
charged resulting in downsampled-by-M polyphase components. The polyphase
components, as a result, operate at M times lower sampling rate.
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(b) Moving downsampler to before sub-filters and replacing input structure by a commutator.

Figure 1.10: Polyphase implementation of a decimator.

An efficient implementation of decimators and interpolators results if the
filter transfer function is represented in polyphase decomposed form [10]. The
filter H(z) in Fig. 1.4b is represented by its polyphase representation form as
shown in Fig. 1.10a. A more efficient polyphase implementation and its equiva-
lent commutative structure is shown in Fig. 1.10b. Similarly, the interpolation
filter H(z) in Fig. 1.6b is represented by its polyphase representation form as
shown in Fig. 1.11a. Its equivalent structure, but more efficient in hardware
implementation, is shown in Fig. 1.11b.

For FIR filters, the polyphase decomposition into low-order sub-filters is very
easy. However, for IIR filters, the polyphase decomposition is not so simple, but
it is possible to do so [10]. An IIR filter has a transfer function that is a ratio
of two polynomials. The representation of the transfer function into the form,
(1.10), needs some modifications in the original transfer function in such a way
that the denominator is only function of powers of zM or zL, where M and L
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(b) Moving upsampler to after sub-filters and replacing output structure by a commutator.

Figure 1.11: Polyphase implementation of an interpolator.

are the polyphase decomposition factors. Several approaches are available in
the literature for the polyphase decomposition of the IIR filters. In the first
approach [11], the original IIR transfer function is re-arranged and transformed
into (1.10). The polyphase sub-filters in the second approach has distinct all-
pass sub-filters [12–15].

In this thesis, only FIR filters and their polyphase implementation forms are
considered for the sampling rate conversion.

1.4 Fractional-Delay Filters

Fractional-delay (FD) filters find applications in, for example, mitigation of
symbol synchronization errors in digital communications [16–19], time-delay
estimation [20–22], echo cancellation [23], and arbitrary sampling rate conver-
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Figure 1.12: Phase-delay characteristics of FD filters designed for delay param-
eter d = {0.1, 0.2, . . . , 0.9}.

sion [24–26]. FD filters are used to provide a fractional delay adjustable to any
desired value. Ideally, the output y(n) of an FD filter for an input x(n) is given
by

y(n) = x(n − D), (1.11)

where D is a delay. Equation (1.11) is valid for integer values of D only. For
non-integer values of D, (1.11) need to be approximated. The delay parameter
D can be expressed as

D = Dint + d, (1.12)

where Dint is the integer part of D and d is the FD. The integer part of the delay
can then be implemented as a chain of Dint unit delays. The FD d however needs
approximation. In the frequency domain, an ideal FD filter can be expressed as

Hdes(e
jω) = e−j(Dint+d)ωT . (1.13)

The ideal FD filter in (1.13) can be considered as all-pass and having a linear-
phase characteristics. The magnitude and phase responses are

|Hdes(e
jωT )| = 1 (1.14)

and

φ(ωT ) = −(Dint + d)ωT. (1.15)
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Figure 1.13: Magnitude of FD filters designed for delay parameter d =
{0.1, 0.2, . . . , 0.9}.

For the approximation of the ideal filter response in (1.11), a wide range
of FD filters have been proposed based on FIR and IIR filters [27–34]. The
phase delay and magnitude characteristics of the FD filter based on first order
Lagrange interpolation [32, 35] are shown in Figs. 1.12 and 1.13. The underlying
continuous-time signal xa(nT ), delayed by a fractional-delay d, can be expressed
as

y(nT ) = xa(nT − DintT − dT ), (1.16)

and it is demonstrated for d = 0.2 and d = 0.4 in Fig. 1.14 .

In the application of FD filters for SRC, the fractional-delay d is changed at
every instant an output sample occurs. The input and output rates will now be
different. If the sampling rate is required to be increased by a factor of two, for
each input sample there are now two output samples. The fractional-delay d
assumes the value 0 and 0.5 for each input sample, and the two corresponding
output samples are computed. For a sampling rate increase by a factor of L,
d will take on all values in a sequential manner between {(L − 1)/L, 0}, with
a step size of 1/L. For each input sample, L output samples are generated.
Equivalently, it can be interpreted as delaying the underlying continuous-time
signal by L different values of fractional-delays.
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1.5 Power and Energy Consumption

Power is dissipated in the form of heat in digital CMOS circuits. The power
dissipation is commonly divided into three different sources: [36, 37]

? Dynamic or switching power consumption

? Short circuit power consumption

? Leakage power consumption

The above sources are summarized in an equation as

Pavg = Pdynamic + Pshort-circuit + Pleakage

= α0→1CLV 2
DDfclk + IscVDD + IleakageVDD. (1.17)

The switching or dynamic power consumption is related to charging and
discharging of a load capacitance CL through the PMOS and NMOS transistors
during low-to-high and high-to low transitions at the output, respectively. The
total energy drawn from the power supply for low-to-high transition, seen in
Fig. 1.15a, is CLV 2

DD, half of which is dissipated in the form of heat through the
PMOS transistors while the other half is stored in the load capacitor. During
the pull-down, high to low transition, seen in Fig. 1.15b, the energy stored on
CL which is CLV 2

DD/2 is dissipated as heat by the NMOS transistors. If all these
transitions occur at the clock rate of fclk then the switching power consumption
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Figure 1.15: A rising and falling output transition on the CMOS inverter. The
solid arrows represent the charging and discharging of the load capacitance CL.
The dashed arrow is for the leakage current.

is given by CLV 2
DDfclk. However the switching of the data is not always at the

clock rate but rather at some reduced rate which is best defined by another
parameter α0→1, defined as the average number of times in each cycle that a
node makes a transition from low to high. All the parameters in the dynamic
power equation, except α0→1, are defined by the layout and specification of the
circuit.

The second power term is due to the direct-path short circuit current, Isc,
which flows when both of the PMOS and NMOS transistors are active simulta-
neously, resulting in a direct path from supply to ground.

Leakage power, on the other hand, is dissipated in the circuits when they are
idle, as shown in Figs. 1.15a and 1.15b by a dashed line. The leakage current,
Ileakage, consists of two major contributions: Isub and Igate. The term Isub is
the sub-threshold current caused by low threshold voltage, when both NMOS
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and PMOS transistors are off. The other quantity, Igate, is the gate current
caused by reduced thickness of the gate oxide in deep sub-micron process . The
contribution of the reverse leakage currents, due to of reverse bias between
diffusion regions and wells, is small compared to sub-threshold and gate leakage
currents.

In modern/concurrent CMOS technologies, the two foremost forms of power
consumptions are dynamic and leakage. The relative contribution of these two
forms of power consumptions has greatly evolved over the period of time. To-
day, when technology scaling motivates the reduced power supply and threshold
voltage, the leakage component of power consumption has started to become
dominant [38–40]. In today’s processes, sub-threshold leakage is the main con-
tributor to the leakage current.





Chapter 2

Finite Word Length Effects

Digital filters are implemented in hardware with finite-precision numbers and
arithmetic. As a result, the digital filter coefficients and internal signals are
represented in discrete form. This generally leads to two different types of finite
word length effects.

First, there are the errors in the representing of coefficients. The coefficients
representation in finite precision (quantization) has the effect of a slight change
in the location of the filter poles and zeros. As a result, the filter frequency
response differs from the response with infinite-precision coefficients. However,
this error type is deterministic and is called coefficient quantization error.

Second, there are the errors due to multiplication round-off, that results
from the rounding or truncation of multiplication products within the filter.
The error at the filter output that results from these roundings or truncations
is called round-off noise.

This chapter outlines the finite word length effects in digital filters. It first
discusses binary number representation forms. Different types of fixed-point
quantizations are then introduced along with their characteristics. The overflow
characteristics in digital filters are briefly reviewed with respect to addition and
multiplication operations. Scaling operation is then discussed which is used
to prevent overflows in digital filter structures. The computation of round-
off noise at the digital filter output is then outlined. The description of the
constant coefficient multiplication is then given. Finally, different approaches
for the optimization of word length are reviewed.

