DEPARTMENT OF OPERATIONS RESEARCH
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK

“){-/20
TECHNICAL REPORT NO, 48% —

June 1971

Revised December 1971

ON THE IMPLEMENTATION OF SECURITY MEASURES
IN INFORMATION SYSTENS

by

R. W. Conway, W. L, Maxwell, and H. L. Morgan

ON THE IMPLEMENTATION OF SECURITY MEASURES
IN INFORIMATION SYSTEMS*

R. W. Conway, W. L. Haxwell, and H. L. Morgan

Abstract: The security of an information system may be modeled by a
matrix whose elements are decision rules and whose row and column indices
are users and data items respectively. A set of four functions are used

to access this matrix at translation and execution time. Distinguishing
between data dependent and data independent decision rules enables one

to perform much of the checking of security once at translation time rather
than repeatedly at execution time. The model is used to explain security
features of several existing systems, and serves as a framework for a
proposal for general security system impleﬁentation within today's

languages and operating systems.

Keywords: security, privacy, access control confidentiality, operating
systems, access management, data banks, manageient information
systems.

CR Categories: 3.50, 4.39, 4.22, 4.12, 3.73

* This report has been accepted for publication in the Communications of
the ACM.

ON THE IMPLEMENTATION OF SECURITY MEASURES
IN INFORI'ATION SYSTEMS

R. W. Conway, W. L. Maxwell, and H. L. Morgan*
Cornell University®

A. Introduction » .

There are two important issues involved in the growing discussions
concerning the control of access to privileged information stored in
computer files. Although there has not been much consistency of term-
inology among those writing in the field, we would propose identifying
these issues in the following way:

Information privacy involves issues of law, ethics, and judgement.

Whether or not a particular individual should have access to a specific
piece of information is a question of information privacy. As computer
professionals and citizens, we share the concern of many over the privacy
bquestion, but have no especial wisdom to bring to bear.

Information security involves questions of means--procedures to

ensure that privacy decisions are in fact enforceable and enforced. On

this issue, however, it is we as computer professionals who are primarily
responsible to society. We must provide a technology that is sufficiently
rugged to resist determined attack, and sufficiently economical to encourage
use. We must also insist that such a security system be an integral part
of any information system containing potentially sensitive data (e.g.,

. personnel, credit bureau, law enforcement), or the computing profession
will soon find itself with the same problems of conscience that nuclear

physicists suffered in the late forties.

*
Department of Operations Research and Department of Computer Science

* Present Address: Information Science Dept., California Institute of
Technology, Pasadena, California 91109,

Figure 1 shows the outcomes of each possible combination of privacy
decision and security action. Each of the possible outcomes has a cost,
in both economic and social terms. In most information systems to date
the privacy decision has not been made explicit and security has not
been deliberately implemented--so that 'proper access' is the only outcome.
One might hypothesize that the privacy question has been neglected at
least in part due to a tacit understanding that the requisite security
measures were cither infeasible or uneconomic. Security measures have
been rudimentary, primarily Lecause of preoccupation with the mechanics
of providing access to information for any user, but perhaps partly
because privacy demands have not been emphasized. This state of affairs
cannot exist much longer, as it seems very likely that public and legal
pressure will soon demand that the privacy question be made explicit [15,19].
Security measures will be required in order to limit the frequency of the
“successful invasion" outcome, and these measures will have to have consider-

able flexibility in order to avoid the “improper rebuff'' outcome.

Privacy decision

Access Access
permitted denied
Access proper successful
Action of obtained access invasion
security
system
Access Improper : successful
prevented - rebuff defense

Figure 1. Outcomes of security system actions.

The purpose of this paper is to discuss the nature of flexibility in
a security system and to relate the costs of implementation and enforcement
to that flexibility. It appears possible that earlier treatments of the
subject [12,17] have not sufficiently emphasized the distinction between
data-dependent and data-independent privacy decisions and as a consequence
have overestimated the cost of security enforcement.

A conceptual model consisting of a "security matrix" and four security
functions is proposed. This model is then used in both the explanative and
normative senses, i.e., several existing security systems are related to the
model, and a general implementation method is proposed based on the use of
the model. We start by examining the privacy decisions which may be desired

in an attempt at classification.

B. Selective Security

Most of the technical difficulty in information security arises from
the fact that those responsible for making the privacy decisions with re-
spect to a particular data bank should not be constrained to have to either
pernit or deny access to the entire data bank. It is not sufficient to
simply partition the population of users into two disjoint and exhaustive
subpopulations--those who are permitted access and those who are denied
access with respect to a particular data bank. Rather they should be
selective in deciding just what portions of the data should be accessible
to each usér.

