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ON THE IMPLEMENTATION OF MIXED METHODS
AS NONCONFORMING METHODS

FOR SECOND-ORDER ELLIPTIC PROBLEMS

TODD ARBOGAST AND ZHANGXIN CHEN

Abstract. In this paper we show that mixed finite element methods for a fairly
general second-order elliptic problem with variable coefficients can be given a
nonmixed formulation. (Lower-order terms are treated, so our results apply also
to parabolic equations.) We define an approximation method by incorporating
some projection operators within a standard Galerkin method, which we call a
projection finite element method. It is shown that for a given mixed method,
if the projection method's finite element space Mh satisfies three conditions,
then the two approximation methods are equivalent. These three conditions
can be simplified for a single element in the case of mixed spaces possessing
the usual vector projection operator. We then construct appropriate noncon-
forming spaces Mh for the known triangular and rectangular elements. The
lowest-order Raviart-Thomas mixed solution on rectangular finite elements in
R2 and R3, on simplices, or on prisms, is then implemented as a nonconform-
ing method modified in a simple and computationally trivial manner. This new
nonconforming solution is actually equivalent to a postprocessed version of the
mixed solution. A rearrangement of the computation of the mixed method so-
lution through this equivalence allows us to design simple and optimal-order
multigrid methods for the solution of the linear system.

1. Introduction

We consider the following elliptic problem for u on the bounded domain
Q C R" , « = 2 or 3, with boundary dQ. = TxöT2, Yx n Y2 = 0 :
(1.1a) V -a + du = f   inii,
(1.1b) o = -a(Vu + bu-c)   inQ,
(1.1c) u = -g   onYx,
(l.ld) o-v = 0   onY2,

where a(x) is a uniformly positive definite, bounded, symmetric tensor, b(x)
and c(x) are bounded vectors, d(x) > 0 is bounded, f(x) e L2(Í2), g(x) e
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944 TODD ARBOGAST AND ZHANGXIN CHEN

H2(Q) (Hk(Q) = Wk'2(il) is the Sobolev space of k times differentiable
functions in L2(ß)),and v is the outer unit normal to the domain. Let (• , -)$
denote the L2(S) inner product (we omit S if S = Q). Assume that the
problem is coercive in the sense that there is a positive constant k such that
for any v G (L2(ß))" and w G L2(ß),

(1.2) (a~xv , v) + (bw , v) + (dw , w) > K{\\v\\2L2{a))„ + (dw , w)}

(this immediately implies that if d = 0 a.e. on a set S, then b = 0 a.e. on S ).
Assume also that if Yx = 0, then d > 0 on some set of positive measure, so
that if v = -a(Vw + bw - c), then a generalized Poincaré inequality gives us
control over w.

Problem (1.1) is recast in mixed form as follows. Let

H(div ; ß) = {v G (L2(ß))" : V • v G L2(ß)} ,
V = {v G H(div ;il):vu = 0onY2},
W = L2(ß).

Then the mixed form of (1.1) for the pair (a, u) G V x W is

(1.3a)      (V-<r, w) + (du, w) = (f, w),    Vw G W,
(1.3b)      (a~xa, v)-(u, V-v) + (bu, v) = (c, v) + (g, v • u)r¡,    Mv G V.

In 1985, Arnold and Brezzi [1] showed that if b = c = d = 0, and n = 2,
the mixed finite element methods for the even-order Raviart-Thomas spaces
defined over triangles are equivalent to certain nonconforming methods. In
particular, the lowest-order Raviart-Thomas space defined over triangles [21] is
equivalent to a simple modification of the Pi -nonconforming Galerkin method.
This nonconforming method yields a symmetric and positive definite problem
(i.e., a minimization problem), whereas the mixed formulation is a saddle point
problem.

Marini [18] noted that the computational cost of this modification is almost
nil, if a is a piecewise constant scalar. This equivalence has been exploited to
obtain optimal L°°(ß)-error estimates for the mixed method [16]. Recently,
Brenner [4] has used the equivalence to define and analyze an optimally conver-
gent multigrid method. Chen [9, 11] has derived some nonconforming methods
that are equivalent to certain lower-dimensional mixed methods, and exploited
superconvergence properties to obtain a better approximation to the scalar vari-
able.

Analogous equivalences for problems with nonzero low-order terms or for
problems posed in higher dimensions (say n = 3 ) have not been shown. It is
necessary to obtain an equivalence for d ^ 0 to treat time-dependent, parabolic
problems. Moreover, an equivalence has not been shown for rectangular mixed
methods, even though they are used widely in practice. We consider such prob-
lems in this paper, concentrating on the case of the lowest-order Raviart-Thomas
mixed method defined over rectangles or rectangular parallelepipeds. An outline
of the paper and a summary of our results follows.

We begin in §2 with the development of a general theory on the equivalence
of mixed and nonconforming methods. Our theory is similar to, but more gen-
eral than, that developed earlier by one of the authors [11]. We generalize the
results of Arnold and Brezzi [1] in defining a nonconforming method for some
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MIXED METHODS AS NONCONFORMING METHODS 945

finite element space Mh . It is a Galerkin method with the addition of some
special projection operators, and hence we will call it a projection finite ele-
ment method. We then develop three conditions on Mh that are sufficient to
imply the equivalence of the projection method to a given mixed method. In
§3 we consider the problem of constructing finite element spaces that satisfy
these three conditions. We derive a simple local criterion that guarantees the
equivalence in the case of mixed spaces possessing the usual vector projection
operator. In §§4 and 5, we use this general theory to define equivalent projec-
tion methods for various mixed methods for the problem (1.3). We treat the
mixed spaces of Raviart and Thomas [21], Nedelec [19], Brezzi, Douglas, and
Marini [8], Brezzi, Douglas, Duran, and Fortin [6], and Brezzi, Douglas, Fortin,
and Marini [7] defined over triangles or rectangular parallelepipeds in R2 and
R3. Our nonconforming spaces perhaps illuminate some of the relationships
between these mixed spaces. We point out that projection finite element spaces
are not necessarily unique, since two such spaces are known for the lowest-order
Raviart-Thomas space over triangles: the one defined by Arnold and Brezzi [ 1 ]
uses cubic "bubble functions" while the one defined by Chen [11] uses quadratic
bubble functions.

Then, for several sections, we restrict our attention to the lowest-order
Raviart-Thomas mixed method on rectangles. In §6, our general projection
space is shown to have a nice structure. It is a simple augmentation of a stan-
dard nonconforming Galerkin space with P2-bubble functions. These bubble
functions are orthogonal in some sense to the standard nonconforming part of
the solution. Diagonal a and a modification to the mixed method, in which
the coefficients are projected into the space of piecewise constants, allows us to
exploit this fact. We can therefore give an explicit expression for the bubble
function corrections (see formula (6.9) below), and so the method is easily im-
plemented. A trivial postprocessing of its solution recovers the mixed solution.
However, the nonconforming solution has better convergence properties than
the mixed solution in that the scalar variable is approximated to the optimal or-
der two (see §7). Alternatively, we may view the nonconforming solution as an
approximation to u obtained by a special postprocessing of the mixed solution.

This equivalence is exploited in §8 to derive optimal-order multigrid algo-
rithms for the mixed and nonconforming methods. Unlike the multigrid al-
gorithm imposed in [4] for the lowest-order Raviart-Thomas mixed triangular
finite element method, our multigrid algorithms are based on standard noncon-
forming finite element methods. The bubble functions can be handled separately
in the computations because of the orthogonality; in fact, the mixed method so-
lution can be obtained without the need to obtain multigrid approximations to
the bubble functions. The convergence of the multigrid algorithms is shown in
the appendix.

The above results will be shown explicitly in two space dimensions. We
will extend them to the three-dimensional case of mixed methods defined over
rectangular parallelepipeds in §9, and also in an analogous way to simplices and
prisms in §§10 and 11.

Problem (1.1) arises in many practical applications. We note only that the
simple formula (6.5) given below for the calculation of the flux variable a is
very useful in calculations and in obtaining a priori estimates for the numerical
electric fields of semiconductor devices [12].
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2. Equivalent projection finite element methods

To define a finite element method, we need a partition ^ of ß into elements
E, say, simplexes, rectangular parallelepipeds, and/or prisms, where only edges
or faces on <9ß may be curved. In %?h , we also need that adjacent elements
completely share their common edge or face; let <9<§z, denote the set of all
interior edges ( n = 2 ) or faces ( n = 3 ) e of .§7,. We tacitly assume that
3g?h ̂  0. Finally, each exterior edge or face has imposed on it either Dirichlet
or Neumann conditions, but not both.

Let Vhx Wh c V x W denote some standard mixed finite element space for
second-order elliptic problems defined over f/, such that V • Vh = Wh (see, e.g.,
[6, 7, 8, 13, 19, and 21]). This space is finite-dimensional and defined locally on
each element E G Wn , so let Vh(E) = Vh\E and Wh(E) = Wh\E . The constraint
VhcV says that the normal components of the members of Vh are continuous
across the interior boundaries in 3Wn . Following [1], we relax this constraint
on Vh by defining

Vh = {v G L2(ß) : v\E G Vh(E) for each E e %h).