2.1 Numbers Representation

In digital circuits, a number representation with a radix of two, i.e., binary
representation, is most commonly used. Therefore, a number is represented by

17
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a sequence of binary digits, bits, which are either 0 or 1. A w-bit unsigned
binary number can be represented as

X = x0x1x2...xw−2xw−1, (2.1)

with a value of

X =

w−1∑

i=0

xi2
w−i−1, (2.2)

where x0 is the most significant bit (MSB) and xw−1 is the least significant bit
(LSB) of the binary number.

A fixed-point number consists of an integral part and a fractional part, with
the two parts separated by a binary point in radix of two. The position of the
binary point is almost always implied and thus the point is not explicitly shown.
If a fixed-point number has wI integer bits and wF fractional bits, it can be
expressed as

X = xwI −1 . . . x1x0.x−1x−2 . . . x−wF
. (2.3)

The value can be obtained as

X =

wI −1∑

i=0

xi2
i +

−1∑

i=−wF

xi2
i. (2.4)

2.1.1 Two’s Complement Numbers

For a suitable representation of numbers and an efficient implementation of
arithmetic operation, fixed-point arithmetics with a word length of w bits is
considered. Because of its special properties, the two’s complement representa-
tion is considered, which is the most common type of arithmetic used in digital
signal processing. The numbers are usually normalized to [−1, 1), however, to
accommodate the integer bits, the range [−2wI , −2wI ), where wI ∈ N, is as-
sumed. The quantity wI denotes the number of integer bits. The MSB, the
left-most bit in w, is used as the sign bit. The sign bit is treated in the same
manner as the other bits. The fraction part is represented with wF = w−1−wI

bits. The quantization step is as a result ∆ = 2−wF .
If X2C is a w-bit number in two’s complement form, then by using all defi-

nitions considered above, X can be represented as

X2C = 2wI

(

−x020 +

w−1∑

i=1

xi2
−i

)

, xi ∈ {0, 1}, i = 0, 1, 2, . . . , w − 1,

= −x02wI

︸ ︷︷ ︸

sign bit

+

wI∑

i=1

xi2
wI −i

︸ ︷︷ ︸

integer

+

w−1∑

i=wI +1

xi2
wI −i

︸ ︷︷ ︸

fraction

,
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or in compact form as

X2C = [ x0
︸︷︷︸

sign bit

| x1x2 . . . xwI
︸ ︷︷ ︸

integer

| xwI +1 . . . xw−1
︸ ︷︷ ︸

fraction

]2. (2.5)

In two’s complement, the range of representable numbers is asymmetric. The
largest number is

Xmax = 2wI − 2−wF = [0|1 . . . 1|1 . . . 1|]2, (2.6)

and the smallest number is

Xmin = −2wI = [1|0 . . . 0|0 . . . 0|]2. (2.7)

2.1.2 Canonic Signed-Digit Representation

Signed-digit (SD) numbers differ from the binary representation, since the digits
are allowed to take negative values, i.e., xi ∈ {−1, 0, 1}. The symbol 1 is
also used to represent −1. It is a redundant number system, as different SD
representations are possible of the same integer value. The canonic signed-digit
(CSD) representation is a special case of signed-digit representation in that each
number has a unique representation. The other feature of CSD representation
is that a CSD binary number has the fewest number of non-zero digits with no
consecutive bits being non-zero [41].

A number can be represented in CSD form as

X =

w−1∑

i=0

xi2
i,

where, xi ∈ {−1, 0, +1} and xixi+1 = 0, i = 0, 1, . . . , w − 2.

2.2 Fixed-Point Quantization

Three types of fixed-point quantization are normally considered, rounding, trun-
cation, and magnitude truncation [1, 42, 43]. The quantization operator is
denoted by Q(.). For a number X , the rounded value is denoted by Qr(X),
the truncated value by Qt(X), and the magnitude truncated value Qmt(X). If
the quantized value has wF fractional bits, the quantization step size, i.e., the
difference between the adjacent quantized levels, is

∆ = 2−wF (2.8)

The rounding operation selects the quantized level that is nearest to the un-
quantized value. As a result, the rounding error is at most ∆/2 in magnitude
as shown in Fig. 2.1a. If the rounding error, εr, is defined as

εr = Qr(X) − X, (2.9)
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∆/2

∆/2

(a) Rounding error.

∆

∆

(b) Truncation error.

∆

∆

(c) Magnitude truncation er-
ror.

Figure 2.1: Quantization error characteristics.

then

− ∆

2
≤ εr ≤ ∆

2
. (2.10)

Truncation simply discards the LSB bits, giving a quantized value that is
always less than or equal to the exact value. The error characteristics in the
case of truncation are shown in Fig. 2.1b. The truncation error is

− ∆ < εt ≤ 0. (2.11)

Magnitude truncation chooses the nearest quantized value that has a magni-
tude less than or equal to the exact value, as shown in Fig. 2.1c, which implies

− ∆ < εmt < ∆. (2.12)

The quantization error can often be modeled as a random variable that has
a uniform distribution over the appropriate error range. Therefore, the filter
calculations involving round-off errors can be assumed error-free calculations
that have been corrupted by additive white noise [43]. The mean and variance
of the rounding error is

mr =
1

∆

∆/2∫

−∆/2

εrdεr = 0 (2.13)

and

σ2
r =

1

∆

∆/2∫

−∆/2

(εr − mr)2dεr =
∆2

12
. (2.14)

Similarly, for truncation, the mean and variance of the error are

mt = −∆

2
and σ2

t =
∆2

12
, (2.15)
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and for magnitude truncation,

mmt = 0 and σ2
mt =

∆2

3
. (2.16)

2.3 Overflow Characteristics

With finite word length, it is possible for the arithmetic operations to overflow.
This happens for fixed-point arithmetic ,e.g., when two numbers of the same sign
are added to give a value having a magnitude not in the interval [−2wI , 2wI ).
Since numbers outside this range are not representable, the result overflows.
The overflow characteristics of two’s complement arithmetic can be expressed
as

X2C(X) =







X − 2wI +1, X ≥ 2wI ,
X, −2wI ≤ X < 2wI ,
X + 2wI +1, X < −2wI ,

(2.17)

and graphically it is shown in Fig. 2.2.

−2wI

2wI − ∆

X2C(X)

X

Figure 2.2: Overflow characteristics for two’s complement arithmetic.

2.3.1 Two’s Complement Addition

In two’s complement arithmetic, when two numbers each having w-bits are
added together, the result will be w + 1 bits. To accommodate this extra bit,
the integer bits need to be extended. In two’s complement, such overflows can
be seen as discarding the extra bit, which corresponds to a repeated addition
or subtraction of 2(wI +1) to make the w + 1-bit result to be representable by
w-bits. This model for overflow is illustrated in Fig. 2.3.

2.3.2 Two’s Complement Multiplication

In the case of multiplication of two fixed-point numbers each having w-bits, the
result is 2w-bits. Overflow is similarly treated here as in the case of addition,
a repeated addition or subtraction of 2(wI +1). Having two numbers, each with
a precision wF , the product is of precision 2wF . The number is reduced to wF
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yy y

d · 2(wI+1)X1

X2 X2

X1

X2

X1

Figure 2.3: Addition in two’s complement. The integer d ∈ Z has to assign a
value such that y ∈ [−2wI , 2wI ).

y
Q

y y

d · 2(wI+1)

ε
X1

X2 X2

X1

X2

X1

Figure 2.4: Multiplication in two’s complement. The integer d ∈ Z has to assign
a value such that y ∈ [−2wI , 2wI ).

precision again by using rounding or truncation. The model to handle overflow
in multiplication is shown in Fig. 2.4.

2.4 Scaling

To prevent overflow in fixed-point filter realizations, the signal levels inside
the filter can be reduced by inserting scaling multipliers. However, the scaling
multipliers should not distort the transfer function of the filter. Also the signal
levels should not be too low, otherwise, the signal-to-noise (SNR) ratio will
suffer as the noise level is fixed for fixed-point arithmetic.