Perhaps the point can be made by analogy to physical access to a
large office building. The simplest privacy decision would be to enumerate
those individuals who are entitled to have access to the building. This

could be implemented by a security system that consisted of a lock on the

outer door. In practicé this is rarely adequate, and a much more selective
privacy decision is made, and then implemented by a complex security
structure that involves locks, keys, guards and badges applied to the
building, individual floors and cbrridors, offices, desks, safes, filing
cabinets, etc. Going further one might wish not only to control where
an individual could go within the building but also what he might do at
each location. One could also want to make the regions that are acces-
sible to a particular individual dependent upon the time of day. And
finally, although the analogy is beginning to labor under the strain,
one could want an individual's accessible region to depend upon some
dynamic characteristic of the space units. For example, a man is to have
access to all offices that do not at the moment contain any '"classified"
documents,

The variety of potential conditions for privacy of information is
even broader. For example, imagine an employee personnel/payroll file for
a large industrial concern. It might include data structures named NAME,
SALARY HISTORY, CURRENT SALARY, PERFORMANCE EVALUATION, DEPARTMENT, HEDICAL
HISTORY, and SOCIAL SECURITY NUMBER. One could conceive of circumstances
under vhich each of the followiﬁg would be a reasonable privacy decision

with respect to some individual and this personnel/payroll file:

1. He has complete access to the entive file, for any purposc and
action.

2. He has no access to any part of the file for any purpose.

3. He may see any porticn of the file, but change nonc of its
contents.

4. He may see exactly one record (his "own") of the file, but not

alter its contents.

T R . N = e]

5. He may see exactly one record (his "own') of the file, and alter
some, but not all of the fields of that record.
6, He may see only the NAME and MEDICAL HISTORY portion of each
record in the file, and alter only the MEDICAL HISTORY portion.
7. He may see and alter only “financial' portions of each record
in the file, but only during the hours of 9 AM to 5 PM and only
from a terminal located in the payroll office.
8. He may see and alter only financial portions of each record,
and only for those records for which the value of CURRENT SALARY
is less than $15,000.
9. He may see financial information--but only in the aggregate, e.g.,
total salary by division, but not individual salaries.
10. He may see and alter PERFORMANCE EVALUATION only for those

records for which the value of DEPARTHMENT is ‘'Engineering’.

Although this list‘is by no means exhaustive it should begin to illustrate
the variety of privacy conditions that will arise once people start giving
serious consideration to the question. Each of the examples given above
could be useful, or even essential, under certain circumstances.

To the best of our knowledge no security system exists today that
would permit a system designer to enforce any arbitrary combination of
these privacy constraints for any arbitrary combination of user and data
element. With the present state of the art such a security system would
increase overall processing cost by an order-of-magnitude--which may
threaten the economic justification of the entire application, or at least
tempt the designer to risk the consequences of an unsecured system. However,
many of these privacy constraints have the important characteristic of being

independent of particular values of data, and to the extent that such privacy

constraints are considered adequate by the user it is possible to implement
a security system at very modest cost. It seems to us important that the
designers and implementers of security systems be aware of the crucial
significance of data-dependence in security matters, and of the special
procedures that may be employed to implement data-independent privacy
requirements in an efficient manner. It is probably equally important
that those responsible for making privacy decisions understand what kind
of conditions are inherently difficult (and expensive) to implement so
that these can be avoided wherever possible. This question is discussed

in Section D.

C. The Security Matrix

Conceptually, the privacy decisions for a particular data bank may
be recorded in a “security matrix'" (a generalization of the ''user security
profiles' of Bingham [4]). The columns of this matrix correspond to
barticular data structures in the system--not necessarily disjoint, and the
rows of the matrix correspond to the potential users of the system. Egch
element in the matrix, dij’ is a decision rule embodying a specific
privacy decision, specifying the conditions under which user i is entitled
to access the data structure j, and the actions that i is permitted to
perform upon j. In this respect, the security system may be considered to
be table driven by this matrix.

As an example, suppose that the information in a particular system

is describable as the PL/I structure shown in Figure 2 (data types omitted).

Let us also suppose that the users in the system are identified as follows:

Company President
Chief payroll clerk
Systems programmer
Doctor

Employee

moQw>
'

DECLARE
1 EMPLOYEE (1000)
2 NAME ‘
2 SALARY HISTORY (6)
3 CLASS
3 RATE
3 AMT
2 CURRENT SALARY
2 PERFORITANCE EVALUATION (6)
3 DEPARTMENT
3 SUPERVISOR
3 DATE
3 PERFORMANCE
2 MEDICAL HISTORY
3 BLOOD TYPE
3 TREATMENT HISTORY (12)
4 DATE
4 DOCTOR
4 TREATMENT (8)
S DATE
5 MEDICATION
5 CONDITION
2 SOCIAL SECURITY NUMBER
2 ADDRESS -
3 ADDR LINE 1
3 CITY -
3 STATE
3 2IP

Figure 2.

Figure 3 shows a portion of the security matrix for this system. Notice
that the column headings include both major and minor structure names, as
well as specific field names. Such detail is clearly required to permit
the selective security discussed in Section B. In a real system, columns
would be needed not only for the data structures, but also for the program
libraries, oﬁerating system, and the segurity matrix itself. To be truly
selective, one must also be able to distinguish between different genera-
tions of the same file, and to designate subfiles by content, e.g., 2

column for EMPLOYEES WITH DEPARTMENT='PURCHASING'.