We then need to introduce Lagrange multipliers to enforce the required conti-
nuity on Vf,, so define

Lh = < p G L2 (   (J e j : p\e G Vh • v\e for each e G 3Wh \.
e€ôp§j,

The mixed finite element solution of (1.3) is (oh , uh) G Vn x Wh satisfying

(2.1a)   (V-oh,w) + (duh,w) = (f,w),    VweWh,
(2.1b)   (a-xoh,v)-(uh,V-v) + (buh,v) = (c,v) + (g,v-u)r],    V« e KA.
It has a unique solution by (1.2).    The unconstrained problem is to find
(ah , uh , Xh) G Vh x Wh x Lh such that

(2.2a) ^(V ■oh,w)E + (dun,w) = (f,w),    VweWh,
E€%h

(a~xoh,v)- Yl [("a , V • v)E - (Xh , v • i>E)oE\dCi\ + (bun , v)
(2.2b) £6^

= (c, v) + (g, v >v)rt ,    V«£Kt,

(2.2c) ^(0h-VE,p)i)E\d(i = O,    VpeLh.
Em

Note that ct/, and uh are identical in the two formulations, since (2.2c) enforces
Oh e Vh ■

We need some projection operators. Let ¿Pwh '■ L2(Q) —> Wh denote Z.2(ß)-
projection: For q> G L2(ß),

(2.3) (cp-âBWhtp,w) = 0,    VwtWh.

Similarly let &>Lh : L2({jeeori¡ e) -* Lh be L2((je£0^ (?)-projection. To handle
variable a(x), we introduce the weighted (L2(ß))"-projection ¿Pvh '■ (¿2(ß))
—* Vh defined by
(2.4) (a-x(tp-&>vh(p),v) = 0,    MveVh.
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Note that each of these operators is defined locally on each E G %n or on each
e G d&h , since only Vh has a continuity constraint.

We define now in an abstract sense our projection finite element method.
Let Mn denote some as yet unspecified finite-dimensional finite element space
defined over £?h such that the degrees of freedom of Mh\ri vanish. We seek
Vh£Mh~ S satisfying

¿2 i&vMiyVh + b&Wh y/h - c)], Vf )£ + (d&wk Wh , &W&
(2.5)        E^h

= (f,&w£),     VfGvV//,.

Our goal is to define M„ so that

(2.6a) oh = -&vh [a(VWh + b&wh Wh ~ c)],
(2.6b) uh=^>XVhWh,
(2.6c) Xh=&LhWh-

The first requirement is that M„ give rise to a legitimate finite element
method defined by (2.5); hence, we require that there exists a unique solu-
tion to the problem. Since (2.5) is a square linear system, uniqueness implies
existence. For uniqueness, if Wh € Mh satisfies

J2 (&vMVVh + b&whWh)], Vf)£ + (d&WhWh , &w£) = 0,     Vf G Mh ,
Eeü,

then we need to show that Wh = 0 • Take f = Wh » n°te that by (2.4),

(<?Vh(aVwh), VVh)E = (a-l&vt(aVy/h),aVyth)E

= (a-x^vh(aVWh),^,vh(a^1/h))E,

(&vh(ab&whWh),VWh)E = {a-x&vh(ab&whWh),aVWh)E

= (b&>whVh,&>vh(crtVh))E,

and then apply coercivity (1.2) to conclude that both ||«^ka(¿iVv/a)||(z.2(íJ))" = 0
and (d3°whWh, 3°whWh) = 0- The former requires that the 3Pvh-projection of
aVWh he zero on each E e 8/, :

(a-xaVwh,v)E = 0,    Mv G Vh(E).

We therefore require of the space Mh the first condition:
(Cl) For f G Mh, if (Vf, v)E = 0 for all v G Vh(E) and all E e 8h , and

if (¿^f,^f) = 0,then f = 0.
In order that (2.6c) makes sense, we require that

(C2) For f g M h, its projection &L& can be uniquely defined on each
e G 3%h .

We can consider now the equivalence of the two schemes (2.2) and (2.5). It is
convenient to take Wh as given by (2.5) and let oh , uh , and Xh be given by
(2.6). We then show that (2.2) results.
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By the definitions (2.6), definitions (2.3) and (2.4), and finally integration by
parts, we see that for any v eVn,

(a-xoh,v)- ^2 [("a » v - v)e - (h , v • vE)aE\aa] + (buh , v)

= -(a-x&v\a(VWh + b&whWh - c)], v)

- ]T \(9°wh Wh,V -v)e- (^Lh Wh,v- vE)dE\dçi] + (b9aWh wh , v)
Ees?h

(2.7) = - S (v^ + b&whWh -c,v)E
E€gj,

- S  [(Vh,V-V)E-{Vh,V' VE)dE\dCl] + (b&wh Wh » v)
Eer„

= S [-(v^-f, v)E + (WWh, v)E] + (g,v-v)Ti
E€£h

= (c,v) + (g,v-v)Tï;
this is (2.2b).

For (2.2a)and (2.2c), we integrate the first term on the left-hand side of (2.5)
by parts to see that for any f G Mh ,
(2.8)
]T (^>yh[a(VWh + b&wh Wh - c)], Vf )E = ^ [(V • ah, QE - (oh ■ vE, Ç)dE] ;

Em Ee%h
hence, introducing two projection operators, (2.5) becomes

J2 (V • ah , &w¿)e + (duh , ¿VAf) -Yi&h'VE, &LhQdE\dçi
(2.9) Em Emh

= (f,&WhH),      VfGM„,
where £Pl¿Í on 3E is defined on the trace of f from within E. To separate
information on 3E from that in E, we require the third condition on Mn :

(C3) For any (w, p) G Wn x Lh , there exist f i, f2 G Mn such that
J^f, =w, f^w¿2 = 0,

(l){^f.=0 and       {n)\^2 = p.

The f i gives us (2.2a) while the <*2 gives us (2.2c).
Since any Uf, and Xh can arise as a solution to (2.2) by adjusting the data,

condition (C3) is also necessary for the equivalence. We have shown the fol-
lowing theorem.
Theorem 1. For a given mixed finite element method (2.1) or (2.2) such that
Wh = V • Vh, the projection finite element method (2.5) is well defined if and
only if Mh satisfies (Cl). Moreover, if Mn satisfies (Cl) and (C2), these two
methods are equivalent by the relations (2.6) if, and only if, Mh satisfies (C3).
Theorem 2. If a given projection finite element method (2.5) with projection space
Vh (and Wf, = V • Vh and Lh defined from Vh) satisfies (C1)-(C3) and the
property that for any f G Mh such that £PEhtl = 0,

Y.F<zr(v , Vfk
(2.10) sup    ^Elf >Kh\\^^\\LHQ)
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for some zcz, > 0, then Vn gives rise to an equivalent mixed method (2.1) or
(2.2) for which Vh and Wh satisfy the inf-sup condition [5] for the constant Kh :
For any w G Wh,

(V -v, w)
SUP      IUÍÍÍ- >K/.IMIli(il)-

Moreover, if (2.10) holds uniformly in h, i.e., k¡, = k is independent of h, then
also the inf-sup condition holds uniformly in h .
Proof. For w G Wh , we can choose by (C3) f G Mh such that <^V,,f = -w
and p^Ljf = 0. For this f, (2.10) is the inf-sup condition after an integration
by parts.   D

3. On the local construction of Mf,

It is not yet clear whether an appropriate Mf, can be constructed for a given
mixed method. In this section we consider the question of how to construct
such an Mf,. We do not discuss problems associated with the outer boundary
of the domain, but instead concentrate on the local spaces defined on some
E G 1% with edges or faces e e 38h .

We begin by noting that dimensional considerations for satisfying (Cl) and
(C3) easily show the following corollary of Theorem 1, wherein Mh(E) = Mh\E
and Lh(e) = Lh\e.
Corollary \. If a given mixed finite element method (2.1) or (2.2) (with Wh =
V« Vn) is equivalent to the projection finite element method (2.5) by the relations
(2.6), then, for each E G Wn such that dEndQ = 0,

dim(Wh(E)) + Y, dim(Lh(e)) < dim(Mh(E)) < dim(Vh(E)) + 1.
eCdE

The left-hand side of the inequality follows from (C3), and the right-hand
side from (Cl). This result can be used to bound the dimension of Mf,(E) ; it
may even show that Mf,(E) cannot exist for some novel mixed methods.

We now localize the condition (Cl) as follows:
(Cl ' ) For f G Mh(E), if (Vf, v)E = 0 for all v G Vh(E), then f is constant

on E.