The use of two’s complement arithmetic eases the scaling, as repeated addi-
tions with an overflow can be acceptable if the final sum lies within the proper
signal range [4]. However, the inputs to non-integer multipliers must not over-
flow. In the literature, there exist several scaling norms that compromise be-
tween the probability of overflows and the round-off noise level at the output.
In this thesis, only the commonly employed L2-norm is considered which for a
Fourier transform H(ejωT ) is defined as

∥
∥H(ejωT )

∥
∥

2
=

√
√
√
√
√

1

2π

π∫

−π

|H(ejωT )|2 d(ωT ).

In particular, if the input to a filter is Gaussian white noise with a certain
probability of overflow, using L2-norm scaling of a node inside the filter, or at
the output, implies the same probability of overflow at that node.
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2.5 Round-Off Noise

A few assumptions need to be made before computing the round-off noise at the
digital filter output. Quantization noise is assumed to be stationary, white, and
uncorrelated with the filter input, output, and internal variables. This assump-
tion is valid if the filter input changes from sample to sample in a sufficiently
random-like manner [43].

For a linear system with impulse response g(n), excited by white noise with
mean mx and variance σ2

x, the mean and variance of the output noise is

my = mx

∞∑

n=−∞

g(n) (2.18)

and

σ2
y = σ2

x

∞∑

n=−∞

g2(n), (2.19)

where g(n) is the impulse response from the point where a round-off takes place
to the filter output. In case there is more than one source of roundoff error
in the filter, the assumption is made that these errors are uncorrelated. The
round-off noise variance at the output is the sum of contributions from each
quantization error source.

2.6 Word Length Optimization

As stated earlier in the chapter, the quantization process introduces round-off
errors, which in turn measures the accuracy of an implementation. The cost
of an implementation is generally required to be minimized, while still satis-
fying the system specification in terms of implementation accuracy. Excessive
bit-width allocation will result in wasting valuable hardware resources, while
in-sufficient bit-width allocation will result in overflows and violate precision re-
quirements. The word length optimization approach trades precisions for VLSI
measures such as area, power, and speed. These are the measures or costs by
which the performance of a design is evaluated. After word length optimization,
the hardware implementation of an algorithm will be efficient typically involv-
ing a variety of finite precision representation of different sizes for the internal
variables.

The first difficulty in the word length optimization problem is defining of the
relationship of word length to considered VLSI measures. The possible ways
could be closed-form expressions or the availability of precomputed values in
the form of a table of these measures as a function of word lengths. These
closed-form expressions and precomputed values are then used by the word
length optimization algorithm at the word length assignment phase to have an
estimate, before doing an actual VLSI implementation.
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The round-off noise at the output is considered as the measure of perfor-
mance function because it is the primary concern of many algorithm designers.
The round-off error is a decreasing function of word length, while VLSI mea-
sures such as area, speed, and power consumption are increasing functions of
word length. To derive a round-off noise model, an LTI system with n quanti-
zation error sources is assumed. This assumption allows to use superposition of
independent noise sources to compute the overall round-off noise at the output.
The noise variance at the output is then written as

σ2
o =

∞∑

k=0

σ2
ei

h2
i (k), 1 ≤ i ≤ n, (2.20)

where ei is the quantization error source at node i and hi(k) is the impulse
response from node i to the output. If the quantization word length wi is
assumed for error source at node i then

σ2
ei

=
2−2wi

12
, 1 ≤ i ≤ n. (2.21)

The formulation of an optimization problem is done by constraining the cost or
accuracy of an implementation while optimizing other metric(s). For simplicity,
the cost function is assumed to be the area of the design. Its value is measured
appropriately to the considered technology, and it is assumed to be the function
of quantization word lengths, f(wi), i = 1, 2, . . . , n . The performance function,
on other hand, is taken to be the round-off noise value at the output, given in
(2.20), due to the limiting of internal word lengths. As a result, one possible
formulation of word length optimization problem is

minimize area : f(wi), 1 ≤ i ≤ n (2.22)

s.t. σ2
o ≤ σspec, (2.23)

where σspec is the required noise specification at the output.
The problem of word length optimization has received considerable research

attention. In [44–48], different search-based strategies are used to find suitable
word length combinations. In [49], the word length allocation problem is solved
using a mixed-integer linear programming formulation. Some other approaches,
e.g., [50–52], have constrained the cost, while optimizing the other metric(s).

2.7 Constant Multiplication

A multiplication with a constant coefficient, commonly used in DSP algorithms
such as digital filters [53], can be made multiplierless by using additions, sub-
tractions, and shifts only [54]. The complexity for adders and subtracters is
roughly the same so no differentiation between the two is normally considered.
A shift operation in this context is used to implement a multiplication by a
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Figure 2.5: Different realizations of multiplication with the coefficient 45. The
symbol � i are used to represent i left shifts.

factor of two. Most of the work in the literature has focused on minimizing
the adder cost [55–57]. For bit parallel arithmetic, the shifts can be realized
without any hardware using hardwiring.

In constant coefficient multiplication, the hardware requirements depend on
the coefficient value, e.g., the number of ones in the binary representation of the
coefficient value. The constant coefficient multiplication can be implemented by
the method that is based on the CSD representation of the constant coefficient
[58], or more efficiently by using other structures as well that require fewer
number of operations [59]. Consider, for example, the coefficient 45, having
the CSD representation 1010101. The multiplication with this constant can be
realized by three different structures as shown in Fig. 2.5, varying with respect
to number of additions and shifts requirement [41].

In some applications, one signal is required to be multiplied by several con-
stant coefficients, as in the case of transposed direct-form FIR filters shown
in 1.2. Realizing the set of products of a single multiplicand is known as the
multiplier block problem [60] or the multiple constant multiplications (MCM)
problem [61]. A simple way to implement multiplier blocks is to realize each
multiplier separately. However, they can be implemented more efficiently by us-
ing structures that remove any redundant partial results among the coefficients
and thereby reduce the overall number of operations. The MCM algorithms
can be divided into three groups based on the approach used in the algorithms;
sub-expression sharing [61–65], difference methods [66–70], and graph based
methods [60, 71–73].

The MCM concepts can be further generalized to computations involving
multiple inputs and multiple outputs. This corresponds to a matrix-vector
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multiplication with a matrix with constant coefficients. This is the case for
linear transforms such as the discrete cosine transform (DCT) or the discrete
Fourier transform (DFT), but also FIR filter banks [74], polyphase decomposed
FIR filters [75], and state space digital filters [4, 41]. Matrix-vector MCM
algorithms include [76–80].



Chapter 3

Integer Sampling Rate Conversion

The role of filters in sampling rate conversion has been described in Chapter 1.
This chapter mainly focuses on the implementation aspects of decimators and
interpolators due to the fact that filtering initially has to be performed on the
side of higher sampling rate. The goal is then to achieve conversion structures
allowing the arithmetic operations to be performed at the lower sampling rate.
The overall computational workload will as a result be reduced.

The chapter begins with the basic decimation and interpolation structures
that are based on FIR filters. A part of the chapter is then devoted to the
efficient polyphase implementation of FIR decimators and interpolators. The
concept of the basic cascade integrator-comb (CIC) filter is introduced and
its properties are discussed. The structures of the CIC-based decimators and
interpolators are then shown. The overall two-stage implementation of a CIC
and an FIR filter that is used for the compensation is described. Finally, the
non-recursive implementation of the CIC filter and its multistage and polyphase
implementation structures are presented.

3.1 Basic Implementation

Filters in SRC have an important role and are used as anti-aliasing filters in
decimators or anti-imaging filters in interpolators. The characteristics of these
filters then correlate to the overall performance of a decimator or of an interpola-
tor. As discussed in Chapter 1, filtering operations need to be performed at the
higher sampling rate. In decimation, filtering operation precedes downsampling
and in interpolation, filtering operation proceeds upsampling. However, down-
sampling or upsampling operations can be moved into the filtering structures,
providing arithmetic operations to be performed at the lower sampling rate. As
a result, the overall computational workload in the sampling rate conversion
system can potentially be reduced by the conversion factor M (L).

27
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Figure 3.1: Cascade of direct-form FIR filter and downsampler.
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Figure 3.2: Computational efficient direct-form FIR decimation structure.

In the basic approach [81], FIR filters are considered as anti-aliasing or anti-
imaging filters. The non-recursive nature of FIR filters provides the opportunity
to improve the efficiency of FIR decimators and interpolators through polyphase
decomposition.