USER EMPLOYLE CURRENT SALARY SALARY HISTORY AMT MEDICAL HISTORY
A R,W R,W* R,W* R,W* R,W*
B N _ R, (W between R,W R,W* N
9 and 5)
c N N N N N
D N N N N R,W
E

Key: R can read the field or any element of the structure
W can change the field or any clement of the structure
* Implied by some other decision rule in the same row
N can neither read nor change the structure or field

Figure 3. A Portion of the Security Matrix

The description of this conceptual matrix will not be pursued to the
point where it might become operationally precise simply because it is
prohibitively large. In most real world data processing situations, the
number of users would be substantial and the number of data clements would
be impossibly large. Nonetheless, the security matrix is a convenient
model with which to describe the general security problem, and a convenient
background against which to evaluate what is achieved by specific implemen-
tations,

To begin with, the matrix may be cited to indicate two limitations on
the scope of this discussion. First, we are considering security measures
only of the type that could be enforced through the use of such a matrix
within a computer based system. This implies that we are specifically not
treating fhe problem of physical security. In the world of locks, badges,
and paper, a considerable technology has evolved ovér the years for the:

protection of valuable goods and information on paper. While the failures

of physical security systems are not infrequent and are often newsworthy,
it still seems possible to observe that adequate hardware and procedures
for physical security are available to the data processing industry, if

it were decided that the risks and costs justified their deployment [1,12].

One should note, however, that physical security in our context is
mainly concerned with the central machine location. People accessing the
system through remote terminals are constrained to submit to internal sys-
tem security, and to the extent that this type of system is becoming more
popular, the overall problem may have been eased. On the other hand, the
user at a terminal is safely anonymous to the personnel at the central
location, thus inhibiting use of the informal physical security measures
which made it difficult for a stranger to walk into the computing center
and obtain execution of a program accessing sensitive data.

Remote access systems are also subject to certain electronic threats
involving wiretapping and masquerading, but until major advances are made
in other aspects of security, these somewhat esoteric threcats hardly seem
to be an immediate concern to most installations [12,17].

The second restriction of the scope of this discussion concerns the

problem of authentication. This is the problen of ensuring that the proper
row of the security matrix is selected when a particular user addresses
himself to the system. To be meaningful the security system must be designed
under fhe assumption that an active potential infiltrator will exercise con-
siderable ingenuity in the effort to misidentify himself to the system.

The usual method of authentication is sdﬁe variant of ‘'password" protection,
and the procedures used seem better suited to defend against a basically
honest but occasionally befuddled user than against one who is seriously

intent on penetrating security. More sophisticated (and costly) methods

10

of authentication do exist (e.g., badge readers, 'formula" passwords,
built-in terminal identification) but are not yet in widespread use.
Hoffman [12] has a discussion of authentication procedures, and Bingham
[4] discusses possible hardware/software combinations for authentication.
For the remainder of this paper then, we shall assume that the system
is physically secure, and that the particular user has been properly identi-
fied--while realizing that neither assumption is often justifiable. Yet
one could argue that since potential violators will be concerned»with the
weakest link in an overall security system, potential protectors should
be also. Considering the present state of current internal system security
procedures at most installations, it is probably unnecessary for violators
to waste time discovering passwords or risk the conscquences of breaking
and entering a computing center. However, if‘there are significant im-
provements in internal security, and if in fact there is an appreciable corps
of enterprising violators, there will be increasing pressure upon provisions
for physical security and authentication procedures.
The two compromises that characterize an ewbarassingly large fraction
of the security procedures in current use might be described as “column"
and ‘'diagonal" systems. In a column system, there is only one data element--
the complete data collection, and each decision rule in the resulting single
column security matrix is a simple rule granting or denying unconditional
and unrestricted access and use. The user has only to authenticate himself
in order to obtain access to any datum in this collection. An associated
accounting system may impose limits on tﬁé extent of use, but this is
generally intended more to conserve or allocate system resources than to

limit activity for security reasons.

asnd

| DO 3 Wiiitaiighy

> R

BB iadieds

11

In a "diagonal' system, the data collection is partitioned into a

set of exhaustive and mutually exclusive files, Each file is uniquely

identified with a particular user so that the rows and columns of the

security matrix could be permuted so that all of the elements on the

principal diagonal are decision rules granting unrestricted access and

all other elements prohibit access.

Either of these special cases can be decomposed in such a way as

to put the burden of access control solely on a password protection system.

That is, each datum has a unique password, and a user consists of all the

potential users who possess that password.

These special cases, however, are far from satisfying the selective

security needs already described. In general, a practical implementation

of the security matrix concept can be sought in one or more of three

directions:

1.

Reduction in the size of the matrix--by defining "virtual users'',
each representing a collection of users with identical security
authorization; and by coﬁsidering only data zggregates to reduce
the number of columns.

Simplification of the entries in the matrix from the general
‘‘decision rule" to yes-no indication. This reduces the matrix
from an array of functions which must be evaluated with each
interrogation of the matrix to an arr#y of bits.

Careful analysis of when and how'the matrix should be inter-

rogated and its specification employed.