Theorem 3. Suppose that Vh x Wh is a mixed finite element space such that
Wh = V-Vh, 1 G Wh(E) for each Ee8h,and 1 G Lh(e) for each e£d%h. If
Mh satisfies (Cl ' ) for each E g <§/, and (C2), then Mh satisfies (Cl).
Proof. For some f G Mh, suppose that (Vf, v)E = 0 for all v G Vh(E) and
E G %h , and (d9°w&, 3°w^) = 0. We conclude from (Cl ' ) that f is constant
on each E. Since (C2) requires a unique definition of ^LAf, in fact f is a
constant on all of ß. Finally, either Yx ̂  0 or d > 0 implies that f = 0.   D

The mixed method spaces that we consider have the property that there exists
a projection operator Ylf, : (Hx(E))n -» Vh(E) such that

(3.1a) V-(Ylhv)=&Wh(V-v),
(3.1b) (Ylhv)-u=^Lh(vu).
We exploit this fact in the following way.
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Theorem 4. Suppose that E is convex and that Vh(E) x Wh(E) is a mixed finite
element space such that Wh(E) = V • Vn(E), 1 G Wh(E), 1 G Lh(e) for each
e c 3E, and there exists an operator Ylh : (Hx(E))n —> Vh(E) satisfying (3.1).
If Mh(E) is a space of functions such that

dim(Mh(E)) = dim(Wh(E))+ £ dim(Lh(e))
eCdE

with unisolvent degrees of freedom described by
(DF1)   (f, w)E for all w in a basis of rVh(E),
(DF2)   (f, p)e for all p in a basis of Ln(e), for each e c 3E,
and if' Mf,(E) contains the constant functions, then Mf,(E) satisfies (Cl ' ), (C2),
and (C3).
Proof. The hypotheses (DF) give (C2) and (C3), so we need only show (Cl ' ).
Let As(<p) = (<P, l)s/(l, 1)e denote a type of average of a function cp(x) on
5 c E. For f G Mh(E), if f = f - AE<£) and

(3.2) (VÇ,v)E = (VÇ,v)E = -(Ç,V-v)E+ Y(C,v-u)e = 0
eCdE

for all v G Vfi(E), then we need to show that (, = 0.
Given any w G Wh , there is some v G Vf, such that V • v = w . Solve the

problem

At? = AdE(v • v)    inE,
V^ . y = v . v    on 3E,

and set v = v - U.hVtp e Vh. Then (3.1) implies that v • v = 0 on 3E and
V • v = w - A¡)E(v • v). As a consequence, (3.2) implies that 3°whi = 0.

Now for e c dE, take any X G Lh(e) and then any v G Vh such that v-v = X
on e . Solve the problem

Atp = V-zj -AE(V-v) + AdEV(v -u)    inE,
Vtp • v = v ■ u    on dE\e,
Vtp ■ v = 0   on e,

and again set v = v - Il/,V<p G Vh . Then (3.1) and (3.2) imply that 3°th^ = 0
on e.

By the unisolvence of the degrees of freedom, since Ç G M„ , we conclude
that C = 0.   D

4. Equivalent spaces for triangular mixed methods

We are now in a position to construct some nonconforming spaces that give
rise to projection finite element methods that are equivalent to standard mixed
methods. We begin by generalizing the results of Arnold and Brezzi [1] to
the known triangular methods. These mixed spaces satisfy the conditions of
Theorem 4, so it remains only to define over a triangle T a space Mn(T) of
the correct dimension and prove the unisolvence of (DF).

Let Pk(E) denote the space of polynomials of total degree less than or equal
to k defined in E. We will make use of the barycentric coordinates i,, z =
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1,2,3, defined on T to be the unique affine functions that take the value one
at vertex i, and the value zero on the opposite edge. Finally, for any edge e ,
let Pk(e) denote the L2(i?)-orthogonal complement of Pk(e) in Pk_x(e) (i.e.,
the span of the Legendre polynomials of exact degree k ).

4.1. The Raviart-Thomas spaces on triangles. These spaces [21] are defined
for each k > 0 by

Vk(T)=(Pk(T)f@((x,y)Pk(T)),
Wk(T) = Pk(T),

Lkh(e) = Pk(e).

First let us recall what is already known for the lowest-order space. An Mh
(of dimension 4) for this space is [1, 11]

Mh(T) = Px(T)®Bh(T),

where we define Bh(T) to be the span of either the /ybubble function,

ß3(x, y) = lx(x, y)£2(x, y)î3(x, y),

which vanishes on each edge, or the /^-bubble function,

ß2(x,y) = 2- 3(Px(x, v) + i\(x, y) + l2(x, y)),

which vanishes at the two quadratic Gauss points on each edge.
For f G Mf,, we can write f = fi + f2 for fi e PX(T) and f2 G Bh(T), and

then the degrees of freedom for the element are normally given as the value of:

(i)   J £,(x)dx;
(ii)   f i at the midpoint of each edge e c d T.

(Note that if Bh(T) = span!/?3.}, we may replace fi by f in (ii).) An equiva-
lent set of degrees of freedom can be given by the value of (i) and

(ii' )    / f (x)do(x) for each edge e c 3T;
Je

(ii) and (ii ' ) are equivalent since midpoint quadrature is exact for linear func-
tions. These degrees of freedom are (DF1) and (DF2), and their unisolvence is
known.

For the family as a whole, we define

*í(n-{¡;{v g Pk+3(T) : v\e e Pk+X(e)} if k is even,
{v G Pk+3(T) :v\e& Pk(e) a Pk+2(e)}   if k is odd.

We first show that M¡¡(T) has the correct dimension. The dimension of
Pk+3(T) is j(k + 5)(k + 4), which is exactly six more than dim(Wh(T)) +
3dim(LA(e)) = ¿(k + 8)(/c + 1). For simplicity, assume that k is even; the odd
case is similar. For any f G Pk+3(T), we can write that

f(x) =      Y     a,,ji[(x)î]2(x)
0<i+j<k+3
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for some constants a¡j . If now f g MJ¡(T), then f \ei e Pk+X(ex) implies that
ao,fc+3 = ûo,*+2 = 0,and f|f2 G Pk+X(e2) implies that ^+3,0 = ^+2,0 = 0. On
e3, £2 = 1 - ¿\, so

f|e3=      5]     û;^i(i_/1y€jp,+1(e3)
0</+j'<fc+3

implies that

Y   (-\)jaij = 0   and       £   (-\)jau +   £   if-ir'a,,^.
i+j=*+3 i+j=k+2 i+j=k+3

These six conditions are clearly independent, so M£(T) has the correct dimen-
sion.

Now we consider the unisolvence of (DF). Suppose that f G Mfc(T) has
degrees of freedom (DF) equal to zero. The (DF2) imply that on each edge
e, f is a Legendre polynomial of degree k + 1 if k is even and k + 2 if
k is odd, i.e., of odd degree. Since the odd-degree Legendre polynomials are
odd functions, traversing 3T, we see that f must vanish identically on the
boundary. As a consequence, we write that f = éx¿2£3w for some w e Pk(T).
Now (DF1) shows that (¿x¿2Í3w , w)T = 0, which finally gives that f = 0.

We remark that if k is even, we obtain the nonconforming method of Arnold
and Brezzi [1].

4.2. The Brezzi-Douglas-Marini spaces on triangles. These spaces [8] can be
defined for each k > 1 by

Vk(T) = (Pk(T))2,

Wk(T) = Pk_x(T),
Lk(e) = Pk(e).

Let us define
*,k,ry     Í {v £ Pk+2(T) : v\e e Pk+X(e)} if/ciseven,
Ml ( I) = <   r

\ {v 6 Pk+2(T) : v\e € Pk(e) ® Pk+2(e)}    if/cisodd.

Since dim(Pk+2(T)) = ^(k + 4)(k + 3) is exactly three more than dim(Wh(T)) +
3dim(Lh(e)) = \(k + 6)(k + 1), an argument as above shows that M¡¡(T) has
the correct dimension. The unisolvence of (DF) is also shown as above.

5. Equivalent spaces for rectangular parallelepiped mixed methods

We now construct some nonconforming spaces that give rise to projection
finite element methods that are equivalent to standard mixed methods defined
over a rectangle or rectangular parallelepiped R c R", n = 2 or 3. Again the
mixed spaces satisfy the conditions of Theorem 4.

For simplicity, assume that R = [-1, 1]" . We will make use of the Legendre
polynomials pm(x¡) of degree m defined on the interval [-1 , 1]. Recall that
Pk(R) is the space of polynomials of total degree less than or equal to k defined
in R , and let Qkj,m(R) denote the space of polynomials of degree less than
or equal to k in jc, , (. in x2, and m in x3 (where m and x3 are absent if
n = 2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MIXED METHODS AS NONCONFORMING METHODS 953

5.1. The Raviart-Thomas spaces on rectangles. These spaces [21] are defined
for each k > 0 by

vhk(R) = Qk+i,k(R)xQk,k+i(R),
whk(R) = Qk,k(R),
L\(e) = Pk(e).