3.1.1 FIR Decimators

In the basic implementation of an FIR decimator, a direct-form FIR filter is
cascaded with the downsampling operation as shown in Fig. 3.1. The FIR fil-
ter acts as the anti-aliasing filter. The implementation can be modified to a
form that is computationally more efficient, as seen in Fig. 3.2. The downsam-
pling operation precedes the multiplications and additions which results in the
arithmetic operations to be performed at the lower sampling rate.

In Fig. 3.2, the input data is now read simultaneously from the delays at
every M :th instant of time. The input sample values are then multiplied by the
filter coefficients h(n) and combined together to give y(m).

In the basic implementation of the FIR decimator in Fig. 3.1, the number
of the multiplications per input sample in the decimator is equal to the FIR
filter length N + 1. The first modification made by the use of noble identity,
seen in Fig. 3.2, reduces the multiplications per input sample to (N + 1)/M .
The symmetry of coefficients may be exploited in the case of linear phase FIR
filter to reduce the number of multiplications to (N + 1)/2 for odd N and
N/2 + 1 for even N . In the second modification, for a downsampling factor
M , multiplications per input sample is (N + 2)/2M for even N . Similarly, the
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Figure 3.3: Cascade of upsampler and transposed direct-form FIR filter.
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Figure 3.4: Computational efficient transposed direct-form FIR interpolation
structure.

multiplications per input sample are (N + 1)/(2M) for odd N .

3.1.2 FIR Interpolators

The interpolator is a cascade of an upsampler followed by an FIR filter that acts
as an anti-imaging filter, seen in Fig. 3.3. Similar to the case of decimator, the
upsampling operation is moved into the filter structure at the desired position
such that the multiplication operations are performed at the lower sampling-rate
side, as shown in Fig. 3.4.

In the basic multiplication of the FIR interpolator in Fig. 3.3, every L:th
input sample to the filter is non-zero. Since there is no need to multiply the
filter coefficients by the zero-valued samples, multiplications need to be per-
formed at the sampling rate of the input signal. The result is then upsampled
by the desired factor L. This modified implementation approach reduces the
multiplications count per output sample from N + 1 to (N + 1)/L. Similar to
the decimator case, the coefficient symmetry of the linear phase FIR filter can
be exploited to reduce the number of multiplication further by two.

3.2 Polyphase FIR Filters

As described earlier in Sec. 3.1, the transfer function of an FIR filter can be
decomposed into parallel structures based on the principle of polyphase decom-
position. For a factor of M polyphase decomposition, the FIR filter transfer
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TTT

y(m)x(n)

Figure 3.5: Polyphase factor of M FIR decimator structure.

function is decomposed into M low-order transfer functions called the polyphase
components [5, 10]. The individual contributions from these polyphase com-
ponents when added together has the same effect as of the original transfer
function.

If the impulse response h(n) is assumed zero outside 0 ≤ n ≤ N , then the
factors Hm(z) in (1.10) becomes

Hm(z) =

b(N+1)/Mc
∑

n=0

h(nM + m)z−n, 0 ≤ m ≤ M − 1. (3.1)

3.2.1 Polyphase FIR Decimators

The basic structure of the polyphase decomposed FIR filter is the same as
that in Fig. 1.10a, however the sub-filters Hm(z) are now specifically defined
in (3.1). The arithmetic operations in the implementation of all FIR sub-filters
still operate at the input sampling rate. The downsampling operation at the
output can be moved into the polyphase branches by using the more efficient
polyphase decimation implementation structure in Fig. 1.10. As a result, the
arithmetic operations inside the sub-filters now operate at the lower sampling
rate. The overall computational complexity of the decimator is reduced by a
factor of M .

The input sequences to the polyphase sub-filters are combination of delayed
and downsampled values of the input which can be directly selected from the
input with the use of a commutator. The resulting polyphase architecture for a
factor-of-M decimation is shown in Fig. 3.5. The commutator operates at the
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Figure 3.6: Polyphase factor of L FIR interpolator structure.

input sampling rate but the sub-filters operate at the output sampling rate.

3.2.2 Polyphase FIR Interpolators

The polyphase implementation of an FIR filter, by a factor L, is done by decom-
posing the original transfer function into L polyphase components, also called
polyphase sub-filters. The basic structure of the polyphase decomposed FIR
filter is same as that in the Fig. 1.11a. The polyphase sub-filters Hm(z) are
defined in (3.1) for the FIR filter case. In the basic structure, the arithmetic
operations in the implementation of all FIR sub-filters operate at the upsam-
pled rate. The upsampling operation at the input is moved into the polyphase
branches by using the more efficient polyphase interpolation implementation
structure in Fig. 1.11. More efficient interpolation structure will result because
the arithmetic operations inside the sub-filters now operate at the lower sam-
pling rate. The overall computational complexity of the interpolator is reduced
by a factor of L.

On the output side, the combination of upsamplers, delays, and adders are
used to feed the correct interpolated output sample. The same function can be
replaced directly by using a commutative switch. The resulting architecture for
factor of L interpolator is shown in Fig. 3.6.

3.3 Multistage Implementation

A multistage decimator with K stages, seen in Fig. 3.7, can be used when
the decimation factor M can be factored into the product of integers, M =
M1 ×M2×, . . . , Mk, instead of using a single filter and factor of M downsampler.
Similarly, a multistage interpolator with K stages, seen in Fig. 3.8, can be used if
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Figure 3.7: Multistage implementation of a decimator.
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Figure 3.8: Multistage implementation of an interpolator.

the interpolation factor L can be factored as L = L1 ×L2 ×· · ·×LK . The noble
identities can be used to transform the multistage decimator implementation
into the equivalent single stage structure as shown in Fig. 3.9. Similarly, the
single stage equivalent of the multistage interpolator is shown in Fig. 3.10. An
optimum realization depends on the proper selection of K and J and best
ordering of the multistage factors [82].

The multistage implementations are used when there is need of implementing
large sampling rate conversion factors [1, 82]. Compared to the single stage
implementation, it relaxes the specifications of individual filters. A single stage
implementation with a large decimation (interpolation) factor requires a very
narrow passband filter, which is hard from the complexity point of view [3, 81,
82].

3.4 Cascaded Integrator Comb Filters

An efficient architecture for a high decimation-rate filter is the cascade integrator
comb (CIC) filter introduced by Hogenauer [83]. The CIC filter has proven to be
an effective element in high-decimation or interpolation systems [84–87]. The
simplicity of implementation makes the CIC filters suitable for operating at
higher frequencies. A single stage CIC filter is shown in Fig. 3.11. It is a
cascade of integrator and comb sections. The feed forward section of the CIC
filter, with differential delay R, is comb section and the feedback section is called
an integrator. The transfer function of a single stage CIC filter is given as

H(z) =
1 − z−R

1 − z−1
=

R−1∑

n=0

z−n. (3.2)

H1(z)H2(z
M1)H3(z

M1M2) . . . HJ(zM1M2...MJ−1) M1M2 . . . MJ

Figure 3.9: Single stage equivalent of a multistage decimator.
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L1L2 . . . LJ H1(z)H2(z
L1)H3(z

L1L2) . . . HJ(zL1L2...LJ−1)

Figure 3.10: Single stage equivalent of a multistage interpolator.

z−1
−

x(n) y(m)

z−R

Figure 3.11: Single-stage CIC filter.

The comb filter has R zeros that are equally spaced around the unit circle. The
zeros are the R-th roots of unity and are located at z(k) = ej2πk/R, where
k = 0, 1, 2, . . . , R − 1. The integrator section, on the other hand, has a single
pole at z = 1. CIC filters are based on the fact that perfect pole/zero cancel-
ing can be achieved, which is only possible with exact integer arithmetic [88].
The existence of integrator stages will lead to overflows. However, this is of
no harm if two’s complement arithmetic is used and the range of the number
system is equal to or exceeds the maximum magnitude expected at the output
of the composite CIC filter. The use of two’s complement and non-saturating
arithmetic accommodates the issues with overflow. With the two’s complement
wraparound property, the comb section following the integrator will compute
the correct result at the output.