Both the column and diagonal systems have carried out points 1 and 2

almost to their logical extremes. The third approach does not seem to have

12

been examined in sufficient detail previously, yet seems to us to offer
some promise for implementation of general security features at modest cost.
An analysis of how the security matrix is accessed shows that while
the complete matrix may be very large, even in reduced form, it is also
very sparse--in the sense that most of its entries are denials of access--
and that only a very small fraction of the matrix is relevant at any
instant of time. The authentication of a user selects a particular row
of the matrix, and the user will designate some aggregate data element
(e.g., wvhen he ''opens' a file) that will select a relatively small subset
of the column entries for that row. Thus, rather than really being
accessed randomly, a very small controlling sub-matrix could be identified
and remain in control for a significant amount of processing fime. This
might alleviate some of the problems of the large size of the general matrix.
Similarly, when considering when the métrix is sccessed, one should
distinguish roughly between two approaches to data processing. The first
is the traditional "batch’processing“ run, in which essentially similar
actions are performed on large numbers of similar data structures in the
course of a single run. The frequency of repetition demands that these
actions be performed efficiently. The second class might be characterized
as a “random inquiry' process. This woﬁld have a relatively low frequency
of repetition, and one could tolerate significantly higher overhead. The
first type of run has dominated the field in the past. The second is rapidly-
growing in importance. The point for present purposes is that a data
collection must be secure with respect to both types of approach. The
selection of the relevant security sub-matrix is required only once per
approach and not once for each data element sclected from the collection.

In the random inquiry only one data access may be required, so that the

Toanas dnl

13

addition of one reference to some form of security matrix represents a
significant percentage increase in overhead, although the absolute amount
of work involved is minor and entirely tolerable. On the other hand, the
batch processing run could involve thousands of accesses into the data
collection, but this need not require equally many examinations of the
security matrix.

It is significant that what little security provisions exist in systems
today are almost completely passive, i.e., the provision called "threat
monitoring' in the literature [17] has rarely been adequately implemented.
Current systems typically will submit to unlimited abuse without appealing
for help or even noting the fact that they are under attack. In most cases
a persistent infiltrator could sit at a terminal and try character com-
binations at random until a valid password was encountered. (MTS [16}
at least inconveniences the'infiltratqr by requiring him to re-dial in
after three password failures). While systems steadfastly deny access
until a valid password is submitted, they generally do not recognize that
a systematic assault is in progress. A successful threat, by definition,
is not recognized as such, while in most cases an unsuccessful threat is
neither detected nor punished. One must conclude that a security system
is not really very serious until it includes at least some means of
recording its successful defenses against attack.

Some recent systems.include Yentry logs'" which record a history of
authentication successes and failures. Threats that occur when a properly
authenticated user attempts to violate the restrictions of his row in the

security matrix could also be logged. Examination of such a log will reveal

successful defenses, and if the log is monitored in real-time more imaginative

and cffective countermeasures could be deployed. We conclude that either

14

very little ingenuity has been expended on the design of such countermeasures,
or system designers have been judiciously quiet concerning their accom-

plishments in this area.

D. Data Dependent and Data Independent Conditions

It is informative to examine the examples of privacy decisions listed
in Section B to see which require the actual value of some datum to be
evaluated. Restricting a particular user from ever seeing a field named
SALARY in any record of a file is independent of thc specific values in
that field, while restricting a user from seeing values of SALARY in
excess of $10,000 is data dependent. Granting a user "read-only" access
to an entire file is data independent, but permitting a user to alter
the contents of only thosc records for which DEPARTMENT = 'PURCHASING' is
data dependent. This distinction is crucial in determiﬁing how security
restrictions arc enforced, and what such enforcement will cost in system
resources.

Data-dependence must be interpreted in a very general sense. The
decision may be dependent upon the value of any datum in the system and
not just the particular datum to which access is sought. For example, if
a user is permitted access to salary data only between the hours of 9 and
5, then the current time is the datum on which the security decision depends.
| Da;a—dependent privacy decisions obviously cannot be evaluated until
the relevant data itself is available. This means not only that evaluation
must be deferred until the system has accessed the data element but also
that evaluation must be repeated for each potential data element in the
same class. The implication is that an interprétive mode of enforcement

performed at exccution time is required, increasing by an order-of-magnitude

N . . . ‘ .

-

15

the execution time in coiparison with an unsecured version of the same
request for information. To the extent that the necessary privacy decision
is data-dependent this high cost is inescapable, and one simply has to
balance the risks of running unsecured against the cost of providing
security. However, not all privacy decisions are data-depcndent, and it

is possible to implement security enforcement for the data independent
privacy decisions at very modest cost compared to that required for data-
dependent decisions. Most writers and designers, noting that data-dependent
privacy decisions can only be enforced interpretively at execution time,
have apparently planned the enforcement of all privacy decisions in this way.
This has given the erroneous impression that security enforcement is
necessarily very costly, thereby dampening enthusiasm for implementing secure
systems.,

In fact, data-independent privacy decisions can be enforced by
examining the request and the appropriate element of the matrix just
once--at the time the request is received for translation (by a compiler,
assembler, etc.). Access to the security matrix is required, but not
access to the data base. Thus, if a user may never see the SALARY field
of any record, a single check at translation time can stop the request from
getting access to the data base in the first place. This method of en-
forcement assumes that:

(a) all requests for access to the data base are entered into

the system as source input to a translator (assembler,
COBOL, PL/I, MARK IV, ASAP, etc.) and

(b) the tfanslated form of a request must be held in a secure

manner so that it cannot be altered by the user after the

translation-time checks have taken place.

16

Guaranteeing that these two assumptions are satisfied in a particular system
may still be a less costly process than interpretively enforcing all of the
data-independent privacy decisions.

The significance of data-dependency in other contexts is, of course,
well known. In the design of language translators and operating systems
there are numerous decisions which permit some freedom in the timing of
implementation--for example, the "binding" of varizbles in a translator.