We define

Mkh(R) = Qk+2,k(R) e Qk,k+2(R) = Qk,k(R) © Ak(R) © Bk(R),

where

(5.1a) Ak(R)= | ^[aj,xpk+x(xx) + ai<2pk+2(xx)]pj(x2) : ajj grL
*• <=0 '

(5.1b) £*(*) = {£>(*,)[.*,, lP* + l(^) + Ô/,2P*+2(JC2)] -bije r}.
*■ (=0 J

Note that dim(Ak(R)) = dim(Bk(R)) = 2(k + 1 ), so it is trivial to verify that
dim(Mk(R)) = dim(Wk(R)) + 4dim(L*(<?)).

We need to show that the degrees of freedom (DF) are independent. Assume
that the (DF) are zero for some f G M¡¡(R) = f i +f2 + f3, where f. G Qk<k(R),
f2 G Ak(R), and f3 G Bk(R). By the orthogonality of the Legendre polynomi-
als, (DF1) is zero for Ak(R) and Bk(R), so (DF1) implies that fi =0. On the
two sides where X\ = ±1, (DF2) for Bk(R) is zero, but for Ak(R) we have

k      ,1

Y, / [aiAPk+i(±\) + ai,2pk+2(±l)]Pi(x2)(p(x2)dx2 = 0, V-?eft([-l, 1]),
1=0 J-x

and so a,tXpk+x(±l) + a,,2pk+2(±l) = 0 for each z. Since the Legendre poly-
nomials are alternately even and odd, we conclude that aiX = aiy2 = 0 for
each i, i.e., ¿¡2 = 0. Similarly, on the sides where x2 = ±1 , we conclude that
f 3 = 0, and so f = 0 and we have our unisolvence.

We omit the proofs of unisolvence below, since they are similar to that given
above.

5.2. The Brezzi-Douglas-Marini spaces on rectangles. These spaces [8] are
defined for each k > 1 as

Vhk(R) = (/>A.(.rv))2©span{curljcf+1JC2, curlx,xf+1},
Wk(R) = Pk_x(R),
Lkh(e) = Pk(e),

where curlu; = (-3w/3x2, 3w/3xx). We define

Mk(R) = Pk_x(R) 0 Ak(R) © Bk(R),

where Ak(R) and Bk(R) are defined above by (5.1).
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5.3. The Brezzi-Douglas-Fortin-Marini spaces on rectangles. Also called re-
duced Brezzi-Douglas-Marini spaces [7], they can be defined for each k > 0
as

Vhk(R) = {cp G Pk+X(R) : the coefficient of xk+l vanishes}
x {tp g Pk+\(R) : the coefficient of xk+x vanishes},

Wk(R) = Pk(R),
Lk(e) = Pk(e).

Now we define
MJ¡(R) = Pk(R) © Ak(R) © Bk(R).

Again, Ak(R) and Bk(R) are defined by (5.1).

5.4. The Raviart-Thomas-Nedelec spaces on rectangular parallelepipeds. These
spaces are the three-dimensional analogues of the Raviart-Thomas spaces on
rectangles, and they are defined [19, 21] for each k > 0 by

vhk(R) = Qk+1>k,k(R) x Qk,k+i,k(R) x Qk,k,k+i(R),

K(R) = Qk,k,k(R),
Lk(e) = Qk,k(e).

We define
Mk(R) = Qk+2,k,k{R) © Qk,k+2,k(R) © Qk,k,k+2(R)

= Qk,k,k(R)®Ak(R)®Bk(R)®Ck(R),

where
(  k    k .

Ak(R) = l ^^[a/,>,iP/t+i(xi)-l-aí-,J-,2Pí:+2(^i)]Pí'(^2)Pj(^3) :«/,;,-? gmL
*■ /ppp=0 j=0 '

k     k
Bk(R) = <J2YíPi(xx)[bi,jíXpk+x(x2) + bij,2pk+2(x2)]pj(x3):bijj gr|,

*■ i=pp=0 j=0 >

( k  k ,
Ck(R) = I YYlp^Xx^X2^Ci'J 'xPk+1^ + c'J,2Pk+2(x3)] : ctj,t el  .

*■ ¿=0 j=0 '

5.5.   The Brezzi-Douglas-Durán-Fortin spaces on rectangular parallelepipeds.
These spaces [6] are the three-dimensional analogues of the Brezzi-Douglas-
Marini spaces on rectangles. They are defined for k > 1 by

Vhk(R) = (Pk(R)f ffispan{curl(0, 0, xf+1x2), curl(0, xxxk+x, 0),
curl(x2i+1x3,0,0), curl(0, 0, xix^x^1),
curl(0, x\+xxk-lx3, 0), cvai(xk-ix1x\+l ,0,0)},

Wk(R) = Pk_x(R),

L\(e) = Pk(e).
We define

Mkh(R) = Pk-X(R) © Ak(R) © Bk(R) © Ck(R),
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where
(5.2a)

¿k(R) = \    Y   [ai,j,iPk+i(xi) + aiJ,2pk+2(xx)]pi(x2)Pj(x3) :aiJA geL
0<i+j<k '

(5.2b)

Bk(R) = i    Y2,   Pi(xx)[b,jjpk+x(x2) + b¡jt2pk+2(x2)]pj(x3) : biijit G rI,
0<i+j<k '

(5.2c)

Ck(R) = \    Yl   Pi(xi)Pj(x2)[Ci,j,iPk+i(x}) + Cij,2pk+2(x3)] : Cjjj £R\.
0<i+j<k '

5.6.   The Brezzi-Douglas-Fortin-Marini spaces on rectangular parallelepipeds.
These spaces [7] are also called reduced Brezzi-Douglas-Durán-Fortin spaces,
and they can be defined for each k > 0 as

r k+1 i
Vhk(R) = Itp G Pk+i(R) : the coefficient of 22x2+l~'x3 vanishes [

*• i=0 >

t k+x       _.  . -i
x < cp g Pk+X(R) : the coefficient of ]P*f+1 'x3 vanishes >

*• r=o '
{ k+l       _    ■ 1

x itp £ Pk+X(R) : the coefficient of ^xf+1  'x2 vanishes >,
¡ppp=0

Wk(R) = Pk(R),

Lk(e) = Pk(e).

We define
M¡¡(R) = Pk(R) © Ak(R) © Bk(R) © Ck(R),

where Ak(R), Bk(R), and Ck(R) are defined in the previous subsection by
(5.2).

6. Implementation of the lowest-order Raviart-Thomas method
on rectangles

We now concentrate our attention to the lowest-order Raviart-Thomas spaces
over rectangles [21] (or equivalently the lowest-order Brezzi-Douglas-Fortin-
Marini spaces [7]), since these are widely used in practice. In this and the
following three sections, let ß be a planar domain, let e¡, be a family of quasi-
regular partitions of ß into rectangles oriented along the coordinate axes with
maximum diameter h, and let a be diagonal. For simplicity of exposition,
assume that a is a scalar, Y2 = 0, and g = 0.

The lowest-order Raviart-Thomas spaces [21] are

Vh = {v:v\R = (axR + a2Rx,al + a\y), 4eR, MR G Wh ;
v • n is continuous at the interelement edges of <§/,},

Wf, = {w : w\r is constant, VR G .§/,},
Lf¡ = {p: p\e is constant, V<? G dê'f,}.
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A general, equivalent, nonconforming method is defined above in §5.1 (and also
in §5.3) for the space

Mh = U: i\R = axR + a\x + a\y + aRx2 + a$Ry2, a'ReR, MRe%h;

if Rx and R2 share an edge e, then   / £\dR¡ ds =     f \dR2 ds ;
JÇ JQ

and  /        t\\dClds = 0\.
JdRndSÏ )

It will prove advantageous to understand some structure and properties of Mf,.
Let the ^-bubble function in R g ■§/, be defined by

(x-xR)2    (y-yR)2
ßR(x,y) = 4-12["    ,, "'   +h2 h2nRx nRy

where (xR, yR), hRx, and hRy are the center, x-length, and v-length of R,
respectively. This bubble function vanishes at the two quadratic Gauss points
on each edge (recall that the Gauss points on [-1, 1] are at ±l/\/3 ). Define
the nonconforming spaces

Nh = S^:^\R = axR + a2Rx + aRy + aR(x2-y2), a>ReR, MR e %h ;

if Rx and R2 share an edge e, then   / f \dRl ds =     Ç\oR2 ds ;
Je Je

and  /        cl\0çids = o\,
JdRnoíi J

Bh = {C:Z\R = aRßR(x,y), aR&R, V/?efA}.

Namely, Nf, is a standard nonconforming space and Bh is the set of /^-bubble
functions over <gh .

Two-point Gaussian quadrature is exact on cubic functions. Therefore, we
can rephrase the integral continuity constraint in Nh (or in Mf, ) to say that
on interior edges, the sum of the jump discontinuities in f at each of the two
quadratic Gauss points is zero, and on external boundary edges, the sum of f
at the two quadratic Gauss points is zero.