The frequency response of CIC filter, by evaluating H(z) on the unit circle,
z = ejωT = ej2πf , is given by

H(ejωT ) =

(

sin(ωT R
2 )

sin(ωT
2 )

)

e−jωT (R−1)/2 (3.3)

The gain of the single stage CIC filter at ωT = 0 is equal to the differential
delay, R, of the comb section.

3.4.1 CIC Filters in Interpolators and Decimators

In the hardware implementations of decimation and interpolation, cascaded
integrator-comb (CIC) filters are frequently used as a computationally efficient
narrowband lowpass filters. These lowpass filters are well suited to improve
the efficiency of anti-aliasing filters prior to decimation or the anti-imaging
filters after the interpolation. In both of these applications, CIC filters have
to operate at very high sampling rate. The CIC filters are generally more
convenient for large conversion factors due to small lowpass bandwidth. In
multistage decimators with a large conversion factor, the CIC filter is the best
suited for the first decimation stage, whereas in interpolators, the comb filter is
adopted for the last interpolation stage.
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z−1

x(n)
M

−
y(m)

z−D

Figure 3.12: Single stage CIC decimation filter with D = R/M .

The cascade connection of integrator and comb in Fig. 3.11 can be inter-
changed as both of these are linear time-invariant operations. In a decimator
structure, the integrator and comb are used as the first and the second section
of the CIC filter, respectively. The structure also includes the decimation factor
M . The sampling rate at the output as a result of this operation is Fin/M ,
where Fin is the input sampling rate. However, an important aspect with the
CIC filters is the spectral aliasing resulting from the downsampling operation.
The spectral bands centered at the integer multiples of 2/D will alias directly
into the desired band after the downsampling operation. Similarly, the CIC
filter with the upsampling factor L is used for the interpolation purpose. The
sampling rate as a result of this operation is FinL. However, imperfect filtering
gives rise to unwanted spectral images. The filtering characteristics for the anti-
aliasing and anti-image attenuation can be improved by increasing the number
of stages of CIC filter.

The comb and integrator sections are both linear time-invariant and can
follow or precede each other. However, it is generally preferred to place comb
part on the side which has the lower sampling rate. It reduces the length of the
delay line which is basically the differential delay of the comb section. When
the decimation factor M is moved into the comb section using the noble identity
and considering R = DM , the resulting architecture is the most common im-
plementation of CIC decimation filters shown in Fig. 3.12. The delay length is
reduced to D = R/M , which is now considered as the differential delay of comb
part. One advantage is that the storage requirement is reduced and also the
comb section now operates at a reduced clock rate. Both of these factors result
in hardware saving and also low power consumption. Typically, the differential
delay D is restricted to 1 or 2. The value of D also decides the number of nulls
in the frequency response of the decimation filter. Similarly, the interpolation
factor L is moved into the comb section using the noble identity and considering
R = DL. The resulting interpolation structure is shown in Fig. 3.13. The delay
length is reduced to D = R/L. Similar advantages can be achieved as in the
case of CIC decimation filter. The important thing to note is that the integrator
section operate at the higher sampling rate in both cases.

The transfer function of the K-stage CIC filter is

H(z) = HK
I (z)HK

C (z) =

(
1 − z−D

1 − z−1

)K

. (3.4)

In order to modify the magnitude response of the CIC filter, there are only two
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z−1

y(m)
L

x(n)

−
z−D

Figure 3.13: Single stage CIC interpolation filter with D = R/L.

parameters; the number of CIC filter stages and the differential delay D. The
natural nulls of the CIC filter provide maximum alias rejection but the aliasing
bandwidths around the nulls are narrow, and are usually not enough to provide
sufficient aliasing rejection in the entire baseband of the signal. The advantage
of increased number of stages is improvement in attenuation characteristics but
the passband droop normally needs to be compensated.

3.4.2 Polyphase Implementation of Non-Recursive CIC

The polyphase decomposition of the non-recursive CIC filter transfer function
may achieve lower power consumption than the corresponding recursive imple-
mentation [89, 90]. The basic non-recursive form of the transfer function is

H(z) =
1

D

D−1∑

n=0

z−n. (3.5)

The challenge to achieve low power consumption are those stages of the filter
which normally operate at higher input sampling rate. If the overall conversion
factor D is power of two, D = 2J , then the transfer function can be expressed
as

H(z) =

J−1∏

i=0

(1 + z−2i

) (3.6)

As a result, the original converter can be transformed into a cascade of J factor-
of-two converters. Each has a non-recursive sub-filter (1 + z−1)K and a factor-
of-two conversion.

A single stage non-recursive CIC decimation filter is shown in Fig. 3.14. In
the case of multistage implementation, one advantage is that only first deci-
mation stage will operate at high input sampling rate. The sampling rate is
successively reduced by two after each decimation stage as shown in Fig. 3.15.
Further, the polyphase decomposition by a factor of two at each stage can be
used to reduce the sampling rate by an additional factor of two. The second
advantage of the non-recursive structures is that there are no more register over-
flow problems, if properly scaled. The register word length at any stage j for
an input word length win, is limited to (win + K · j).

In an approach proposed in [89], the overall decimator is decomposed into
a first-stage non-recursive filter with the decimation factor J1, followed by a
cascade of non-recursive (1 + z−1)K filters with a factor-of-2 decimation. The
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(1 + z−1 + z−2 + ... + z−D+1)K D

Figure 3.14: Non-recursive implementation of a CIC decimation filter.

(1 + z−1)K (1 + z−1)K (1 + z−1)K2 2 2

Figure 3.15: Cascade of J factor-of-two decimation filters.

polyphase decomposition along with noble identities is used to implement all
these sub-filters.

3.4.3 Compensation Filters

The frequency magnitude response envelopes of the CIC filters are like sin(x)/x,
therefore, some compensation filter are normally used after the CIC filters. The
purpose of the compensation filter is to compensate for the non-flat passband
of the CIC filter.

Several approaches in the literature [91–95] are available for the CIC filter
sharpening to improve the passband and stopband characteristics. They are
based on the method proposed earlier in [96]. A two stage solution of sharpened
comb decimation structure is proposed in [93–95, 97–100] for the case where
sampling rate conversion is expressible as the product of two integers. The
transfer function can then be written as the product of two filter sections. The
role of these filter sections is then defined. One filter section may be used
to provide sharpening while the other can provide stopband attenuation by
selecting appropriate number of stages in each filter section.



Chapter 4

Non-Integer Sampling Rate Conversion

The need for a non-integer sampling rate conversion may appear when the two
systems operating at different sampling rates have to be connected. This chapter
gives a concise overview of SRC by a rational factor and implementation details.

The chapter first introduces the SRC by a rational factor. The technique
for constructing efficient SRC by a rational factor based on FIR filters and
polyphase decomposition is then presented. In addition, the sampling rate al-
teration with an arbitrary conversion factor is described. The polynomial-based
approximation of the impulse response of a resampler model is then presented.
Finally, the implementation of fractional-delay filters based on the Farrow struc-
ture is considered.

4.1 Sampling Rate Conversion: Rational Factor

The two basic operators, downsampler and upsampler, are used to change the
sampling rate of a discrete-time signal by an integer factor only. Therefore, the
sampling rate change by a rational factor, requires the cascade of upsampler and
downsampler operators; Upsampling by a factor of L, followed by downsampling
by a factor of M [9, 82]. For some cases, it may be beneficial to change the order
of these operators, which is only possible if the L and M factors are relative
prime, i.e., M and L do not share a common divisor greater than one. A cascade
of these sampling rate alteration devices, results in sampling rate change by a
rational factor L/M . The realizations shown in Fig. 4.1 are equivalent if the
factors L and M are relative prime.

4.1.1 Small Rational Factors

The classical design of implementing the ratio L/M is upsampling by a factor
of L followed by appropriate filtering, followed by a downsampling by a factor
of M .

37
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x(n) y(n)
M L

x(n)
L M

y(n)

Figure 4.1: Two different realizations of rational factor L/M .

M
y(n)x(n)

L HI(z) Hd(z)

Figure 4.2: Cascade of an interpolator and decimator.