In general, efficiency is served by early implementation and flexibility
is served by later implementation. This is implicit in the translator-
writer's maxim: 'as soon as possible" or "as late as necessary"., e
simply observe that the same distinction and choice of implementation

time exists with respect to security decisions. The next section describes

& security model that emphasizes this distinction.

E. A Functional Model of a Security System

A medel of a security éystem includes the security matrix and four
functions: Ft and St’ the translation-time fetch and store functions,
and Fr and Sr, the run-time fetch gnd store functions.

Each of the functions has two arguments--u, a user identification
and d, a datum name. The functions thus reflect a particular element of
the security matrix. Ft is called whenever during the translation of a
Tequest (job, task, etc.) a fetch reference is made to a data element, i.e.
in the right-hand-side of an assignment statement or appearance in an output
list. Ft(u,d) interrogates the specified'elgment of the matrix and takes
one of threc possible actions:

1. If the user is permitted data-independent read access to the

datum, then conventional object code for fetching the datum is

generated.

17

2. If the user is denjied rcad access to this datum on a data-independent
basis, translation is aborted and the system is alerted to perform
threat monitoring.

3. If the uscr is pormittcd data-dependent read access to the datum,

a call to Fr(u,d) is generated in the object code.

Similarly, St is invoked whenever a left-hand-side (store) usage
of a datum is encountered, and has the obvious analogous actions.

Fr(u,d) is called at exccution time and actually performs the data-
dependent check required. If the check passes, Fr returns the value of
d. If the check fails, it returns a null of some sort, Similarly,
Sr(u’d) stores a value in d only if the data-dependent check is successful.
Note that Fr should not invoke threat monitoring since it is expected to
legitimately and innocently fail. However, failure of Sr gencrally
suggests an attempted invasion and threat monitoring should be invoked.

To the extent that the security matrix specifies data-independent
privacy decisions, sccurity enforcement can be completely achieved by
the use of Ft and St--the run-time functions Fr and Sr arc not
required, F_ and st represent very slight incremental effort for a
translator, and when calls upon Fr and S. are not required there is
no degradation of exccution performance. Hence data-independent privacy
conditions can be implemented at modest cost. Data-dependent privacy
conditions require the exercise of Fr and Sr for each datum and incur
an appreciable execution-time penalty.

The principal point is thet if one fails to distinguish between data-
dependent and data—indcpcnﬁent privacy conditions then Ft and Sy must

always insert a call upon Fr and Sr and the substantial penalty of

18

interpretive execution nust always be paid. If the distinction is made,
and Ft and S¢ are sophisticated enough to capitalize upon it, then at
least data-indcpendent privacy can be economically enforced.

Another aspect of security is the encrypting of the data-base. It is
a simple matter to include instructions in St and Sr to translate the
datum into unintelligible form as it is stored, and corresponding instructions
in Ft and Fr to translate the encrypted détum back into useful form.
Simple and efficient algorithms for this translation have been given
{17,18,5] and the execution cost on contemporary machines is quite modest
[13]. Encrypting a data-base in this manner effectively thwarts the invader
who would circumvent the security provisions of the system by obtaining access
to the data-base entirely outside the managing system. Vhile the trans-
lation would probably succumb to the efforts of a skilled cryptographer
the 'work factor' [3] is probably sufficiently high so as to make othef

avenues of attack more attractive.

F. Examples of Existing Implementations

While exemplary information systems with flexible, rugged and efficient
security provisions may exist, we do not know of published descriptions,
The tools generally available for system implementation--~languages, data
or file management systems and operating system utilities--do not currently
encourage or facilitate elaborate security measures. The 1969 Survey of
Generalized Data Base anagement Systems [7] described nine systems. While
seven of these have some form of security provisions, only three of the seven
were actually operating when the survey was written. The most complex
security available in the running systems was that of ADAM, which permitted

only read/write protection on specified fields. The most widely used file

19

management system, MARK IV, offered no security provisions. It is inter-
esting to note that in NIPS/FFS, a file maintenance system for the National
Military Command System, security provisions are completely described by
the following paragraph:

"Each file may be assigned a classification. If the classification

given in a report specification (which is printed on each page of
the report) does not match this, or none is given, a warning page
precedes the report, and a console message is printed."

In the more recent CODASYL study {8], two new systems arc mentioned.
IBM's IMS system, which seems to include somewhat broader security pro-
visions, and the Data Base Task Group proposal [6] which, if implemented,
would offer a comprehensive set of privacy controls on actions and access.

We will briefly describe three university-developed systems. These
represent some interesting ideas related to the previous discussion. None
is widely used, and we do not suggest that they adequately represent current
practice.

Hoffman [13] has implemented a security system for the Student Health
System (SHS) at Stanford University, based on his procedural (or “'formulary')
model for access control and privacy in information systems. In this system,
all security is provided at run-time through a set of data base access pro-
cedures. Each request for a datum must go through the procedure ACCESS,
which in turn ﬁalls a procedure (contained in the formulery) specific to the
user to obtain the grant/deny access decision. Privacy transformations can
then be performed by ACCESS before giving the user the desired value (or
storing the value in the data base). tVhile the formulary could contain any
general procedures, and ACCESS could be asked for specific field of records,
in fact in the SHS system, the only formulary procedures which exist provide

fetch or fetch and store access, and the only data name which ACCESS recognizes

20

is NEXTRECORD. Thus, in effect, this conceptually very powerful system

in current implementation is able to grant or deny read only or read/vwrite
access to the entire file. SHS thercfore is an example of a column éystem,
with the potential for rather complex formularies (decision rules). The
ACCESS procedure is the implementation of Fr and Sr’ and Ft and St
always provide calls to Fr and Sr.