Lemma 1. The following three relations hold:
(i) For any R e %h , VMh(R) = Vh(R) ;

(ii) Mh = Nh®Bh;
(iii) For any R e %h, (Vf, VQR = 0, Vf G Nh(R), f G Bh(R).

Note that (iii) holds if " Vf " is replaced by any constant vector, since these
are contained in VNh(R).

Proof. Relations (i) and (ii) are trivial. Relation (iii) is a type of orthogonality.
It can be seen after integration by parts,

(Vf, VÇ)R = -(Af, C)R + (Vf -v, Qi)R = 0,
since Af = 0 and Vf • v is constant.    D
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If a is not diagonal, then we cannot easily exploit (i) and (iii). That is why
we have assumed that a is diagonal. In fact, we also need that the coefficients be
piecewise constant. Fortunately, we can use a minor modification of the usual
mixed method (2.1) consisting of projection of the coefficients into the space
Wf,. In that case, (i) and (iii) will prove to give us considerable computational
savings, without any loss of accuracy (see §7 or [10,14]).

We need to maintain coercivity, so explicitly assume a somewhat stronger
version of (1.2): for any v e (L2(Çl))n and w e L2(iï),

(6.1) (ahv, v) + (bhw, v) + (dhw, w) >K{\\v\\2L2{n))„ + (dhw, w)}

for some constant zc > 0 independent of h , where ah = ¿?wha~x , bf, = ¿Pwhb,
and df, = â°whd. (This follows from (1.2) if a and d are sufficiently large
compared to b, the coefficients are sufficiently smooth, and h is sufficiently
small.)

The mixed method for (1.3) is then to find (oh, uh) G Vh x Wh such that

(6.2a)        (V ■ oh , w) + (dhuh , w) = (fh , w),    MwçWh,
(6.2b)        (ahoh, v)-(uh, V-v) + (bhuh, v) = (ch , v),     Mv G Vh ,

where Cf, = 3Pwhc and fh = â°whf ■ It is well known that Uf, approximates
u only to order one; therefore, various postprocessing techniques have been
defined to improve the approximation. Let us define the following scheme (cf.
Stenberg [22]): Find uh G Mn such that in each R£Wh,

(6.3a) (uh-uh,l)R = 0,
(6.3b) ((Vuh + bhuh-ch) + ahOf,,VÇ)R = 0,    Vf G Mh(R).

The equivalent nonconforming projection finite element method for approx-
imating (1.1) has its coefficients modified accordingly. We find Wh 6 Mh such
that

Y, (ah [(^Wh + bh&whWh-ch),Vcl)R + (dh&whWh , O
(6.4) z?6rA

= (A,f),    VfGMz,
Theorem 5. The solutions of (6.2)-(6.3) and (6.4) have the relationship

(6.5) oh = -a-x(VWh + bf,^whWh-Cf,),

(6.6) uh = ^V, Wh ,
(6.7) uh = Wh-
Proof. Since VMf,(R) = Vh(R), <PVh is unnecessary in (6.4) and (6.5), and so
(6.5) and (6.6) follow from the general theory (for each fixed féf,, we have fixed
coefficients). Since Wh satisfies (6.3), uniqueness of uf, implies (6.7).    D

We give now a simple formula for computing the numerical flux Of, from an
only slightly modified nonconforming method, (6.8) below.

Theorem 6. For each R g S/,, let

yR = (dh^/JR-a-xAßR)-x,

coR = 1 -dhyR3°whßR,
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and on R, define

bh = coRbh,       ch = ch- bhyRfhâ°whßR,

dh = coRdh,       fh = coRfh.

Let if, G Nf, be the solution of
(6.8)

Y («a'(V2A + bh&wkzh -ch), Vf)R + (dh<?Whzh , f) = (fh , f),     Vf G Nf,,
Rmh

and Çf, G Bf, be given by

(6.9) Ch(x,y)\R = Yr (Á - dh&Whzh)\RßR(x,y).

Then Wh € Mh is the solution of (6.4) if and only if Wh = zh + Ch ■ Moreover,
Of, at a point (x, y) G R& £/, is evaluated by the formula

(6.10) oh(x, y) = -a^x{Vzh(x, y) + bh^whzh\R - ch

+ 7r(Á - d^z^RVß^x^)}.
Proof. We begin by noting that 0 < coR < 1, and a»« —> 1 as h —> 0. In
fact, since a, d, and ß are bounded, coR > co* > 0 for some constant w*
independent of h . As a consequence, (6.1) holds with b¡, and dn replacing b¡,
and df,, respectively. Therefore, (6.8) is well posed.

We exploit the orthogonality (iii) of Lemma 1 to obtain the theorem. Let Wh
be the solution to (6.4) and let Wh = zh + Ch for some zh G Nf, and Ch G Bh .
We must show that (6.8)-(6.9) hold.

Restrict to a test function f g Bh in (6.4), and use orthogonality to see that
(6.11)
(a-hx VCh , Vf )R + (dh^WhCh , Í)R = (fh - dh&Whzh , f )R,     Vf G Bh\R ,  R G Wh.

Integrate by parts the first term on the left-hand side to obtain that

dh&whCh - e^'AC/, = (h - df,^whZh)\R   in each R g %h ,

since the boundary term is zero by appeal to Gaussian quadrature. It follows
from the definition of B¡, that Ca is given by (6.9).

In (6.4), restrict now to f G Nh and use (6.9) and orthogonality to obtain
(6.8) for Zf,, since in each R G ̂  ,

(6 12)        ^Wh ¥h = ^Wh Zh + ^Wh ^ = ^Wh Zh + 7R ifh ~ dh^Wh Zh)&>WhßR

= 0)R3öwhZh + yRfh3ÖWl,ßR.

Conversely, we obtain (6.4) from (6.8)-(6.9) and unisolvence.
Finally, from (6.5) and (6.12),

(6.13) Of, = -a~x {Vzh + bf,\coR&whzh + yRfh^wjR] -ch + VÇh},

and so (6.10) follows.   D

We end this section with three remarks. First, if u¡, is needed, it is given
by (6.12) (recall (6.6)). However, since Wh approximates « to a higher order
of accuracy than Uf,, as shown in the next theorem, the use of (6.12) seems
inadvisable.   Secondly, if the Lagrange multipliers for the mixed method are
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desired, they are the average value of Wh or ZA on each edge. Thirdly, if R is
a square and b = c = d = 0, (6.10) is simply

(6.14)      oh = -a-xVzh + ^wJ\R(x-xR,y-yR),     M(x , y) G R G -TA ,

which is the same form as in the case of triangular mixed finite elements [18,
11].

7. Error estimates

Denote by || • ||; s the norm of Hj(S), where we omit j if j = 0 and S
if S = ß. We have the following theorem.

Theorem 7. If u and a solve (I.I), u„ and Of, solve (6.2), and Wh solves (6.4),
then there is a constant C independent of h such that

(7.1) \\o -oh\\ + \\u -uh\\< C(\\f\\, ||fl||^>.=o(0), \\b\\x, lldli) h,
(7.2) ||V - (o - oh)\\ < C(\\fh, ||«||^..-(0), \\b\U , \\c\\x)h,
(7.3) \\&>whu - uh\\ <C(||/||i, llflll»'!.«^), \\b\\w.°°(a), \\e\\i, \\d\\Wi.~{Q))h2,

/ \ 1/2
(7.4) Í ^IIVw-V^II2)     < C(||/||, IM|!^,.oo(n), ll^lh, ||c||,)Ä,

v Rm
(7.5) \\u-Wh\\ < C(\\f\\\, llallwi.«.(«), \\b\\m.~(n), \\c\\x, ||úf||(^i.oc(í2))/z2.
Proof. Results (7.1)—(7.3) are essentially known [14]. They can be obtained by
a careful application of the techniques of Douglas and Roberts [ 15]. To handle
the modified coefficients, we must recognize that for s = 0, 1 and 1 < j < oo,

(7.6) \\P^t<p-ñw-.Jiai<C\mWt.mh1*'.
We also use elliptic regularity to obtain that

IMI2 < CH/ilo   and   ||V.w||,<C||/||,,
and a duality argument to obtain (7.3).

Results (7.4)-(7.5) follow from the use of an abstract theorem concerning
error estimates between u and Wh (see [11, Theorem 2.2]). However, a simpler
approach is to note by equivalence from (6.3) that

(7.7) (u- Wh,w) = (Pwhu -uh,w),     Mw eWh,
(V(« - Wh) + bh(u -uh) + ah(o - oh), Vf )R

= ((bh - b)u + c - ch + (ah - a~x)o, Vf)R,    Vf G Mh(R) and R G Wh.