The implementation of a rational SRC scheme is shown in Fig. 4.2. The
original input signal x(n) is first upsampled by a factor of L followed by an anti-
imaging filter also called interpolation filter. The interpolated signal is first
filtered by an anti-aliasing filter before downsampling by a factor of M . The
sampling rate of the output signal is

Fout =
L

M
Fin. (4.1)

Since both filters, interpolation and the decimation, are next to each other, and
operate at the same sampling rate. Both of these lowpass filters can be combined
into a single lowpass filter H(z) as shown in Fig. 4.3. The specification of the
filter H(z) needs to be selected such that it could act as both anti-imaging and
anti-aliasing filters at the same time.

Since the role of the filter H(z) is to act as an anti-imaging as well as an
anti-aliasing filter, the stopband edge frequency of the ideal filter H(z) in the
rational SRC of Fig. 4.3 should be

ωsT = min
(π

L
,

π

M

)

. (4.2)

From the above equation it is clear that the passband will become more narrow
and filter requirements will be hard for larger values of L and M . The ideal
specification requirement for the magnitude response is

|H(ejωT )| =

{
L, |ωT | ≤ min

(
π
L , π

M

)

0, otherwise,
(4.3)

L
x(n)

MH(z)
y(n)

Figure 4.3: An implementation of SRC by a rational factor L/M .
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M

y(m)x(n)
H0(z)

H1(z)

HL−1(z)

MH2(z) z−2

z−1

z−L+1

Figure 4.4: Polyphase realization of SRC by a rational factor L/M .

The frequency spectrum of the re-sampled signal, Y (ejωT ), as a function of
spectrum of the original signal X(ejωT ), the filter transfer function H(ejωT ),
and the interpolation and decimation factors L and M , can be expressed as

Y (ejωT ) =
1

M

M−1∑

k=0

X(ej(LωT −2πk)/M )H(ej(ωT −2πk)/M ). (4.4)

It is apparent that the overall performance of the resampler depends on the
filter characteristics.

4.1.2 Polyphase Implementation of Rational Sampling Rate Con-
version

The polyphase representation is used for the efficient implementation of rational
sampling rate converters, which then enables the arithmetic operations to be
performed at the lowest possible sampling rate. The transfer function H(z) in
Fig. 4.3 is decomposed into L polyphase components using the approach shown
in Fig. 1.11a. In the next step, the interpolation factor L is moved into the sub-
filters using the computationally efficient polyphase representation form shown
in Fig. 1.11. An equivalent delay block for each sub-filter branch is placed in
cascade with the sub-filters. Since the downsampling operation is linear, and
also by the use of noble identity, it can be moved into each branch of the sub-
filters. The equivalent polyphase representation of the rational factor of L/M
as a result of these modifications is shown in Fig. 4.4 [5, 10].

By using polyphase representation and noble identities, Fig. 4.4 has already
attained the computational saving by a factor of L. The next motivation is to
move the downsampling factor to the input side so that all filtering operations
could be evaluated at 1/M -th of the input sampling rate. The reorganization of
the individual polyphase branches is targeted next. If the sampling conversion
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zk(l0L−m0M)LHk(z) M

Hk(z) L Mz−k

Hk(z) L M z−km0

Hk(z) M L z−km0zkl0

zkl0

Figure 4.5: Reordering the upsampling and downsampling in the polyphase
realization of k-th branch.

factors, L and M , are relative prime, then

l0L − m0M = −1 (4.5)

where l0 and m0 are some integers. Using (4.5), the k-th delay can be repre-
sented as

z−k = zk(l0L−m0M) (4.6)

The step-by-step reorganization of the k-th branch is shown in Fig. 4.5. The
delay chain z−k is first replaced by its equivalent form in (4.6), which then
enables the interchange of downsampler and upsampler. Since both upsampler
and downsampler are assumed to be relative prime, they can be interchanged.
The fixed independent delay chains are also moved to the input and the output
sides. As can be seen in Fig. 4.5, the sub-filter Hk(z) is in cascade with the
downsampling operation, as highlighted by the dashed block. The polyphase
representation form in Fig. 1.10a and its equivalent computationally efficient
form in Fig. 1.10 can be used for the polyphase representation of the sub-filter
Hk(z). The same procedure is followed for all other branches. As a result of
these adjustments, all filtering operations now operate at 1/M :th of the input
sampling rate. The intermediate sampling rate for the filtering operation will be
lower, which makes it a more efficient structure for a rational SRC by a factor
L/M . The negative delay zkl0 on the input side is adjusted by appropriately
delaying the input to make the solution causal. The rational sampling rate
conversion structures for the case L/M < 1 considered can be used to perform
L/M > 1 by considering its dual.

4.1.3 Large Rational Factors

The polyphase decomposition approach is convenient in cases where the factors
L and M are small. Otherwise, filters of a very high order are needed. For ex-
ample, in the application of sampling rate conversion from 48 kHz to 44.1 kHz,
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the rational factors requirement is L/M = 147/160, which imposes severe re-
quirements for the filters. The stopband edge frequency from (4.2) is π/160.
This will result in a high-order filter with a high complexity. In this case, a
multi-stage realization will be beneficial [41].

4.2 Sampling Rate Conversion: Arbitrary Factor

In many applications, there is a need to compute the value of underlying
continuous-time signal xa(t) at an arbitrary time instant between two exist-
ing samples. The computation of new sample values at some arbitrary points
can be viewed as interpolation.

Assuming an input sequence, . . . , x((nb−2)Tx), x((nb−1)Tx), x(nbTx), x((nb+
1)Tx), x((nb +2)Tx), . . . , uniformly sampled at the interval Tx. The requirement
is to compute new sample value, y(Tym) at some time instant, Tym, which
occurs between the two existing samples x(nbTx) and x((nb + 1)Tx), where
Tym = nbTx + Txd. The parameter nb is some reference or base-point index,
and d is called the fractional interval. The fractional interval can take on any
value in the range |Txd| ≤ 0.5, to cover the whole sampling interval range. The
new sample value y(Tym) is computed, using the existing samples, by utilizing
some interpolation algorithm. The interpolation algorithm may in general be
defined as a time-varying digital filter with the impulse response h(nb, d).

The interpolation problem can be considered as resampling, where the continuous-
time function ya(t) is first reconstructed from a finite set of existing sam-
ples x(n). The continuous-time signal can then be sampled at the desired
instant, y(Tym) = ya(Tym). The commonly used interpolation techniques
are based on polynomial approximations. For a given set of the input sam-
ples x(−N1 + nb), . . . , x(nb), . . . , x(nb + N2), the window or interval chosen is
N = N1 + N2 + 1, A polynomial approximation ya(t) is then defined as

ya(t) =

N2∑

k=−N1

Pk(t)x(nb + k) (4.7)

where Pk(t) are polynomials. If the interpolation process is based on the La-
grange polynomials, then Pk(t) is defined as

Pk(t) =

N2∏

i=−N1,i6=k

t − tk

tk − ti
, k = −N1, −N1 + 1, . . . , N2 − 1, N2. (4.8)

The Lagrange approximation also does the exact reconstruction of the original
input samples, x(n).