Graham [11] has described the protection scheme used in the MULTICS
system. The use of special hardware featurcs to effect some of the security
checks is discussed. In MULTICS, there is a hicrarchy of files and pro-
grams. Each segment (program or file) has a clearance level. This level
is placed in a hardware register‘yhen the program is in control. If the
program calls another program (or accesses a file) which is not at the same
security level or a lower level (i.e. more restricted), a hardware interrupt
is taken. The interrupt routine must then examine a ''gate list", or list of
acceptable users who may access this less restricted segment. Thus, when
an access request is made to a segment, the 'gatekeeper' program checks to
sce that the requestor is on the segment's ''gate list". If so, the security
levels of the two segments are compared, and the requestor is permitted
access only if his program has a sufficient level of clearance. The
"gatekeeper" distinguishes types of access as read, write, and exccute. In
this system, the security matrix is stored in the form of a set of gate
lists, which indicate whether user i can access datum j for read/write/execute'
purposes. All checks are made at run-timg, but the Fr and Sr functions
are made relatively efficient through thé hardware provisions.

The third example is a file maintenance system called ASAP [2,9] which
was designed and implemented by the authors to serve as a test vehicle for

a number of new concepts. Security measures were a primary consideration in

21

the design. It is described at some length below since it, not surprisingly,
illustrates most of the points of the previous discussion. Both data-
dependent and data-independent security features are provided, although
there is no threat monitoring. The data-independent features can deny
access to specific fields of records, and can inhibit certain types of
processing. These are implemented through Ft and St functions used
during translation, thereby reducing the amount of checking which must be
done at run-time.

The security matrix is contained in a special dictionary, which is
created by the user, and contains descriptions of thc files, reports, and
other entities known to the system, as well as the security information.
Associated with each ficld name is a security ‘"class'. There are eight
such classes, labeled 1 to 8, with no hierarchy implied. Similarly, each
aggregate name (e.g., a report containing inforimation from several fields),
has a class equivalent to the union of all of the classes of ficlds in the
aggregate. Each allowable user of the system has an associated list of
those classes to which he is permitted access. Thus, when he references
a field, a simple comparison is made to determine wheiher or not he can
see that field. In addition, there is associated with each user a list of
the ASAP actions (PRINT, CALL, UPDATE, SET, etc.) that he is permitted to
use.

A limited form of data-dependent security is provided by associated a
set of qualifications (e.g. Boolean conditions) with each user. During
execution, each record is checked against the appropriate qualification
before being passed to the user's program for processing.

For example, consider a law firm's personnel file as shown in Figure 4.

These definitions would create a dictionary which could process two different

22

record types--employees and partners. The?e are three different ‘users!
permitted to use this system, and they authenticate themselves by prefacing
their processing request with their respective passwords., A user authenti-
cated as a 'LIMITED PARTNER' can examine the records for EMPLOYEES whose
SALARY is less than $30,000, including all fields of the record except
PMEDHIST, for PARTNERS whose PLEVEL = 'LP', He cannot alter any field of
any record. A user authenticated as a 'GENERAL PARTNER® can read or alter
any field of any record. He is also authorized to call external procedures
from ASAP and to add new users to the system. A user authenticated as a
'PHYSICIAN' has access to all records, but only to the unrestricted identi-

fication information and the medical history,

DEFINE RECORD EMPLOYEES
NAME 25
SOCSECNO- 9 KEY
DEPT 5
SALARY 7 COMPUTE SECURITY 1
MEDHIST 30 SECURITY 2
JOBEVAL 30 SECURITY 1
DEFINE RECORD PARTNERS
PNAME 25
PSOCSECNO 9 KEY
PLEVEL 2
PSALARY 7 COMPUTE SECURITY 1
PCTQUNER 3 COMPUTE SECURITY 3
PMEDHIST 30 SECURITY 2
DEFINE USER 'LIMITED PARTNER' SECURITY 1
EMPLOYEES WITH SALARY > 30000
PARTNERS WITH PLEVEL = tLp! "PASSWORD 1!
USER *GENZRAL PARTNER' SECURITY 1 2 3 UPDATE CALL USER 'PASSWORD 2!
USER 'PHYSICIAN' SECURITY 2 UPDATE 'PASSWORD 3!

Figure 4.

23

The system operates in the following way. If a LIMITED PARTNER werc
to submit the ASAP request:
ASAP 'PASSWORD 1!
FOR ALL EMPLOYEES WITH DEPT = 'ACNTG'
PRINT A LIST OF NAME, SALARY, JOBEVAL
ORDERED BY SALARY.
the system would simply supply only those records for which the value of
SALARY is less than $30,000. There is no indication on the results that
certain records were not accessed. This is a data-dependent condition and
is enforced at run-time. If this same LIMITED PARTHER were to submit any
of the following requests:
FOR ALL EMPLOYEES SELECTED BY KEY IN DATA CARDS,

UPDATE RECORD.
FOR ALL EMPLOYEES PRINT LIST: NAME, MEDHIST.