Estimate in a straightforward way the second elliptic equation to obtain (7.4)
from (7.1) and (7.6). Use (7.7) to obtain that

II" - Whh.R < QI|V(w - Wh)h,Rh + \\&whu - uh\\o,R}
and then apply (7.3) and (7.4) to finish the proof.   □

8. A multigrid solution algorithm

In this section we develop a multigrid algorithm for the nonconforming
method (6.4) and the mixed method (6.2).   We need to assume a structure
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to our family of partitions. Let ho and ^0 = e§ó be given. For each integer
k > 1, let hk = 2_/c/zo and <§/,t = <§¿ be constructed by connecting the mid-
points of the edges of the rectangles in g^-i. In this section (and the appendix)
only, we will replace subscript hk simply by subscript k. Since the intergrid
transfer operators below do not preserve either the energy or the L2-norm, as
noted in [3], the standard argument of convergence for F-cycles does not carry
over directly. So, only a If-cycle, full multigrid algorithm will be defined here.
Since mixed methods are designed to approximate well the flux variable o , and
since it is of primary interest in many applications, we develop the multigrid
algorithm with emphasis on the calculation of this variable. We assume in this
section that b = c = 0.

With this in mind, we now take advantage of the factorization of the system
(6.4) into (6.8) and (6.11). For each k, let

äk(Z,C) = Y (Vvf.vf)   +(4^f,C),
Rm

ak(d ,C)=Y {ak1^ ' VC)« + (4^ ' ® '     ^ >t e Mk'

Then (6.8) asks for zk G Nk such that

(8.1) Mz,,f) = (Ä,f),     VfGzV,,
and (6.11) asks for Ck € Bk such that

(8.2) ak(Ck,cp) = (fk-dk&Wkzk,(p),    Mtp e Bk.

For k = 1, 2, ... , solutions to problem (8.2) can be obtained directly, since Bk
has no continuity constraints across element boundaries; therefore, we define a
multigrid procedure for (8.1) only.

Standard inverse estimates yield that the spectral radius of the operator äk
on Nk x Nk is bounded above: there exists a constant Ci independent of k
such that

(8.3) spectral radius of äk on Nk x Nk < Cxhk~2.

Note that, since Nk-X <t Nk, these spaces are not nested. It is well known
that natural injection operators do not work for nonnested finite element spaces.
Thus, we need to introduce special intergrid transfer operators. Following [4],
we define the coarse-to-fine intergrid transfer operators /£_, : Nk-X —> Nk as
follows. If f G Nk-i and e is an edge of a rectangle in 1% , then Ik_x£ G Nk
is defined by
(8.4)

\e\leIkk_xHdo={

0 ifecdSl,
¿¡Se^do if e <£3R for any /?£§.,,M
ïfcfUvîU.+Îk)^}    ifec.9Ä,ndÄ2forsome

Rx , i?2 6 %k-l-

The multigrid algorithm for obtaining approximate solutions zk G Nk to
problem (8.1) is given in terms of the /cth-level multigrid step, defined below,
which yields the result MG(/c, zk , fk) g Nk as an approximate solution to (8.1)
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from the initial guess zk e Nk . Let r be a positive integer independent of k,
which denotes the number of multigrid iterations in (ii) below. The overall
multigrid algorithm is defined sequentially for each k as follows:

(8.5a)   For k = 1 ,zx = MG(1, • , fx) is obtained by a direct method;
(8.5b)   For k > 2, zk is obtained recursively by

(i)   z0 = 4_,Zíí_1 ,

(ii)  zk = MG(k,zk_x,fk),  l<i<r,
(iii)  zk = zk.

The multigrid step is defined for k = 1 and F G N[ as MG(1, • , F) = zx,
where zx is obtained directly as the solution to

à,(z,,f) = (pF,f),     VfG/V..
For k > 2, z G Nk , and F G N'k ,
(MG)   MG(fc, z, F) = S(k, z, F) + C(k, S(k, z, F), F)

is calculated by means of the smoothing step
(S) S(k, go, F) = gm , where m is the number of smoothing steps and the

approximation g¡ e Nk, j = 1, 2, ... , m , is defined recursively from
the initial guess go by the equations

{gj-gj-i, f) = C-xh2((F,Z)-äk(gj-X, f)),    Vf G Nk , ; = 1, ... , m,

and the correction step
(C) C(k, gm,F) = Ik_xqp, where q¡ G Nk-\ , j = 0, ... ,p (p = 2 or

3 ), is defined recursively from q0 = 0 by

q¡ = MG(/c -l,q^x,F),     j = 1, ... ,p,
(F, f) = (F, /¿_,f) -äk(gm, /*_,£),     Vf G Nk_x.

From (6.10), the multigrid approximate solution ôk to ok is defined in
Reg'k by

(8.6) Ok = -c*-kx{Vzk + yR(fk - dk&wkzk)\RVßR(x,y)}.

The standard argument [2, 3, 4] for the convergence analysis of the multigrid
algorithm (8.5) applies here if we prove that /£ ¡ is bounded and reduces to
the natural injection on continuous bilinear functions. Although the second
fact is false, it is true after a modification of the definition of /£_, given in the
appendix (the modified definition is equivalent to the original on zVz,_- ). The
first fact together with the following lemma will be shown in the appendix.

Lemma 2. If m and r in the multigrid algorithm are sufficiently large, there is
a constant C(||a||^i,oo(ii), ||ûp'||ir..°°(o.)) independent of k suchthat

(8.7) H^-^ll+i SirvHZfc-^H2,)      <CWII,
^ Re^k '

(8.8) ||zfe - z,|| <C/z2U/H,.
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Theorem 8. If m and r in the multigrid algorithm are sufficiently large, then
there is a constant C(||a||H/i,px,(ii), ||rf||(p.,oo(o.)) suchthat

(8.9) \\°k-°k\\<Chk\\f\\,
(8.10) \\a - ak\\ < Chk\\f\\.
Proof. Equations (6.10), (8.6), and (8.7) imply equation (8.9), since yR = tf(h\)
and \\VßR\\ = cf(h~x). Equation (8.10) follows with (7.1) (the bound is pro-
portional to 11/11 because c = 0 ).   D

It can be seen that the total work performed in obtaining zk is 0(nk) [2];
thus, the cost to compute ak is also O(zíí-) .

Since dk belongs to

Vk = {v : v\R = (axR + a2Rx, aR + aRy), a'ReR, VRg^},

but not necessarily to Vk , following [4], we introduce the averaging operator
Ait : Vk -> Vk . Let e be an edge of R g ■§& and ne be a unit outer normal to
e . For v G Vk , if e c öß, then (Akv • v)\e = (v\R • u)\e ; if e is the common
edge of Rx and R2 e £?k , then

(AkV>VRl)\e= {-{(v\Ri • VRl)\e + {v\Ri -VR,)\e).

Thus, Ak restricted to Vk is the identity. The next result follows from this
definition and Theorem 8.

Theorem 9. There is a constant C such that

HAfct/H <CH,    MveVk.
Moreover, under the conditions of Theorem 8, there is a constant

C(||a||n/i.oc(íi), ||í/||ifi.p»(íi))

such that

\\ok-Akdk\\<Chk\\f\\,
\\cr-Akdk\\<Chk\\f\\.

The final result in this section concerns Wk , defined by (6.4). Recall that Ck
is the solution to (8.2), and define

(8.11) wk = zk + Ck.
Since Wk - <Pk = zk - zk > we have the following from Lemma 2 and (7.5).

Theorem 10. If the assumptions of Theorem 8 are satisfied, then there is a con-
stant C(||a||n/i.aG(Q), ||é/||u'i.tc(o.)) suchthat

\\¥k - ¥k\\ + ( Y Hy(^ - fr)lß)      £ C**H/1I-
v Rm J

Moreover, if f G //' (ß),

\\Wk-Wk\\<Ch2k\\fh,
\\u-wk\\<Ch2\\f\\x.
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An averaging process similar to that for ak can be defined for Wk ■ The
multigrid algorithms developed in this section for the rectangular elements can
be extended to the lowest-order triangular elements and the results in Theo-
rems 8-10 remain valid.

9. Extension to rectangular parallelepipeds

Let now ß be a polygonal domain in R3 and f/, be a decomposition of
ß into rectangular parallelepipeds having maximum diameter h and oriented
along the coordinate axes. Again assume that a is a scalar, Y2 = 0 , and g = 0.

We consider the lowest-order Raviart-Thomas-Nedelec space [19] Wn x Vh
defined over ^ (equivalently, the lowest-order Brezzi-Douglas-Fortin-Marini
space [7]).

Let Mf, be the nonconforming space introduced in §§5.4 and 5.6 above. We
obtain Lemma 1 in §6 provided that we redefine

Nk = U: f \R = axR + a2Rx + a2Ry + aRz + aR(x2 - y2) + aR(x2 - z2),

a'RE.R, VRegf,; if Rx and R2 share a face e,

then     Ç\dR,ds=     Ç\dR2ds; and  / Ç\ands = 0\,
Je Je JdRndÜ J

Bh = {^:c;\R = a1RßR(x,y), a¿GR, VJie^},

where now the ^-bubble function in each R e £?/, is

r ¡r v 7ï-s   nf(*-**)2 1 (y-y«)2 , (z-z*)2ßR(x, y, z) - 5 - 121 —~2-+ —p-+ —-2-
V       nRx nRy nRz

which is equal to zero at the four tensor product quadratic Gauss points on each
face.