4.2.1 Farrow Structures

In conventional SRC implementation, if the SRC ratio changes, new filters are
needed. This limits the flexibility in covering different SRC ratios. By utiliz-
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y(n)

HL(z) H2(z) H1(z) H0(z)

x(n)

d d d

Figure 4.6: Farrow structure.

ing the Farrow structure, shown in Fig. 4.6, this can be solved in an elegant
way. The Farrow structure is composed of linear-phase FIR sub-filters, Hk(z),
k = 0, 1, . . . , L, with either a symmetric (for k even) or antisymmetric (for k
odd) impulse response. The overall impulse response values are expressed as
polynomials in the delay parameter. The implementation complexity of the Far-
row structure is lower compared to alternatives such as online design or storage
of a large number of different impulse responses. The corresponding filter struc-
ture makes use of a number of sub-filters and one adjustable fractional-delay
as seen in Fig. 4.6. Let the desired frequency response, Hdes(e

jωT , d), of an
adjustable FD filter be

Hdes(e
jωT , d) = e−jωT (D+d), |ωT | ≤ ωcT < π, (4.9)

where D and d are fixed and adjustable real-valued constants, respectively. It
is assumed that D is either an integer, or an integer plus a half, whereas d takes
on values in the interval [−1/2, 1/2]. In this way, a whole sampling interval is
covered by d, and the fractional-delay equals d (d + 0.5) when D is an integer
(an integer plus a half). The transfer function of the Farrow structure is

H(z, d) =

L∑

k=0

dkHk(z), (4.10)

where Hk(z) are fixed FIR sub-filters approximating kth-order differentiators
with frequency responses

Hk(ejωT ) ≈ e−jωT D (−jωT )k

k!
, (4.11)

which is obtained by truncating the Taylor series expansion of (4.9) to L + 1
terms. A filter with a transfer function in the form of (4.11) can approximate
the ideal response in (4.10) as close as desired by choosing L and designing
the sub-filters appropriately [30, 101]. When Hk(z) are linear-phase FIR filters,
the Farrow structure is often referred to as the modified Farrow structure. The
Farrow structure is efficient for interpolation whereas, for decimation, it is better
to use the transposed Farrow structure so as to avoid aliasing. The sub-filters
can also have even or odd orders Nk. With odd Nk, all Hk(z) are general filters
whereas for even Nk, the filter H0(z) reduces to a pure delay. An alternative
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representation of the transfer function of Farrow structure is

H(z, d) =

L∑

k=0

N∑

n=0

hk(n)z−ndk,

=
N∑

n=0

L∑

k=0

hk(n)dkz−n,

=
N∑

n=0

h(n, d)z−n. (4.12)

The quantity N is the order of the overall impulse response and

h(n, d) =

L∑

k=0

hk(n)dk. (4.13)

Assuming Tin and Tout to be the sampling period of x(n) and y(n), respectively,
the output sample index at the output of the Farrow structure is

noutTout =

{
(nin + d(nin))Tin, Even Nk

(nin + 0.5 + d(nin))Tin, Odd Nk,
(4.14)

where nin(nout) is the input (output) sample index. If d is constant for all input
samples, the Farrow structure delays a bandlimited signal by a fixed d. If a
signal needs to be delayed by two different values of d, in both cases, one set of
Hk(z) is used and only d is required to be modified.

In general, SRC can be seen as delaying every input sample with a different
d. This delay depends on the SRC ratio. For interpolation, one can obtain new
samples between any two consecutive samples of x(n). With decimation, one
can shift the original samples (or delay them in the time domain) to the positions
which would belong to the decimated signal. Hence, some signal samples will
be removed but some new samples will be produced. Thus, by controlling d
for every input sample, the Farrow structure performs SRC. For decimation,
Tout > Tin, whereas interpolation results in Tout < Tin.





Chapter 5

Polynomial Evaluation

The Farrow structure, shown in Fig. 4.6, requires evaluation of a polynomial of
degree L with d as an independent variable. Motivated by that, this chapter
reviews polynomial evaluation schemes and efficient evaluation of a required set
of powers terms. Polynomial evaluation also has other applications [102], such
as approximation of elementary functions in software or hardware [103, 104].

A uni-variate polynomial is a polynomial that has only one independent
variable, whereas multi-variate polynomials involves multiple independent vari-
ables. In this chapter, only uni-variate polynomial, p(x), is considered with an
independent variable x. At the start of chapter, the classical Horner scheme
is described, which is considered as an optimal way to evaluate a polynomial
with minimum number of operations. A brief overview of parallel polynomial
evaluation schemes is then presented in the central part of the chapter. Finally,
the computation of the required set of powers is discussed. Two approaches are
outlined to exploit potential sharing in the computations.

5.1 Polynomial Evaluation Algorithms

The most common form of a polynomial, p(x), also called power form, is repre-
sented as

p(x) = a0 + a1x + a2x2 + · · · + anxn, an 6= 0.

Here n is the order of the polynomial, and a0, a1, . . . , an are the polynomial
coefficients.

In order to evaluate p(x), the first solution that comes into mind is the
transformation of all powers to multiplications. The p(x) takes the form

p(x) = a0 + a1 × x + a2 × x × x + · · · + an × x × x · · · × x, an 6= 0.
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x x a1 x a0an an−1

p(x)

Figure 5.1: Horner’s scheme for an n-th order polynomial.

However, there are more efficient ways to evaluate this polynomial. One possible
way to start with is the most commonly used scheme in software and hardware
named as Horner’s scheme.

5.2 Horner’s Scheme

Horner’s scheme is simply a nested re-write of the polynomial. In this scheme,
the polynomial p(x) is represented in the form

p(x) = a0 + x
(

a1 + x
(
a2 + · · · + x(an−1 + anx) . . .

))

. (5.1)

This leads to the structure in Fig. 5.1.
Horner’s scheme has the minimum arithmetic complexity of any polynomial

evaluation algorithm. For a polynomial order of n, n multiplications and n
additions are used. However, it is purely sequential, and therefore becomes
unsuitable for high-speed applications.

5.3 Parallel Schemes

Several algorithms with some degree of parallelism in the evaluation of polyno-
mials have been proposed [105–110]. However, there is an increase in the number
of operations for these parallel algorithms. Earlier works have primarily focused
on either finding parallel schemes suitable for software realization [105–111] or
how to find suitable polynomials for hardware implementation of function ap-
proximation [47, 112–116].

To compare different polynomial evaluation schemes, varying in degree of
parallelism, different parameters such as computational complexity, number of
operations of different types, critical path, pipelining complexity, and latency
after pipelining may be considered. On the basis of these parameters, the suit-
able schemes can be shortlisted for an implementation given the specifications.
Since all schemes have the same number of additions n, the difference is in
the number of multiplication operations, as given in Table 5.1. Multiplications
can be divided into three categories, data-data multiplications, squarers, and
data-coefficient multiplications.

In squarers, both of the inputs of the multipliers are same. This leads to
that the number of partial products can be roughly halved, and, hence, it is
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reasonable to assume that a squarer has roughly half the area complexity as of
a general multiplier [117, 118]. In data-coefficient multiplications, as explained
in Chapter 2, the area complexity is reduced but hard to find as it depends
on the coefficient. For simplicity, it is assumed that a constant multiplier has
an area which is 1/4 of a general multiplier. As a result, two schemes having
the same total number of multiplication but vary in types of multiplications
are different with respect to implementation cost and other parameters. The
scheme which has the lower number of data-data multiplications is cheaper to
implement.

The schemes which are frequently used in literature are Horner and Estrin
[105]. However, there are other polynomial evaluation schemes as well like
Dorn’s Generalized Horner Scheme [106], Munro and Paterson’s Scheme [107,
108], Maruyama’s Scheme [109], Even Odd (EO) Scheme, and Li et al. Scheme
[110]. All the listed schemes have some good potential and useful properties.
However, some schemes do not work for all polynomial orders.

The difference in all schemes is that how the schemes efficiently split the
polynomial into sub-polynomials so that they can be evaluated in parallel. The
other factor that is important is the type of powers required after splitting of
the polynomial. Some schemes split the polynomial in such a way that only
powers of the form x2i

or x3i

are required. The evaluation of such square and
cube powers are normally more efficient than conventional multiplications. The
data-coefficient multiplication count also gives the idea of degree of parallelism
of that scheme. For example, Horner’s scheme has only one data-coefficient
multiplication, and hence, has one sequential flow; no degree of parallelism.
The EO scheme, on other hand, has two data-coefficient multiplications, which
result in two branches running in parallel. The disadvantage on the other hand
is that the number of operations are increased and additional need of hardware
to run operations in parallel. The applications where polynomials are required
to be evaluated at run-time or have extensive use of it, any degree of parallelism
in it or efficient evaluation relaxes the computational burden to satisfy required
throughput.

Other factors that may be helpful in shortlisting any evaluation scheme are
uniformity and simplicity of the resulting evaluation architecture and linearity
of the scheme as the order grows; some schemes may be good for one polynomial
order but not for the others.

5.4 Powers Evaluation

Evaluation of a set of powers, also known as exponentiation, not only finds
application in polynomial evaluation [102, 119] but also in window-based expo-
nentiation for cryptography [120, 121]. The required set of power terms to be
evaluated may contain all powers up to some integer n or it has some sparse set
of power terms that need to be evaluated. In the process of evaluating all pow-
ers at the same time, redundancy in computations at different levels is expected
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Table 5.1: Evaluation schemes for fifth-order polynomial, additions (A), data-
data multiplications (M), data-coefficient multiplications (C), squarers (S).