FOR ALL EMPLOYEES WITH NAME = 'JOHN A. JONES!
INCREASE SALARY BY 1000.
these would be detected at translation time and no execution would take
place. All of these are violations of data-independent privacy conditions

during compilation.

and are trapped by Ft or St

Clearly, the ability to define users is all important and should be
reserved to only one or two people. There are built-in countermeasures to
some of the obvious threats to this system. Both files and secure infor-
mation in the dictionary are stored in encrypted form (file encrypting
is optional) considerably increasing the work factor to obtain information
from them by dumping them with a utility program,

We believe that the types of security and the implementation strategy

employed in ASAP are not dependent upon the characteristics of this

24

particular source language. They could be applied to a conventional

language, or even to a multi-language environment, as described next.

G. General Implementation

The previous section gave examples of security implementations in an
application program, a specialized operating system, and a generalized data-
base management system. It is important to consider the security question
relative to languages such as COBOL, FORTRAN znd PL/I and relative to
operating systems such as 0S/360. If privacy decisions cannot be practically
enforced in this environment then discussions of security and privacy are
somewhat limited, or at least premature. We believe that this is not the
case and that security enforcement is practical--although we do not know
of this having been done in a general, flexible manner.

I't would appear to be quite feasible to provide security similar to
that offered by ASAP either by modifying or extending a general purpose
operating system. The major task would be the addition of a liﬁrary routine
(analogous to the ASAP dictionary) to store, manage and protect the security
matrix. Secondly the I/0 service routines (OPEN, CLOSE, GET, PUT) of the
operating system would be modified, or have other routines superimposed
upon them. These routines would represent. the Fr and Sr functions. If
implemented in this manner it would be independent of the translator
employed, and since security is enforced at run-time there is no requirement
to secure the translated request during the interval between translation and
execution. On the other hand it means that all privacy conditions are
treated as data-dependent conditions with the attendant overhead. In fact
the overhead is even greater than that involved in data-dependent conditjons

in a system such as ASAP for the Fr and Sr routines must perform complete

25

run-time masking of the data elements. That is, since Fr has no way of

knowing what the user program is going to attempt to do with the data

element it must completed; = the element according to the specification

of the security matrix. This is essentially the Hoffman [13] security model,

and it may be that the execution penalty is prohibitive in many situations.
To reduce this penalty one can identify those privacy conditions

that are data-independent and implement the F. and St functions so that

t
when possible the requisite tests are performed once per request rather

than once per data access. To do so means becoming involved in the translation
process and, equally importantly, providing a means of securing the user re-
quest against modification between the time of trenslation and the time of
execution,

Ft and St can be implemented cither by modifying the standard
compiler or by interposing a preprocessor in front of a standard compiler.
The former is certainly the most efficient method of implementation, and
perhaps some day standard compilers will include such provisions. Until
that time one is faced with the not altogether pleasant prospect of making
and maintaining non-trivial modifications deep in the interior of a
sophisticated translator. At least at the moment, the preprocessor approach
seems more reasonable. There already exist very high-performance compilers
for both FORTRAN and PL/I that could be used as a basis for a security-
preprocessor, One could discard the code-genecration phase of these compilers
and use the preliminary phases to implement security features. These would
draw upon the same dictionary routine for thé‘security matrix that is
required for the data-dependent run-time enforcement. Although the pre-
processor would have to perform rather complete syntactic analysis of the

Source program to perform the necessary checks, and this would duplicate

26

the analysis performed by the standard compiler, the performance of these
preprocessors is such that this could readily be tolerated. For example,
a preprocessor for PL/I based on the Corncll PL/C compiler [10] would scan
15,000 PL/I source statements per minute on a 360/65. (This is the actual
speed of the PL/C lexical and syntactic analyzer.),

With either a preprocessor or a modified compiler certain serious
problems remain. When data elements are referenced by name there is
basically little difficulty for these can be checked in context and usage
against the security matrix. However, the programmer has a nuwber of ways
by which he can access data elements other than by name. The most obvious
way is to use an array and deliberately force the subscripts to go outside
of the declared bounds. PL/T offers a remedy for this problem, since the
security system (either preprocessor or modified compiler) could insist
that the program have SUBSCRIPTRANGE enabled with a suitably fatal ON
SUBSCRIPTRANGE unit. This would, however, impose additional execution
overhead for the subscript monitoring. Neither FORTRAN nof COBOL offer
this type of monitoring and it is not possible for a preprocessor for
those languages to protect against this circumvention if the use of arrays
is allowed--as of course it must be., Either the standard compiler would
have to be modified to provide this protection or run-time testing would
be required,

A similar problem exists in the improper use of pointers in PL/I. A
structure similar to the target record could be declared, and a pointer to
the record set into a pointer to this structu;e. This could be negated by
the run-time testing of the record (by Fr and Sr) but this is costly
protection and it might be possible to detect this type of threat by sophis-

ticated analysis of the source program. Similarly, the passing of a record

27

address as a parameter to a subroutine in which the record is not declared,
but where a similar structure is declared, presents the same type of
problem.