With these modifications, we again have the equivalence between the solu-
tions of (6.2)—(6.3) and (6.4) in the sense of Theorem 5. Theorems 6 and 7
hold as well; moreover, if <§/,, is given and each ^ is a regular refinement
of %>f,k into eight times as many elements, then the results in §8 remain valid.

10. Extension to simplices
Let now ^ be a partition of ß into simplices, and again assume that a is

a scalar, Y2 = 0 , and g = 0. The lowest-order Raviart-Thomas-Nedelec space
Vf, [21,19] defined over Bf\ is given by

Vh = {v :v\E = (aE + a2Ex,aE + a2Ey,aE + a2Ez), a'EeR, ME&gh;
v • n is continuous at the interelement faces of ^},

Wh = {w : w\E is constant, V£ G <§/,},
Lf, = {p : p\e is constant, Me G 9^,}.

We define the nonconforming space N„ by

Nh U : <*|£ = alE + a2Ex + a\y + aEz, a'E&R, ME g Wh ; if Ex and E2

share a face e, then   ¡^\oExds= I f \0E, ds; and   / f l^n^s = 0 [.
Je Je JoEnOíi J
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For each E G ^ , let ¿,■■, 1 = 1,2,3,4, denote the barycentric coordinates
of a point in the simplex. These functions are the unique affine functions that
take the value one at vertex /', and the value zero on the opposite face. The
P2-bubble function takes the form

ßE(x,y,z) = l- 2(l¡ + % + $-1 + 42).    V(jc , y, z) € E.
This quadratic bubble function has vanishing integral over each face. Let

Bh = {C:t;\E = aEßE, aEeR)

and Mf, = Nf,® Bf,. This Mh satisfies the conditions of Theorem 4 (in partic-
ular, (DF) are unisolvent).

We have an analogue of Lemma 1.

Lemma 3. The following two relations hold:
(i) For any Ee%h, VNh(E) c Vh(E) ;

(ii) For any Ee%h, (Vf, V£)£ = 0, Vf G Nh(E), f G Bh(E).
Proof. For (i), VNh(E) = (P0(E))i c Vh(E). For (ii), integrate by parts and
use that Af = 0.   D

To exploit this orthogonality, we will assume as in §6 that the coefficients are
projected into the space W„ . So assume (6.1) and take (6.2). As an analogue
of (6.3), we define üf, G Mn such that on each E,

(10.1a) (uh-uh,l)E = 0,
(10.1b) ((¿?VhVuh + bhuh-ch) + ahoh,Vc;)E = 0,     Vf G Mh(E).

(The existence of üf, follows easily from Lemma 3).
Note that for any f G Mn, we can write f/, = zh + Çh , where zh G Nh

and Çf, e Bf,. Then ^^Vfz, = Vzh +¿Pv¡yCh ■ The equivalent nonconforming
projection finite element method for approximating (6.2) is to find Wh G Mf,
such that

Y {af,X(&v^Wh + bh&wh Wh-ch),VC)E + (dh&wh Wh , £)
(10.2) Emh

= (A,f),    Vf G Mh.
Then Theorem 5 holds, provided (6.5) is replaced by

(10.3) oh = -a"1 (^>Vh VWh + h&w, Wh ~ Ch).

Theorem 6 also holds, provided that now

yR = (dh<?WhßR - a-hxV-&VhVßR)-x

and (6.10) is replaced by

(10.4) oh(x, y) = -alx{Vzh(x, y) + bh&whzh\R - ch

+ 7r(Á - df,&whZh)\R&vhVßR(x ,y)}.

The convergence result in §7 also holds. In the case of equilateral simplices,
this can be seen as before since then VBh(E) c Vh(E) and the projection
operator ¿PVh  in (10.3) can be removed.  In the general case the convergence
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result can be shown using the ideas given in [4] (that is, we show that H^^Vf ||
and 11 Vf || are equivalent norms for f g N„ , and we use the interpolant of u
into Nf, as an intermediary). Finally, results analogous to those in §8 are valid.

11. Extension to prisms
Let now ß be of the form ß = G x [0, 1] with G c K2 and %h be a

partition of ß into prisms with three vertical edges parallel to the z-axis and
two horizontal faces in the (x, v)-plane. Let E = T x (zEa, zE¡,) denote such
a prism, of height hEz = zEb - zEa. Again, ¿,■, i = 1,2,3, denote the
barycentric coordinates of a point in the triangle T. In this section, we again
assume that a is a scalar, Y2 = 0, and g = 0.

The lowest-order prismatic space Vh [20] defined over <g/, is given by

Vh = {v : v\E = (axE + a\x, a\ + a\y, aE + aEz), aE e R, ME g ^ ;
v • n is continuous at the interelement faces of Ê'f,} ,

Wf, = {w : w\E is constant, ME G <§/,},
Lh = {p: p\e is constant, Me G dWh}.

The nonconforming space Nn is defined by

Nh = \l:c:\E = axE + a2Ex + aly + aEz + aE(x2+y2-2z2), aE g R, ME e gh;

if Ex and E2 share a face e, then   / f \dEl ds = / f \9El ds ;
Je Je

and  /        Ç\dnds = 0\,
JdEndíi )

Bh = {t:Z\E = a6EßE, 4eR},
where the /^-bubble function takes the form

ßE(x,y,z) = l-4(i2x+i22+ii)--£-(z-ZEaJr2ZEb) ,    V(x,y,z)eE,

so that its integral over each face vanishes. Finally, Mn = Nf,® Bf,.
We have Lemma 3 and the results for simplices of the last section hold also

for prisms.

Appendix. Proof of Lemma 2

We prove Lemma 2 of §8 in this appendix. Recall that here b = c = 0.
From §6, note that on the kth mesh

ßR = cf(l),    VßR = cf(hk~l),    AßR = cf(h-k2),

so

(Al) I y* I < Ch\   and   \coR - 1| < Ch\ ,
where C depends only on the bounds for a and d. (In general, without
further comment, we will assume that the generic constant C may depend on
NI»".°°(o.) and ll^llit".oc(íí) in this appendix.) Since \\fk - fk\\ < Chl\\f\\, we
can replace fk by fk up to the second order in hk ■ A similar statement holds
for dk and dk .
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For each k , define the energy norm

||flU = (ôk(f,f))1/2.
(This is equivalent to the 7/1(ß)-norm by (6.1) and a Poincaré inequality.)
Standard arguments for the error in approximating (1.1) by a nonconforming
method are easily combined with arguments to handle the projections into Wk
in (8.1), so we have that

(A2) ||h-z*||+( £||VH-Vzt|ß)      <Chk\\f\\,
^ Rmk '

and a duality argument can be used to show that

(A3) \\u-zk\\<Ch2\\f\\x.
This last result can also be derived easily from Theorems 6 and 7. Clearly, (6.9)
implies that

IK*II<CA2(||/|| + ||/V42*H),
and then (6.8) implies that

l|/W4*fc||<C||/||.
Theorem 7 and an inverse inequality (see (A8) below) give (A3). We can derive
(A2) similarly.

For our analysis, we introduce the conforming finite element space

Uk = {{ € C°(Q) : flz, 6 Oí,i(R), VA G rk and flan = 0}.
Unlike the triangular case, l)k <£ Nk . Let zk G Uk satisfy

(A4) äk(zk , v) = (fk , v),    MveUk-

The usual error estimate for this finite element method is

(A5) \\u-zk\\ + hk\\u-zk\\k<Ch2k\\f\\.

For each k , let Gk be

Gk = Nk®{v:v\R = axRxy, axReR, MRe^};

Gk contains both Nk and Uk ■ Let mk = dim(G^). By the spectral theorem,
there are eigenvalues 0 < Xx < X2 < ■ < Xmy and eigenfunctions <px , <p2, ■ ■ ■ ,
(pmk G Gk such that

(cpi, çbj) = Sjj   and   âk{<t>i, v) = X,(4>i ,v),    Mv e Gk.

If v g Gk , we write v = YlT=i c'(t)> anc' define as in the standard case [2]

/mk \ !/2

IIHI,.*=[Ç^il    •
The Cauchy-Schwarz inequality implies that

\ak(w, v)\ < |||w|||i+.v,a-|||"IIIi-.v.a-
for any s G R and v, w e Gk . Note that |||tz|||o./,- = ||"|| and |||w|||i.a- = \\v\\k .
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As mentioned in §8, we now modify the definition of Ik_i so that it behaves
well on Uk-X . So, let /£_, : Gk_x -> Gk be defined by (8.4) and

4 4

(A6) S(-l),/t1vU(p«,/) = ^(-l)^U(^,/),    Vüer*,t
1=1 1=1

where /7Ä,, are the vertices of R, labeled counterclockwise (i.e., so that (-1)'
changes sign between the two ends of each edge of 3R ). As an immediate
consequence of the definition, we have the following.

Proposition 1. If f G Nk-X and v = xy, then for any R£^k or %k-i >

4

£(-i)'«I*(pju) = o,
1=1
4

£(-l)'tl|il(pÄ,<)96 0.

The first result guarantees that /£_, restricted to A^_( has the same defini-
tion as before. The second result guarantees that /£_, is well defined on Gz,_i.
We have the following technical lemma as in [3].

Lemma 4. There is a constant C independent of k such that

(A7) C-x\\v\\k<\\v\\k-X<C\\v\\k,    Mv€C°(Q),
(A8) \\v\\k < Chkl\\v\\,    Mv€Gk,

(A9) \\lt-Xv\\<C\\v\\,    MveGk_x,
(A10) tf_lv=v,    MveUk-X,
(All) H/í-iíll* < C||ilU-i,    Vf G Nk-X ®Uk.x,

where Ik_x is defined by (8.4) and (A6).
Proof. Result (A7) is trivial. The <§¿. are quasi-uniform by construction, so
(A8) is a standard inverse inequality. Result (A9) follows immediately from
the definition of Ik_l. Since Uk-\ c Uk c Gk and /*_, is well defined, result
(A10) follows trivially.

We easily obtain inequality (Al 1) for f G Uk-\ from the definition of Ik_x
since Uk-i c C°(ß). Given f G A^_i © C4_i, define v e Nk-X © Uk_x,
w G Uk-X, and z G H0l(Q) by

^_l(î,0 = («.C),     Vf G Nk-X © C/*_,,
(A12) äk_x(w , C) = (v , C),    VC€Ü¡k_i,

ät_,(z,C) = (v,C),    VCG/Yo^ß).

Note that ||z||2 < C||îz|| by elliptic regularity, and that f and w are approxi-
mations to z with the usual error estimates. It follows from the earlier results
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that

ll^_,ÍIU<l|/í_,(í-ti;)||fc + C||ti;|U
< C[hkx\\Ik_^ - w)\\ + ||f - u/|U_, + ||f |U_,]
<c[h?\\Z-w\\ + \\z\\k-i]
< c[h? (||f -z\\ + \\w -ziD + nfiu.!]
<c[hk\\v\\ + \\c:\\k-x].

Finally, (A 12) gives

||í;||2 = áíc_1(f,í;)<||f|U_1||z;|U_l<C/z,-1||f||,_1||t;||,
and (All) follows,   o

We are in a position to prove that the kih level iteration MG(k, go, fk),
when applied to the problem of finding z G Nk such that

à,(z,f) = (À,f),     VfGiV,,
with the initial guess go is a contraction in the energy norm. Let <?/ = z - g¡ g
Nk , I = 0, ... , m , where g¡ is defined as in (S), the smoothing step in (MG).
Also let e e Nk-X and è e Uk-X satisfy

(A13) äk.x(e,tl) = äk(em,Ikk_^),    Vf e Nk.x,
(A14) àk(ë, v) = äk(em , Ikk_xv),    Mv e £/*_,.

Lemma 5. There is a constant C such that

(A15) |kmlk<C|kolk,
(A16) \\\em\\\2,k<Chkxm-x'2\\eo\\k,

(A17) |MU_, < C\\e0\\k.
Proof. Equations (A 15) and (A16) are proven using the ideas in [2]. It follows
from the definition of the smoothing step (S) that

(<?/, f) = (<?,_, , f) - C-Xh2äk(ei-X , f),     Vf G Nk.

If eo = Er=i dû .then
mi,

e, = Yci<Pi(i-Ci-lh2kXi)1,    l = 0,...,m,
i=i

from which, and (A8) or (8.3), we have (A15). From this we can derive (A 16)
as in [2, equation (3.13)].

From (A 13) and (A 15), we see that

IMIÍL. =äk(em,Ikk_xe) < ¡km|W|/t,É>lk. < C||em|U||e|U_, < C\\eo\\k\\e\\k-X,
which yields inequality (A 17).    D

Lemma 6. There is a constant C such that

\\e-è\\k^<Cm'^2\\e0\\k.
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Proof. Let fo G Gk^x satisfy
(fo,v) = älc(em,Ikc_lv),    MveGk-X.

We observe that

ll/oll2 = äk(em , Ik-Xfo) < Hk«|||2,Jk|||/it_i/olllo,*: < C|||i?m|||2,Zc||/o|| ,
so that

ll/oll < C|||«m|||2,t.
Let vo G HX(ÇÏ) n H2(Q) solve

-V • (aVvo) + dvo = fo    in ß.
Note that, from the definition of fo , (A 13), and (A 14), e and ë are approxi-
mations to Vo in Nk-X and Uk-X , respectively. Thus, as in (A3) and (A5), we
see that

\\v0-e\\k_x <Chk_x\\fo\\,
\\v0-è\\k<Chk-X\\fo\\,

and so, with (A 16), we obtain

\\e-ë\\k-x < Chk-XH/oll < Chk.x\\\em\\\ltk < Cm-x'2\\eo\\k,
completing the proof.   O

Lemma 7. There is a constant C such that

\\em-ë\\k<Cm-l'2\\e0\\k.
Proof. From (A 14) and (A10), we have
(A18) àk(em-è,v) = 0,    MveUk_x.
By (A 16), we get

Ikm -è\\l = àk(em -ë,em-ê)
= äk(em -è,em)

< llkm-í'lllo.fcllkmllb,*
<Ch-kxm-xl2\\em-ê\\\\eo\\k.

Applying a duality argument to (A18), we can easily see that

\\em -¿|| < Chk\\em-e\\k,
and our result follows.   D

Lemma 8. There exist y e (0,1) and an integer m > 1 in (MG), both inde-
pendent of k , such that

||z-MG(/c,£0,À)lk <y\\z-go\\k-
Proof. We proceed by an induction argument on k. The result is trivial for
k = 1, even with y = 0.  Let us suppose that the lemma is true for k - 1.
Lemmas 6 and 7 and (All) imply that

\\z-MG(k,go,fk)\\k = \\em-Ik_xqp\\k

<lk»1-#IU + l|/í_1(í-#)||* + l|/í_1(í-flp)IU
<C[m-l'2\\eQ\\k + \\e-qp\\k-i].
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By (A 13) and the definition of the correction step (C) in (MG), for all f G
Nk-i,

äk-x(e,cl) = äk(z-gm, /¿.¡f)

= (A,/£_,«)-«*(*«,/£_!«
= (Â,f);

therefore, q¡ = MG(/c - 1, q¡-X ,fk), and the induction assumption and itera-
tion gives

\\e-qP\\k-i<7p\\e\\k-i,

since ^o = 0.
We obtain with (A17) that

||z - MG(/c, go, fk)\\k < C[m-x/2\\e0\\k + 7p\\e\\k-i} < C2(m~x'2 + y>)\\eQ\\k.

If y G (0, 1) is sufficiently small, then C2yp < y/2 since p > 1, and if m is
large enough, C2m~x¡2 < y/2. For such choices, we obtain the lemma.   D

Lemma 8 says that if the number of smoothing steps m is large enough, the
/cth-level iteration is a contraction. Let Rk denote the standard interpolation
operator for Uk . If v G H2(Q.), then

(A19) ||v - Rkv\\ + hk\\v - Rkv\\k < Ch2\\v\\2.

Proof of Lemma 2. From Lemma 8, (A3), (A 19), and (All), we see that

\\zk-zk\\k < f\\*k - ¡k-iZk-ih
< yr[\\zk - u\\k + \\u - Rk-Xu\\k + WI^Rk^u- zk_x)\\k]

<Cyr[hk\\f\\ + \\Rk-iu-zk-.x\\k-i]
< CyrN|/|| + \\Rk-iU- u\\k_x + \\u - zk-x\\k-i

+ \\zk-l - 2fc-llU-l]
^C/tAjkH/ll+ ll^-i-ifc-illk-i]-

Since Z) - z\ =0, iterating this expression leads to the inequality

\\zk - zkh < Y CJhk-j+xyn\f\\ < x^SvMf\\,;=1 l      ZC37

provided that r is large enough so that 2C3/ < 1 . Hence,

II**-5*11* < CAfe||/||,
which implies (8.7).

We prove (8.8) as in [17, Theorem 7.1, p. 162]. First, by (A3) and (A19),

\\zk - I^Zk-iW < \\zk - «II + II« - Rku\\ + \\l£_x(Rku - zzc_i)||
< Ch\ 11/11 ! + \\Rku -z^.ll
<Ch2\\f\\x.
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Now Lemma 8 yields that

\\zk-Zk\\ </ï|ZZc-/;t_iZZc-i||

< f[\\zk - Ikk_xzk-X\\ + \\Ikk_x(zk_x - _V_,)||]

<f[Ch2\\f\\x + \\zk_x-zk_x\\),

so an induction argument yields (8.8). The proof is complete.   D
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