Scheme Evaluation A M C S
Direct a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 5 2 5 2
Horner ((((a5x + a4)x + a3)x + a2)x + a1)x + a0 5 1 4 0
Estrin (a5x2 + a4x + a3)x3 + a2x2 + a1x + a0 5 4 2 1
Li (a5x + a4)x4 + (a3x + a2)x2 + (a1x + a0) 5 3 2 2
Dorn (a5x3 + a2)x2 + (a4x3 + a1)x + (a3x3 + a0) 5 3 3 1
EO ((a5x2 + a3)x2 + a1)x + ((a4x2 + a2)x2 + a0) 5 2 3 1
Maruyama (a5x + a4)x4 + a3x3 + (a2x2 + a1x + a0) 5 4 2 2

which need to be exploited. Two independent approaches are considered. In the
first, redundancy is removed at word level, while in the second, it is exploited
at bit level.

5.4.1 Powers Evaluation with Sharing at Word-Level

A direct approach to compute xi is the repeated multiplication of x with itself
i − 1 times, however, this approach is inefficient and becomes infeasible for
large values of i. For example, to compute x23, 22 repeated multiplications of
x are required. With the binary approach in [102], the same can be achieved
in eight multiplications, {x2, x4, x5, x10, x11, x12, x23}, while the factor method
in [102] gives a solution with one less multiplication, {x2, x3, x4, x7, x8, x16, x23}.
Another efficient way to evaluate a single power is to consider the relation to
the addition chain problem. An addition chain for an integer n is a list of
integers [102]

1 = a0, a1, a2, . . . , al = n, (5.2)

such that

ai = aj + ak, k ≤ j < i, i = 1, 2, . . . , l. (5.3)

As multiplication is additive in the logarithmic domain, a minimum length
addition chain will give an optimal solution to compute a single power term. A
minimum length addition chain for n = 23 gives the optimal solution with only
six multiplications, {x2, x3, x5, x10, x20, x23}.

However, when these techniques, used for the computation of a single power
[102, 122, 123], are applied in the evaluation of multiple power terms, it does not
combine well in eliminating the overlapping terms that appear in the evaluation
of individual powers as explained below with an example.

Suppose a sparse set a power terms, T = {22, 39, 50}, need to be evaluated.



5.4. Powers Evaluation 49

A minimum length addition chain solution for each individual power is

22 → {1, 2, 3, 5, 10, 11, 22}
39 → {1, 2, 3, 6, 12, 15, 27, 39}
50 → {1, 2, 3, 6, 12, 24, 25, 50}.

As can be seen, there are some overlapping terms, {2, 3, 6, 12}, which can be
shared. If these overlapping terms are removed and the solutions are combined
for the evaluation of the required set of powers, {22, 39, 50}, the solution is

{22, 39, 50} → {1, 2, 3, 5, 6, 10, 11, 12, 15, 22, 24, 25, 27, 39, 50}. (5.4)

However, the optimal solution for the evaluation of the requested set of powers,
{22, 39, 50}, is

{22, 39, 50} → {1, 2, 3, 6, 8, 14, 22, 36, 39, 50}, (5.5)

which clearly shows a significant difference. This solution is obtained by address-
ing addition sequence problem, which can be considered as the generalization of
addition chains. An addition sequence for the set of integers T = n1, n2, . . . , nr
is an addition chain that contains each element of T . For example, an addition
sequence computing {3, 7, 11} is {1, 2, 3, 4, 7, 9, 11}.

The removal of redundancy at word-level does not strictly mean for the
removal of overlapping terms only but to compute only those powers which
could be used for evaluation of other powers as well in the set.

Note that the case where all powers of x, from one up to some integer n,
are required to be computed is easy compared to the sparse case. Since every
single multiplication will compute some power in the set, and it is assumed that
each power is computed only once, any solution obtained will be optimal with
respect to the minimum number of multiplications.

5.4.2 Powers Evaluation with Sharing at Bit-Level

In this approach, the evaluation of power terms is done in parallel using sum-
mations trees, similar to parallel multipliers. The PP matrices for all requested
powers in the set are generated independently and sharing at bit level is ex-
plored in the PP matrices in order to remove redundant computations. The
redundancy here relates to the fact that same three partial products may be
present in more than one columns, and, hence, can be mapped to the same full
adder.

A w-bit unsigned binary number can be expressed as following

X = xw−1xw−2xw−3...x2x1x0, (5.6)

with a value of

X =

w−1∑

i=0

xi2
i, (5.7)
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where xw−1 is the MSB and x0 is the LSB of the binary number. The nth power
of an unsigned binary number as in (5.7) is given by

Xn =

(
w−1∑

i=0

xi2
i

)n

. (5.8)

For the powers with n ≥ 2, the expression in (5.8) can be evaluated using the
multinomial theorem. For any integer power n and a word length of w bits, the
above equation can be simplified to a sum of weighted binary variables, which
can further be simplified by using the identities xixj = xjxi and xixi = xi.
The PP matrix of the corresponding power term can then be deduced from
this function. In the process of generation of a PP matrix from the weighted
function, the terms, e.g., x020 will be placed in the first and x226 in the 7-th
column from the left in the PP matrix.

For the terms having weights other than a power of two, binary or CSD
representation may be used. The advantage of using CSD representation over
binary is that the size of PP matrix is reduced and therefore the number of
full adders for accumulating PP are reduced. To make the analysis of the PP
matrix simpler, the binary variables in the PP matrix can then be represented
by their corresponding representation weights as given in Table 5.2.

Table 5.2: Equivalent representation of binary variables in PP matrix for w = 3.

Binary variable
Word (X)

Representation
x2 x1 x0

x0 0 0 1 1
x1 0 1 0 2

x1x0 0 1 1 3
x2 1 0 0 4

x2x0 1 0 1 5
x2x1 1 1 0 6

x2x1x0 1 1 1 7

In Fig. 5.2, an example case for (n, w) = (5, 4), i.e., computing the square,
cube, and fourth power of a five-bit input, is considered to demonstrate the
sharing potential among multiple partial products. All partial products of the
powers from x2 up to x5 are shown. As can be seen in Fig. 5.2, there are savings,
since the partial product sets {9, 10, 13} and {5, 7, 9} are present in more than
one column. Therefore, compared to adding the partial products in an arbitrary
order, three full adders (two for the first set and one for the second) can be saved
by making sure that exactly these sets of partial products are added.
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Figure 5.2: Partial product matrices with potential sharing of full adders, n = 5,
w = 4.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, contributions beneficial for the implementation of integer and non-
integer SRC were presented. By optimizing both the number of arithmetic op-
erations and their word lengths, improved implementations are obtained. This
not only reduces the area and power consumption but also allows a better com-
parisons between different SRC alternatives during a high-level system design.
The comparisons are further improved for some cases by accurately estimating
the switching activities and by introducing leakage power consumption.

6.2 Future Work

The following ideas are identified as possibilities for future work:

? It would be beneficial to derive corresponding accurate switching activ-
ity models for the non-recursive CIC architectures. In this way an im-
proved comparison can be made, where both architectures have more ac-
curate switching activity estimates. Deriving a switching activity model
for polyphase FIR filters would naturally have benefits for all polyphase
FIR filters, not only the ones with CIC filter coefficients.

? For interpolating recursive CIC filters, the output of the final comb stage
will be embedded with zeros during the upsampling. Based on this, one
could derive closed form expressions for the integrator taking this addi-
tional knowledge into account.

? The length of the Farrow sub-filters usually differ between different sub-
filters. This would motivate a study of pipelined polynomial evaluation
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schemes where the coefficients arrive at different times. For the proposed
matrix-vector multiplication scheme, this could be utilized to shift the
rows corresponding to the sub-filters in such a way that the total implemen-
tation complexity for the matrix-vector multiplication and the pipelined
polynomial evaluation is minimized.

? The addition sequence model does not include pipelining. It would be
possible to reformulate it to consider the amount of pipelining registers
required as well. This could also include obtaining different power terms
at different time steps.
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