In summary it would appear that a translator-independent FT/Sr security
system could be implemented by adding a security motrix routine and modifying
the I/0 service routines of a general purpose opcrating system, but this
would treat all privacy conditions as data-dependont and the execution-time
degradation would be severc, Performance could bLe improved by implementing
the Ft/St functions by some combination of a preprocessor and modifications
to the standard translators but this would also require some limitation on
the freedom of the programner to use the full facilities of the source

language,

H. Conclusions
Sz 2Ol

In current practice security measures in infowmmetion systems are
neither elaborate, flexible nor impenetrable. There are indications that
more demanding Privacy requirements will soon be imposed upon systems
designers and that security provisions will have to be substantially improved.

It is useful to view security questions in terms of a security matrix
and four functjons representing translate and run-time fetch and store
operations. In particular this model facilitates the delincation of data-
dependent and data-independent security conditions. The former requires
iﬁterpretive implementation in the form of run-time checking routines and
impose a significant degradation of performance. The latter, at least in
principle, needs to be exercised only once per request at trenslation time,
rather than once per datum and thereby offer the opportunity to implement

certain security measures with very rodest execution penalty.

28

The best prospects for enhancement of security would seem to lie in the
more recent generalized data management systems., These systems offer a
controlled environment and sufficient restraint upon user activity to
enforce reasonably general security conditions. Although many of these
Systems are interpretive with an execution penalty that is unacceptable for
much production work at least one offers fairly general and flexible
security conditions with implementation by a compiler that does, in fact,
utilize translation-time checking of data-independent conditions. Hence
feasibility has been demonstrated and users could require this type of
capability from future data management systems.

Providing comparable security measures in a general-purpose language
environment is a far more difficult task. Satisfactory measures can be
incorporated into the data management facilities of general operating systems
but this implies complete reliance upon run-time checking and the execution
penalty would be severe. General-purpose languages such as PL/I, COBOL and
FORTRAN provide programmers with too much flexibility to permit a translator
to take édvantage of data-independent security conditions at compilation
time., Restricted versions of these languages that proscribe the construc-
tions by which users could circumvent translation-time checks could be
used and either special security—conscious compilers or pfe-processors to
conventional compilers could be employed.

To the extent that systems capable of realizing the efficiency of
translation-time checking of security conditions become available, users,
in particular those responsible for privacy decisions, should be made
aware of the distinction between data-dependent and data-independent
conditions. Insofar as is possible théy could try to avoid specifying

inherently difficult and expensive data-dependent conditions.

I. Acknowledgements

The authors wish to acknowledge the extremely helpful comments of

Professor Ed Sibley of the University of Michigan.

10.

11.

12.

13.

14,

15,

16.

17,

18.

19.

30

References

Allen, Brandt, ‘Danger Ahead! Safeguard your cowmputer.' Harvard
Business Review, Nov.-Dec. 1968, 97-101.

ASAP System Reference Manual. Compuvisor, Inc, 1971.

Baran, Paul, "On distributed communications: IX. Security, secrecy,
and tamper-free considerations" RM-3765-PR, Rand Corporation, Aug. 1964.

Bingham, H.V., Security techniques for EDP of multilevel classified
information. Document RADC-TR-65-415, Rome Air Development Center,
Rome, New York, Dec. 1965 (unclassified).

Carrol, J.M, and P. M. McLelland, "Fast infinite key privacy transfor-
mation for resource sharing systems." Proc. AFIPS FJCC 1970.

CODASYL Data Base Task Group Report. October 1969. (Available from ACH.)

CODASYL Systems Committee, A Survey of Generalized Data Base
Management Systems. May 1963, (Available from ACH).

CODASYL Systems Committece, Feature Analysis of Generalized Data Base
Management Systems. May 1971 Report. (Availabie irom ACIi.)

Conway, R.W., W.L. Maxwell, and H.L., Morgan, "Selective Security
Capobilities in ASAP - A file management system." Proceedings of the
AFIPS 1972 Spring Joint Computer Conference (to appear).

Conway, R.W., H.L. Morgan, R. Wagner and T. Wilcox, User‘'s Guide to PL/C.
Dept. of Computer Science, Cornell University, 1970,

Graham, R.M., "Protection in an information processing utility'". Comm.
ACM 11 (May 1968).

Hoffman, Lance J., “Computers and Privacy: A survey.'" Computing
Surveys 1, No. 2 (June 1969) 85-103,

Hoffman, Lance J., “The formulary model for access control and privacy
in computer systems." SLAC Rept. No. 117., Stanford University, May 1970.

Martin, James, and A. Norman, The Computerized Society. Prentice-Hall,
New Jersey, 1970.

Miller, A. R., Assault on Privacy: Computers, Data Banks, and Dossiers.
University of Michigan Press, Ann Arbor 1971.

MIS User's Guide. University of kichigan Computer Center, 1970.

Petersen, H.E. and R. Turn, "System implications of information privacy,"
Proc. AFIPS 1967 SJCC Vol. 30, 291-300.

Skatrud, R.0., "The applications of cryptographic techniques to data
processing." Proc. AFIPS FJCC 1969, 111-117.

Westin, A., Privacf and Freedom. Atheneum, New York, 1967.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif

