
TLP: page 1 of 28 C© Cambridge University Press 2011

doi:10.1017/S1471068410000566

1

On the implementation of the probabilistic logic
programming language ProbLog

ANGELIKA KIMMIG, BART DEMOEN and LUC DE RAEDT

Departement Computerwetenschappen, K.U. Leuven,

Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

(e-mail: {Angelika.Kimmig,Bart.Demoen,Luc.DeRaedt}@cs.kuleuven.be)

VÍTOR SANTOS COSTA and RICARDO ROCHA

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto,

R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

(e-mail: {vsc,ricroc}@dcc.fc.up.pt)

submitted 19 June 2009; revised 14 October 2009; accepted 9 December 2009

Abstract

The past few years have seen a surge of interest in the field of probabilistic logic learning

and statistical relational learning. In this endeavor, many probabilistic logics have been

developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of

large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are

treated as mutually independent random variables that indicate whether these facts belong to

a randomly sampled program. Different kinds of queries can be posed to ProbLog programs.

We introduce algorithms that allow the efficient execution of these queries, discuss their

implementation on top of the YAP-Prolog system, and evaluate their performance in the

context of large networks of biological entities.

KEYWORDS: Probabilistic logic programming, Exact and approximative inference, Imple-

mentation

1 Introduction

In the past few years, a multitude of different formalisms combining probabilistic

reasoning with logics, databases, or logic programming has been developed. Promi-

nent examples include PHA and ICL (Poole 1993b, 2000), PRISM (Sato and Kameya

2001), Stochastic Logic Programs (SLPs) (Muggleton 1995), ProbView (Lakshmanan

et al. 1997), CLP(BN) (Santos Costa et al. 2003), CP-logic (Vennekens et al.

2004), Trio (Widom 2005), probabilistic Datalog (pD) (Fuhr 2000), and probabilistic

databases (Dalvi and Suciu 2004). Although these logics have been traditionally

studied in the knowledge representation and database communities, the focus is now

often on a machine learning perspective, which imposes new requirements. First,

these logics must be simple enough to be learnable and at the same time sufficiently

expressive to support interesting probabilistic inferences. Second, because learning

2 A. Kimmig et al.

is computationally expensive and requires answering long sequences of possibly

complex queries, inference in such logics must be fast, although inference in even

the simplest probabilistic logics is computationally hard.

In this paper, we study these problems in the context of a simple probabilistic

logic, ProbLog (De Raedt et al. 2007), which has been used for learning in the

context of large biological networks where edges are labeled with probabilities.

Large and complex networks of biological concepts (genes, proteins, phenotypes,

etc.) can be extracted from public databases, and probabilistic links between concepts

can be obtained by various techniques (Sevon et al. 2006). ProbLog is essentially an

extension of Prolog where a program defines a distribution over all its possible non-

probabilistic subprograms. Facts are labeled with probabilities and treated as mutu-

ally independent random variables indicating whether or not the corresponding fact

belongs to a randomly sampled program. The success probability of a query is defined

as the probability that it succeeds in such a random subprogram. The semantics of

ProbLog is not new: it is an instance of the distribution semantics (Sato 1995). This

is a well-known semantics for probabilistic logics that has been (re)defined multiple

times in the literature, often in a more limited database setting (cf. Dantsin 1991;

Poole 1993b; Fuhr 2000; Poole 2000; Dalvi and Suciu 2004). Sato (1995) has, how-

ever, shown that the semantics is also well defined in the case of a countably infinite

set of random variables and formalized it in his well-known distribution semantics.

However, even though relying on the same semantics, in order to allow efficient infer-

ence, systems such as PRISM (Sato and Kameya 2001) and PHA (Poole 1993b) addi-

tionally require all proofs of a query to be mutually exclusive. Thus, they cannot eas-

ily represent the type of network analysis tasks that motivated ProbLog. ICL (Poole

2000) extends PHA to the case where proofs need not be mutually exclusive. In

contrast to the ProbLog implementation presented here, Poole’s AILog2, an imple-

mentation of ICL, uses a meta-interpreter and is not tightly integrated with Prolog.

We contribute exact and approximate inference algorithms for ProbLog. We

present algorithms for computing the success and explanation probabilities of a

query, and show how they can be efficiently implemented combining Prolog inference

with Binary Decision Diagrams (BDDs) (Bryant 1986). In addition to an iterative

deepening algorithm that computes an approximation along the lines of Poole

(1993a), we further adapt the Monte Carlo approach used by Sevon et al. (2006)

in the context of biological network inference. These two approximation algorithms

compute an upper and a lower bound on the success probability. We also contribute

an additional approximation algorithm that computes a lower bound using only the

k most likely proofs.

The key contribution of this paper is the tight integration of these algorithms in the

state-of-the-art YAP-Prolog system. This integration includes several improvements

over the initial implementation used by De Raedt et al (2007), which are needed

to use ProbLog to effectively query Sevon’s Biomine network (Sevon et al. 2006)

containing about 1,000,000 nodes and 6,000,000 edges, as will be shown in the

experiments.

This paper is organized as follows. After introducing ProbLog and its semantics

in Section 2, we present several algorithms for exact and approximate inference in

On the implementation of ProbLog 3

a

e

d
c

b

0.7
0.80.6

0.8 0.9

0.5

Fig. 1. Example of a probabilistic graph: edge labels indicate the probability that the edge is

part of the graph.

Section 3. Section 4 then discusses how these algorithms are implemented in YAP-

Prolog, and Section 5 reports on experiments that validate the approach. Finally,

Section 6 concludes and touches upon the related work.

2 ProbLog

A ProbLog program consists of a set of labeled facts pi :: ci together with a set of

definite clauses. Each ground instance (i.e., each instance not containing variables)

of such a fact ci is true with probability pi, i.e., these facts correspond to random

variables. We assume that these variables are mutually independent1. The definite

clauses allow one to add arbitrary background knowledge (BK).

Figure 1 shows a small probabilistic graph that we shall use as a running example

in the text. It can be encoded in ProbLog as follows:

0. 8 :: edge(a, c). 0. 7 :: edge(a, b). 0. 8 :: edge(c, e).

0. 6 :: edge(b, c). 0. 9 :: edge(c, d). 0. 5 :: edge(e, d).
(1)

Such a probabilistic graph can be used to sample subgraphs by tossing a coin

for each edge. Given a ProbLog program T = {p1 :: c1, . . . , pn :: cn} ∪ BK and a

finite set of possible substitutions {θj1, . . . θjij } for each probabilistic fact pj :: cj ,

let LT denote the maximal set of logical facts that can be added to BK, i.e.,

LT = {c1θ11, . . . , c1θ1i1 , . . . , cnθn1, . . . , cnθnin}. As the random variables corresponding

to facts in LT are mutually independent, the ProbLog program defines a probability

distribution over ground logic programs L ⊆ LT :

P (L|T) =
∏

ciθj∈L
pi

∏
ciθj∈LT \L

(1 − pi). (2)

Since BK is fixed and there is a one-to-one mapping between ground definite clause

programs and the Herbrand interpretations, a ProbLog program thus also defines

a distribution over its Herbrand interpretations. Sato (1995) has shown how this

semantics can be generalized to the countably infinite case; we refer to it for details.

For ease of readability, in the remainder of this paper we will restrict ourselves to

the finite case and assume all probabilistic facts in a ProbLog program to be ground.

1 If the program contains multiple instances of the same fact, they correspond to different random
variables, i.e. {p :: c} and {p :: c, p :: c} are different ProbLog programs.

4 A. Kimmig et al.

We extend our example with the following background knowledge:

path(X, Y) : − edge(X, Y).

path(X, Y) : − edge(X, Z), path(Z, Y).
(3)

We can then ask for the probability that there exists a path between two nodes,

say c and d, in our probabilistic graph, i.e., we query for the probability that a

randomly sampled subgraph contains the edge from c to d, or the path from c to d

via e (or both of these). Formally, the success probability Ps(q|T) of a query q in a

ProbLog program T is the marginal of P (L|T) with respect to q, i.e.,

Ps(q|T) =
∑
L⊆LT

P (q|L) · P (L|T), (4)

where P (q|L) = 1 if there exists a θ such that L ∪ BK |= qθ, and P (q|L) = 0

otherwise. In other words, the success probability of query q is the probability that

the query q is provable in a randomly sampled logic program.

In our example, 40 of the 64 possible subprograms allow one to prove path(c, d),

namely all those that contain at least the edge from c to d or both the edge from c to e

and from e to d, so the success probability of that query is the sum of the probabilities

of these programs: Ps(path(c, d)|T) = P ({ab, ac, bc, cd, ce, ed}|T) + · · · + P ({cd}|T) =

0. 94, where xy is used as a shortcut for edge(x, y) when listing elements of a

subprogram. We will use this convention throughout the paper. Clearly, listing all

subprograms is infeasible in practice; an alternative approach will be discussed in

Section 3.1.

A ProbLog program also defines the probability of a specific proof E, also

called explanation, of some query q, which is again a marginal of P (L|T). Here,

an explanation is a minimal subset of the probabilistic facts that together with the

background knowledge entails qθ for some substitution θ. Thus, the probability of

such an explanation E is that of sampling a logic program L ∪ E that contains at

least all the probabilistic facts in E, i.e., the marginal with respect to these facts:

P (E|T) =
∑

L⊆(LT \E)

P (L ∪ E|T) =
∏
ci∈E

pi. (5)

The explanation probability Px(q|T) is then defined as the probability of the most

likely explanation or proof of the query q

Px(q|T) = max
E∈E(q)

P (E|T) = max
E∈E(q)

∏
ci∈E

pi, (6)

where E(q) is the set of all explanations for query q, i.e., all minimal sets E ⊆ LT of

probabilistic facts such that E ∪ BK |= q (Kimmig et al. 2007).

In our example, the set of all explanations for path(c, d) contains the edge from

c to d (with probability 0.9) as well as the path consisting of the edges from c to e

and from e to d (with probability 0. 8 · 0. 5 = 0. 4). Thus, Px(path(c, d)|T) = 0. 9.

The ProbLog semantics is essentially a distribution semantics (Sato 1995). Sato has

rigorously shown that this class of programs defines a joint probability distribution

On the implementation of ProbLog 5

over the set of least possible Herbrand models of the program (allowing functors),

i.e., of BK together with a subprogram L ⊆ LT ; for further details we refer to Sato

(1995). The distribution semantics has been used widely in the literature, though

often under other names or in a more restricted setting; see e.g. Dantsin (1991),

Poole (1993b), Fuhr (2000), Poole (2000), and Dalvi and Suciu (2004).

3 Inference in ProbLog

This section discusses algorithms for computing exactly or approximately the success

and explanation probabilities of ProbLog queries. It additionally contributes a new

algorithm for the Monte Carlo approximation of success probabilities.

3.1 Exact inference

Calculating the success probability of a query using equation (4) directly is infeasible

for all but the tiniest programs, as the number of subprograms to be checked is

exponential in the number of probabilistic facts. However, as we have seen in our

example in Section 2, we can describe all subprograms allowing for a specific proof

by means of the facts that such a program has to contain, i.e., all the ground

probabilistic facts used in that proof. As probabilistic facts correspond to random

variables indicating the presence of facts in a sampled program, we alternatively

denote proofs by conjunctions of such random variables. In our example, query

path(c,d) has two proofs in the full program: {edge(c,d)} and {edge(c,e),edge(e,d)},
or, using logical notation, cd and ce ∧ ed. The set of all subprograms containing

some proof thus can be described by a disjunction over all possible proofs; in our

case, cd ∨ (ce ∧ ed). This idea forms the basis for the inference method presented in

De Raedt et al. (2007), which uses the following two steps:

(1) Compute the proofs of the query q in the logical part of the theory T , i.e., in

BK ∪ LT . The result will be a DNF formula.

(2) Compute the probability of this formula.

Similar approaches are used for PRISM (Sato and Kameya 2001), ICL (Poole 2000),

and pD (Fuhr 2000).

The probability of a single given proof (cf. equation (5)), is the marginal

over all programs allowing for that proof, and thus equals the product of the

probabilities of the facts used by that proof. However, we cannot directly sum

the results for the different proofs to obtain the success probability, as a specific

subprogram can allow several proofs and therefore contributes to the probability

of each of these proofs. Indeed, in our example, all programs that are supersets

of {edge(c,e),edge(e,d),edge(c,d)} contribute to the marginals of both proofs and

would therefore be counted twice if summing the probabilities of the proofs.

However, for mutually exclusive conjunctions, i.e., conjunctions describing disjoint

sets of subprograms, the probability is the sum of the individual probabilities. This

situation can be achieved by adding negated random variables to a conjunction,

thereby explicitly excluding subprograms covered by another part of the formula

6 A. Kimmig et al.

?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

cd

:- path(d,d).

ecdc

:- edge(d,d). :- edge(d,B),path(B,d).

:- path(e,d).

:- edge(e,d).

ed

:- edge(e,C),path(C,d).

:- path(d,d).

:- edge(d,d). :- edge(d,D),path(D,d).

ed

Fig. 2. SLD-tree for query path(c, d).

from the corresponding part of the sum. In the example, extending ce ∧ ed to

ce ∧ ed ∧ ¬cd reduces the second part of the sum to those programs not covered by

the first:

Ps(path(c, d)|T) = P (cd ∨ (ce ∧ ed)|T)

= P (cd|T) + P (ce ∧ ed ∧ ¬cd|T)

= 0. 9 + 0. 8 · 0. 5 · (1 − 0. 9) = 0. 94.

However, as the number of proofs grows, disjoining them gets more involved.

Consider, for example, the query path(a,d) that has four different but highly

interconnected proofs. In general, this problem is known as the disjoint-sum-problem

or the two-terminal network reliability problem, which is #P-complete (Valiant

1979).

Before returning to possible approaches to tackle the disjoint-sum-problem at the

end of this section, we will now discuss the two steps of ProbLog’s exact inference

in more detail.

Following Prolog, the first step employs SLD-resolution to obtain all different

proofs. As an example, the SLD-tree for the query ?- path(c, d) is depicted in

Figure 2. Each successful proof in the SLD-tree uses a set of ground probabilistic

facts {p1 :: c1, . . . , pk :: ck} ⊆ T . These facts are necessary for the proof, and the

proof is independent of other probabilistic facts in T .

Let us now introduce a Boolean random variable bi for each ground probabilistic

fact pi :: ci ∈ T , indicating whether ci is in a sampled logic program, i.e., bi has

probability pi of being true2. A particular proof of query q involving ground facts

{p1 :: c1, . . . , pk :: ck} ⊆ T is thus represented by the conjunctive formula b1 ∧· · ·∧bk ,

which at the same time represents the set of all subprograms containing these facts.

Furthermore, using E(q) to denote the set of proofs or explanations of the goal q, the

set of all subprograms containing some proof of q can be denoted by
∨

e∈E(q)

∧
ci∈e bi,

2 For better readability, we do not write substitutions explicitly here.

On the implementation of ProbLog 7

as the following derivation shows:

∨
e∈E(q)

∧
ci∈e

bi =
∨

e∈E(q)

⎛
⎝∧

ci∈e
bi ∧

∧
ci∈LT \e

(bi ∨ ¬bi)

⎞
⎠

=
∨

e∈E(q)

∨
L⊆LT \e

⎛
⎝∧

ci∈e
bi ∧

⎛
⎝∧

ci∈L
bi ∧

∧
ci∈LT \(L ∪ e)

¬bi

⎞
⎠

⎞
⎠

=
∨

e∈E(q),L⊆LT \e

⎛
⎝ ∧

ci∈L ∪ e

bi ∧
∧

ci∈LT \(L ∪ e)

¬bi

⎞
⎠

=
∨

L⊆LT ,∃θL ∪ BK|=qθ

⎛
⎝∧

ci∈L
bi ∧

∧
ci∈LT \L

¬bi

⎞
⎠.

We first add all possible ways of extending a proof e to a full sampled program

by considering each fact not in e in turn. We then note that the disjunction of

these fact-wise extensions can be written on the basis of sets. Finally, we rewrite

the condition of the disjunction in terms of equation (4). This is possible as each

subprogram that is an extension of an explanation of q entails some ground instance

of q, and vice versa, each subprogram entailing q is an extension of some explanation

of q. As the DNF now contains conjunctions representing fully specified programs,

its probability is a sum of products that directly corresponds to equation (4):

P

⎛
⎝ ∨

L⊆LT ,∃θL ∪ BK|=qθ

⎛
⎝∧

ci∈L
bi ∧

∧
ci∈LT \L

¬bi

⎞
⎠

⎞
⎠

=
∑

L⊆LT ,∃θL ∪ BK|=qθ

⎛
⎝∏

ci∈L
pi ·

∏
ci∈LT \L

(1 − pi)

⎞
⎠

=
∑

L⊆LT ,∃θL ∪ BK|=qθ

P (L|T).

We thus obtain the following alternative characterization of the success probability:

Ps(q|T) = P

⎛
⎝ ∨

e∈E(q)

∧
ci∈e

bi

⎞
⎠, (7)

where E(q) denotes the set of proofs or explanations of the goal q, and bi denotes

the Boolean variable corresponding to ground probabilistic fact pi :: ci. Thus, the

problem of computing the success probability of a ProbLog query can be reduced

to that of computing the probability of the DNF formula.

However, as argued above, because of the overlap between different conjunctions,

the proof-based DNF of equation (7) cannot directly be transformed into a sum

of products. Computing the probability of DNF formulae thus involves solving the

disjoint-sum-problem, and therefore is itself a #P-hard problem. Various algorithms

have been developed to tackle this problem. The pD-engine HySpirit (Fuhr 2000)

uses the inclusion–exclusion principle, which is reported to scale to about 10

8 A. Kimmig et al.

proofs. For ICL, which extends PHA by allowing non-disjoint proofs, Poole (2000)

proposes a symbolic disjoining algorithm, but does not report scalability results.

Our implementation of ProbLog employs BDDs (Bryant 1986), an efficient graphical

representation of a Boolean function over a set of variables that scales to tens of

thousands of proofs (see Section 4.4 for more details). PRISM (Sato and Kameya

2001) and PHA (Poole 1993b) differ from the systems mentioned above in that they

avoid the disjoint-sum-problem by requiring the user to write programs such that

proofs are guaranteed to be disjoint.

On the other hand, as the explanation probability Px exclusively depends on the

probabilistic facts used in one proof, it can be calculated using a simple branch-and-

bound approach based on the SLD-tree, where partial proofs are discarded if their

probability drops below that of the best proof found so far.

3.2 Approximative inference

As the size of the DNF formula grows with the number of proofs, its evaluation

can become quite expensive, and ultimately infeasible. For instance, when searching

for paths in graphs or networks, even in small networks with a few dozen edges

there are easily O(106) possible paths between two nodes. ProbLog therefore includes

several approximation methods.

3.2.1 Bounded approximation

The first approximation algorithm, a slight variant of the one proposed by De Raedt

et al. (2007), uses the DNF formulae to obtain both upper and lower bound on

the probability of a query. It is closely related to the work done by Poole (1993a)

in the context of PHA, but adapted toward ProbLog. The method relies on two

observations.

First, we remark that the DNF formula describing sets of proofs is monotone,

meaning that adding more proofs will never decrease the probability of the formula

being true. Thus, formulae describing subsets of the full set of proofs of a query will

always give a lower bound on the query’s success probability. In our example, the

lower bound obtained from the shorter proof would be P (cd|T) = 0. 9, while that

from the longer one would be P (ce ∧ ed|T) = 0. 4.

Our second observation is that the probability of a proof b1 ∧ · · · ∧ bn will always

be at most the probability of an arbitrary prefix b1 ∧ · · · ∧ bi, i � n. In our example,

the probability of the second proof will be at most the probability of its first edge

from c to e, i.e., P (ce|T) = 0. 8 � 0. 4. As disjoining sets of proofs, i.e., including

information on facts that are not elements of the subprograms described by a certain

proof, can only decrease the contribution of single proofs, this upper bound carries

over to a set of proofs or partial proofs as long as prefixes for all possible proofs are

included. Such sets can be obtained from an incomplete SLD-tree, i.e., an SLD-tree

where branches are only extended up to a certain point.

This motivates ProbLog’s bounded approximation algorithm. The algorithm relies

on a probability threshold γ to stop growing the SLD-tree and thus obtain DNF

On the implementation of ProbLog 9

Algorithm 1 Bounded approximation using iterative deepening with probability

thresholds.
function Bounds(interval width δp, initial threshold γ, constant β ∈ (0, 1))

d1 = False; d2 = False; P (d1|T) = 0; P (d2|T) = 1;

while P (d2|T) − P (d1|T) > δp do

p =True;

repeat

Expand current proof p

until either p

(a) fails, in this case backtrack to the remaining choice points;

(b) succeeds, in this case set d1 := d1 ∨ p and d2 := d2 ∨ p;

(c) P (p|T) < γ, in this case set d2 := d2 ∨ p.

if d2 == False then

set d2 = True

Compute P (d1|T) and P (d2|T)

γ := γ · β
return [P (d1|T), P (d2|T)]

formulae for the two bounds3. The lower bound formula d1 represents all proofs with

a probability above the current threshold. The upper bound formula d2 additionally

includes all derivations that have been stopped due to reaching the threshold, as

these still may succeed. Our goal is therefore to grow d1 and d2 in order to decrease

P (d2|T) − P (d1|T).

Given an acceptance threshold δp, an initial probability threshold γ, and a

shrinking factor β ∈ (0, 1), the algorithm proceeds in an iterative deepening manner

as outlined in Algorithm 1. Initially, both d1 and d2 are set to False, the neutral

element with respect to disjunction and the probability bounds are 0 and 1, as we

have no full proofs yet, and the empty partial proof holds in any model.

It should be clear that P (d1|T) increases monotonically, as the number of proofs

never decreases. On the other hand, as explained above, if d2 changes from one

iteration to the next, this is always because the partial proof p is either removed from

d2 and therefore no longer contributes to the probability, or is replaced by proofs

p1, . . . , pn, such that pi = p∧ si; hence, P (p1 ∨ · · · ∨pn|T) = P (p∧ s1 ∨ · · · ∨p∧ sn|T) =

P (p∧ (s1 ∨· · ·∨ sn)|T). As proofs are subsets of the probabilistic facts in the ProbLog

program, each literal’s random variable appears at most once in the conjunction

representing the proof, even if the corresponding subgoal is called multiple times

when constructing the proof. We therefore know that the literals in the prefix

p cannot be in any suffix si, hence, given ProbLog’s independence assumption,

P (p ∧ (s1 ∨ · · · ∨ sn)|T) = P (p|T)P (s1 ∨ · · · ∨ sn|T) � P (p|T). Therefore, P (d2)

decreases monotonically.

3 Using a probability threshold instead of the depth bound of De Raedt et al. (2007) has been found to
speed up convergence, as upper bounds have been found to be tighter on initial levels.

10 A. Kimmig et al.

As an illustration, consider a probability threshold γ = 0. 9 for the SLD-tree in

Figure 2. In this case, d1 encodes the left success path while d2 additionally encodes

the path up to path(e, d), i.e., d1 = cd and d2 = cd ∨ ce, whereas the formula for the

full SLD-tree is d = cd ∨ (ce ∧ ed). The lower bound thus is 0. 9, the upper bound

(obtained by disjoining d2 to cd ∨ (ce ∧ ¬cd)) is 0. 98, whereas the true probability is

0. 94.

Note that in order to implement this algorithm we need to compute the probability

of a set of proofs. This task will be described in detail in Section 4.

3.2.2 K-best

Using a fixed number of proofs to approximate the probability allows better control

of the overall complexity, which is crucial if large numbers of queries have to be

evaluated, e.g., in the context of parameter learning. Gutmann et al. (2008) therefore

introduces the k-probability Pk(q|T), which approximates the success probability by

using the k-best (that is, the k most likely) explanations instead of all proofs when

building the DNF formula used in equation (7):

Pk(q|T) = P

⎛
⎝ ∨

e∈Ek(q)

∧
bi∈var(e)

bi

⎞
⎠, (8)

where Ek(q) = {e ∈ E(q)|Px(e) � Px(ek)} with ek being the kth element of E(q)

sorted by non-increasing probability. Setting k = ∞ leads to the success probability,

whereas k = 1 corresponds to the explanation probability, provided that there is a

single best proof. The branch-and-bound approach used to calculate the explanation

probability can directly be generalized to find the k-best proofs (cf. also Poole

(1993b).

In order to illustrate the k-probability, we again consider our example graph,

but this time with query path(a, d). This query has four proofs, represented by the

conjunctions ac∧ cd, ab∧bc∧ cd, ac∧ ce∧ ed, and ab∧bc∧ ce∧ ed, with probabilities

0. 72, 0. 378, 0. 32, and 0. 168, respectively. As P1 corresponds to the explanation

probability Px, we obtain P1(path(a, d)) = 0. 72. For k = 2, the overlap between the

best two proofs has to be taken into account: the second proof only adds information

if the first one is absent. As they share edge cd, the edge ac has to be missing, leading

to P2(path(a, d)) = P ((ac∧cd)∨(¬ac∧ab∧bc∧cd)) = 0. 72 +(1−0. 8)·0. 378 = 0. 7956.

Similarly, we obtain P3(path(a, d)) = 0. 8276 and Pk(path(a, d)) = 0. 83096 for k � 4.

3.2.3 Monte Carlo

As an alternative approximation technique, we propose a Monte Carlo method,

where we proceed as follows.

Execute until convergence:

(1) Sample a logic program from the ProbLog program.

(2) Check for the existence of some proof of the query of interest.

On the implementation of ProbLog 11

Yap Prolog

ProbLog Program

BackgroundFacts

Queries

ProbLog Library

Array LibraryTrie Library

SimpleCUDD

Trie2BDD Script

Fig. 3. ProbLog implementation: A ProbLog program (top) requires the ProbLog library,

which, in turn, relies on functionality from the tries and array libraries. ProbLog queries

(bottom-left) are sent to the YAP engine, and may require calling the BDD library CUDD

via SimpleCUDD.

(3) Estimate the query probability P as the fraction of samples where the query is

provable.

We estimate convergence by computing the 95% confidence interval at each m

samples. Given a large number N of samples, we can use the standard normal

approximation interval to the binomial distribution:

δ ≈ 2 ×
√

P · (1 − P)

N
.

Note that confidence intervals do not directly correspond to the exact bounds used in

our previous approximation algorithm. Still, we employ the same stopping criterion,

i.e., we run the Monte Carlo simulation until the width of the confidence interval is

at most δp.

A similar algorithm (without the use of confidence intervals) was also used in

the context of biological networks (not represented as Prolog programs) by Sevon

et al. (2006). The use of the Monte Carlo method for probabilistic logic programs

has been already suggested by Dantsin (1991), although he neither provides details

nor reports on an implementation. Our approach differs from the MCMC method

for SLPs introduced by Cussens (2000) in that we do not use a Markov chain, but

restart from scratch for each sample. Furthermore, SLPs are different as they directly

define a distribution over all proofs of a query. Investigating similar probabilistic

backtracking approaches for ProbLog is a promising future research direction.

4 Implementation

This section discusses the main building blocks used to implement ProbLog on top

of the YAP-Prolog system. An overview is shown in Figure 3, with a typical ProbLog

program, including ProbLog facts and BK, at the top.

12 A. Kimmig et al.

The implementation requires ProbLog programs to use the problog module. Each

program consists of a set of labeled facts and of unlabeled background knowledge,

a generic Prolog program. The labeled facts are preprocessed as described below.

Notice that the implementation requires all queries to non-ground probabilistic facts

to be ground on calling.

In contrast to the standard Prolog queries, where one is interested in answer

substitutions, in ProbLog one is primarily interested in a probability. As has been

already discussed, two common ProbLog queries ask for the most likely explanation

and its probability, and the probability of whether a query would have an answer

substitution. We have discussed two very different approaches to the problem:

• In exact inference, k-best and bounded approximation, the engine explicitly

reasons about probabilities of proofs. The challenge is how to compute the

probability of each individual proof, store a large number of proofs, and

compute the probability of sets of proofs.

• In the Monte Carlo method, the probabilities of facts are used to sample from

ProbLog programs. The challenge is how to compute a sample quickly, in a

way that inference can be as efficient as possible.

The ProbLog programs are executed from a top-level query and are driven through

a ProbLog query. The inference algorithms discussed above can be abstracted as

follows:

• Initialize the inference algorithm.

• While probabilistic inference did not converge:

— initialize a new query;

— execute the query, instrumenting every ProbLog call in the current proof.

Instrumentation is required for recording the ProbLog facts required by a

proof, but may also be used by the inference algorithm to stop proofs (e.g.,

if the current probability is lower than a bound);

— process success or exit substitution.

• Proceed to the next step of the algorithm: this may be trivial or may require

calling an external solver, such as the BDD tool, to compute a probability.

Note that the current ProbLog implementation relies on the Prolog engine to

efficiently execute goals. On the other hand, and in contrast to most other probabilis-

tic language implementations, in ProbLog there is no clear separation between logical

and probabilistic inference: in a fashion similar to constraint logic programming,

probabilistic inference can drive logical inference.

From a Prolog implementation perspective, ProbLog poses a number of interesting

challenges. First, labeled facts have to be efficiently compiled to allow mutual calls

between the Prolog program and the ProbLog engine. Second, for exact inference,

k-best and bounded approximation, sets of proofs have to be manipulated and

transformed into BDDs. Finally, the Monte Carlo simulation requires representing

and manipulating samples. We discuss these issues next.

On the implementation of ProbLog 13

4.1 Source-to-source transformation

We use the term expansion mechanism to allow Prolog calls to labeled facts, and

for labeled facts to call the ProbLog engine. As an example, the program:

0. 715 :: edge(′PubMed 2196878′,′ MIM 609065′).

0. 659 :: edge(′PubMed 8764571′,′ HGNC 5014′).
(9)

would be compiled as:

edge(A, B) : − problog edge(ID, A, B, LogProb),

grounding id(edge(A, B), ID, GroundID),

add to proof(GroundID, LogProb).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0. 3348).

problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0. 4166).

(10)

Thus, the internal representation of each fact contains an identifier, the original

arguments, and the logarithm of the probability4. The grounding id procedure

will create and store a grounding specific identifier for each new grounding of

a non-ground probabilistic fact encountered during proving, and retrieve it on

repeated use. For ground probabilistic facts, it simply returns the identifier itself.

The add to proof procedure updates the data structure representing the current

path through the search space, i.e., a queue of identifiers ordered by the first

use, together with its probability. Compared to the original meta-interpreter-based

implementation of De Raedt et al. (2007), the main benefit of source-to-source

transformation is better scalability, namely by having a compact representation of

the facts for the YAP engine (Santos Costa 2007) and by allowing access to the YAP

indexing mechanism (Santos Costa et al. 2007).

4.2 Proof manipulation

Manipulating proofs is critical in ProbLog. We represent each proof as a queue

containing the identifier of each different ground probabilistic fact used in the

proof, ordered by the first use. The implementation requires calls to non-ground

probabilistic facts to be ground, and during proving maintains a table of groundings

used within the current query together with their identifiers. The grounding identifiers

are based on the fact’s identifier extended with a grounding number, i.e., 5 1 and

5 2 would refer to different groundings of the non-ground fact with identifier 5. In

our implementation, the queue is stored in a backtrackable global variable, which

is updated by calling add to proof with an identifier for the current ProbLog fact.

We thus exploit Prolog’s backtracking mechanism to avoid recomputation of shared

proof prefixes when exploring the space of proofs. Storing a proof is simply a

question of adding the value of the variable to a store.

4 We use the logarithm to avoid numerical problems when calculating the probability of a derivation,
which is used to drive inference.

14 A. Kimmig et al.

As we have discussed above, the actual number of proofs can grow very quickly.

ProbLog compactly represents a proof as a list of numbers. We would further like to

have a scalable implementation of sets of proofs, such that we can compute the joint

probability of large sets of proofs efficiently. Our representation for sets of proofs

and our algorithm for computing the probability of such a set are discussed next.

4.3 Sets of proofs

Storing and manipulating proofs is critical in ProbLog. When manipulating proofs,

the key operation is often insertion: we would like to add a proof to an existing set of

proofs. Some algorithms, such as exact inference or Monte Carlo, only manipulate

complete proofs. Others, such as bounded approximation, require adding partial

derivations too. The nature of the SLD-tree means that proofs tend to share both

a prefix and a suffix. Partial proofs tend to share prefixes only. This suggests using

tries to maintain the set of proofs. We use the YAP implementation of tries for this

task, based itself on the XSB Prolog’s work on tries of terms (Ramakrishnan et al.

1999), which we briefly summarize here.

Tries (Fredkin 1962) were originally invented to index dictionaries, and have

since been generalized to index recursive data structures, such as terms. Please refer

to Bachmair et al. (1993), Graf (1996), and Ramakrishnan et al. (1999) for the use of

tries in automated theorem proving, term rewriting, and tabled logic programs. An

essential property of the trie data structure is that common prefixes are stored only

once. A trie is a tree structure where each different path through the trie data units,

the trie nodes, corresponds to a term described by the tokens labeling the nodes

traversed. For example, the tokenized form of the term f(g(a), 1) is the sequence of

four tokens: f/2, g/1, a, and 1. Two terms with common prefixes will branch off

from each other at the first distinguishing token.

A trie’s internal nodes are four field data structures, storing the node’s token,

a pointer to the node’s first child, a pointer to the node’s parent, and a pointer

to the node’s next sibling, respectively. Each internal node’s outgoing transitions

may be determined by following the child pointer to the first child node and from

there continuing sequentially through the list of sibling pointers. When a list of

sibling nodes becomes larger than the threshold value (8 in our implementation), we

dynamically index the nodes through a hash table to provide direct node access and

therefore optimize the search. Further, hash collisions are reduced by dynamically

expanding the hash tables. Inserting a term requires in the worst case allocating as

many nodes as necessary to represent its complete path. On the other hand, inserting

repeated terms requires traversing the trie structure until reaching the corresponding

leaf node, without allocating any new node.

In order to minimize the number of nodes when storing proofs in a trie, we use

Prolog lists to represent proofs. For example, a ProbLog proof [3, 5 1, 7, 5 2] uses

ground fact 3, a first grounding of fact 5, ground fact 7, and another grounding of

fact 5, i.e., list elements in proofs are always either integers or two integers with an

underscore in-between.

Figure 4 presents an example of a trie storing three proofs. Initially, the trie

contains the root node only. Next, we store the proof [3, 5 1, 7, 5 2] and six nodes

On the implementation of ProbLog 15

LIST

root node

7

5_2

END_LIST

3

5_1

9

7

5_2

END_LIST

4

7

END_LIST

LIST

root node

7

5_2

END_LIST

3

5_1

9

7

5_2

END_LIST

LIST

root node

7

5_2

END_LIST

3

5_1

(a) (b) (c)

Fig. 4. Using tries to store proofs. Initially, the trie contains the root node only. Next, we

store the proofs: (a) [3, 5 1, 7, 5 2]; (b) [3, 5 1, 9, 7, 5 2]; and (c) [3, 4, 7].

cd

ce
0.1

10.9

ed
0.8

00.2
0.5

0.5

Fig. 5. Binary Decision Diagram encoding the DNF formula cd ∨ (ce ∧ ed), corresponding to

two proofs of query path(c,d) in the example graph. An internal node labeled as xy represents

the Boolean variable for the edge between x and y, solid/dashed edges correspond to values

true/false and are labeled with the probability that the variable takes this value.

(corresponding to six tokens) are added to represent it (Fig. 4(a)). The proof

[3, 5 1, 9, 7, 5 2] is then stored, which requires seven nodes. As it shares a common

prefix with the previous proof, we save the three initial nodes common to both

representations (Fig. 4(b)). The proof [3, 4, 7] is stored next and we again save the

two initial nodes common to all proofs (Fig. 4(c)).

4.4 Binary decision diagrams

In order to efficiently compute the probability of a DNF formula representing a

set of proofs, our implementation represents this formula as a reduced ordered

BDD (Bryant 1986), which can be viewed as a compact encoding of the Boolean

decision tree. Given a fixed variable ordering, the Boolean function f can be

represented as the full Boolean decision tree, where each node on the ith level is

labeled with the ith variable and has two children called low and high. Leaves are

labeled by the outcome of f for the variable assignment corresponding to the path

to the leaf, where in each node labeled x, the branch to the low (high) child is

taken if variable x is assigned 0 (1). Starting from such a tree, one obtains a BDD

by merging isomorphic subgraphs and deleting redundant nodes until no further

reduction is possible. A node is redundant if the subgraphs rooted at its children

are isomorphic. Figure 5 shows the BDD for the existence of a path between c and

d in our earlier example.

16 A. Kimmig et al.

Algorithm 2 Translating a trie T representing a DNF to a BDD generation script.

Replace(T ,C, ni) replaces each occurrence of C in T by ni.

function Translate(trie T)

i := 1

while ¬leaf(T) do

S∧ := {(C, P)|C leaf in T and single child of its parent P }
for all (C, P) ∈ S∧ do

write ni = P ∧ C

T := Replace(T , (C, P), ni)

i := i + 1

S∨ := {[C1, . . . , Cn]| leaves Cj are all the children of some parent P in T }
for all [C1, . . . , Cn] ∈ S∨ do

write ni = C1 ∨ . . . ∨ Cn

T := Replace(T , [C1, . . . , Cn], ni)

i := i + 1

write top = ni−1

We use SimpleCUDD5 as a wrapper tool for the BDD package CUDD6 to

construct and evaluate BDDs. More precisely, the trie representation of the DNF

is translated to a BDD generation script, which is processed by SimpleCUDD to

build the BDD using CUDD primitives. It is executed via Prolog’s shell utility, and

results are reported via shared files.

During the generation of the code, it is crucial to exploit the structure sharing (pre-

fixes and suffixes) already in the trie representation of the DNF formula, otherwise

the CUDD computation time becomes extremely long or memory overflows quickly.

Since CUDD builds BDDs by joining smaller BDDs using logical operations, the trie

is traversed bottom-up to successively generate code for all its subtrees. Algorithm 2

gives the details of this procedure. Two types of operations are used to combine

nodes. The first creates conjunctions of leaf nodes and their parent if the leaf is a

single child, the second creates disjunctions of all child nodes of a node if these child

nodes are all leaves. In both cases, a subtree that occurs multiple times in the trie

is translated only once, and the resulting BDD is used for all occurrences of that

subtree. Owing to the optimizations in CUDD, the resulting BDD can have a very

different structure than the trie. The translation for query path(a,d) in our example

graph is illustrated in Figure 6 and results in the following script:

n1 = ce ∧ ed,

n2 = cd ∨ n1,

n3 = ac ∧ n2,

n4 = bc ∧ n2,

n5 = ab ∧ n4,

5 http://www.cs.kuleuven.be/~theo/tools/simplecudd.html
6 http://vlsi.colorado.edu/~fabio/CUDD

On the implementation of ProbLog 17

cd ce

ed

ac ab

bc

cd ce

ed

(a)

cd

ac ab

n1 bc

cd n1

(b)

n2

n2

ac ab

bc

(c)

n3 ab

n4

(d)

n3 n5

(e)

Fig. 6. Translating the DNF for path(a,d).

Algorithm 3 Calculating the probability of a BDD.

function Probability(BDD node n)

If n is the 1-terminal then return 1

If n is the 0-terminal then return 0

let h and l be the high and low children of n

prob(h) := call Probability(h)

prob(l) := call Probability(l)

return pn · prob(h) + (1 − pn) · prob(l)

n6 = n3 ∨ n5,

top= n6.

After CUDD has generated the BDD, the probability of a formula is calculated by

traversing the BDD, in each node summing the probability of the high and low child,

weighted by the probability of the node’s variable being assigned true and false,

respectively (cf. Algorithm 3). Intermediate results are cached, and the algorithm has

a time and space complexity linear in the size of the BDD. For illustration, consider

again Figure 5. The algorithm starts by assigning probabilities 0 and 1 to the 0- and

1-leaf, respectively. The node labeled ed has probability 0. 5 ·1+0. 5 ·0 = 0. 5, node ce

has probability 0. 8 · 0. 5+0. 2 · 0 = 0. 4; finally, node cd, and thus the entire formula,

has probability 0. 9 · 1 + 0. 1 · 0. 4 = 0. 94.

4.5 Monte Carlo

The Monte Carlo implementation is shown in Algorithm 4. It receives a query q,

an acceptance threshold δp, and a constant m determining the number of samples

generated per iteration. At the end of each iteration, it estimates the probability p as

the fraction of programs sampled over all previous iterations that entailed the query,

and the confidence interval width to be used in the stopping criterion, as explained

in Section 3.2.3. The Monte Carlo execution is quite different from the approaches

discussed above, as the two main steps are (a) generating a sample program, and

(b) performing standard refutation on the sample. Thus, instead of combining large

18 A. Kimmig et al.

Algorithm 4 Monte Carlo Inference.

function MonteCarlo(query q, interval width δp, constant m)

c = 0; i = 0; p = 0; δ = 1;

while δ > δp do

Generate a sample P ′;

if P ′ |= q then

c := c + 1;

i := i + 1;

if i mod m == 0 then

p := c/i

δ := 2 ×
√

p·(1−p)
i

return p

numbers of proofs, we need to manipulate large numbers of different programs or

samples.

Our first approach was to generate a complete sample and to check for a proof.

In order to accelerate the process, proofs were cached in a trie to skip inference on

a new sample. If no proofs exist on a cache, we call the standard Prolog refutation

procedure. Although this approach works rather well for small databases, it does

not scale to larger databases where just generating a new sample requires walking

through millions of facts.

We observed that even in large programs proofs are often quite short, i.e., we

only need to verify whether facts from a small fragment of the database are present

in the sample. This suggests that it may be a good idea to take advantage of the

independence between facts and generate the sample lazily: we verify whether a

fact is in the sample only when we need it for a proof. YAP represents samples

compactly as a three-valued array with one field for each fact, where 0 means the

fact was not yet sampled, 1 it was already sampled and belongs to the sample, 2 it

was already sampled and does not belong to the sample. In this implementation

(1) new samples are generated by resetting the sampling array;

(2) at every call to add to proof, given the current ProbLog literal f:

(a) if s[f] == 0, s[f] = sample(f);

(b) if s[f] == 1, succeed;

(c) if s[f] == 2, fail.

Note that as fact identifiers are used to access the array, the approach cannot

directly be used for the non-ground facts. The current implementation of Monte

Carlo therefore uses the internal database to store the result of sampling different

groundings of such facts.

5 Experiments

We performed experiments with our implementation of ProbLog in the context

of the biological network obtained from the Biomine project (Sevon et al. 2006).

On the implementation of ProbLog 19

We used two subgraphs extracted around three genes known to be connected

to the Alzheimer’s disease (HGNC numbers 983, 620, and 582) as well as the

full network. The smaller graphs were obtained querying Biomine for best paths

of length 2 (resulting in graph Small) or all paths of length 3 (resulting in

graph Medium) starting at one of the three genes. Small contains 79 nodes

and 144 edges, and Medium contains 5,220 nodes and 11,532 edges. We used

Small for the first comparison of our algorithms on a small-scale network where

success probabilities can be calculated exactly. Scalability was evaluated using

both Medium and the entire Biomine network with roughly 1,000,000 nodes and

6,000,000 edges. In all experiments, we queried for the probability that two of

the gene nodes mentioned above are connected, i.e., we used queries such as

path(’HGNC 983’,’HGNC 620’,Path). We used the following definition of an acyclic

path in our background knowledge:

path(X, Y, A) : − path(X, Y, [X], A),

path(X, X, A, A).

path(X, Y, A, R) : − X \ == Y,

edge(X, Z),

absent(Z, A),

path(Z, Y, [Z|A], R).

(11)

As list operations to check for the absence of a node get expensive for long paths,

we consider an alternative definition for use in Monte Carlo. It provides cheaper

testing by using the internal database of YAP to store nodes on the current path

under key visited:

memopath(X, Y, A) : − eraseall(visited),

memopath(X, Y, [X], A).

memopath(X, X, A, A).

memopath(X, Y, A, R) : − X \ == Y,

edge(X, Z),

recordzifnot(visited, Z,),

memopath(Z, Y, [Z|A], R).

(12)

Finally, to assess performance on the full network for queries with smaller proba-

bilities, we use the following definition of paths with limited length:

lenpath(N, X, Y, Path) : − lenpath(N, X, Y, [X], Path).

lenpath(N, X, X, A, A) : − N � 0.

lenpath(N, X, Y, A, P) : − X\ == Y,

N > 0,

edge(X, Z),

absent(Z, A),

NN is N − 1,

lenpath(NN, Z, Y, [Z|A], P).

(13)

All experiments were performed on a Core 2 Duo 2.4 GHz 4 GB machine running

Linux. All times reported are in msec and do not include the time to load the graph

20 A. Kimmig et al.

Table 1. k-probability on Small

983 − 620 983 − 582 620 − 582

path

k TP TB P TP TB P TP TB P

1 0 13 0.07 0 7 0.05 0 26 0.66

2 0 12 0.08 0 6 0.05 0 6 0.66

4 0 12 0.10 10 6 0.06 0 6 0.86

8 10 12 0.11 0 6 0.06 0 6 0.92

16 0 12 0.11 10 6 0.06 0 6 0.92

32 20 34 0.11 10 17 0.07 0 7 0.96

64 20 74 0.11 10 46 0.09 10 38 0.99

128 50 121 0.11 40 161 0.10 20 257 1.00

256 140 104 0.11 80 215 0.10 90 246 1.00

512 450 118 0.11 370 455 0.11 230 345 1.00

1,024 1,310 537 0.11 950 494 0.11 920 237 1.00

exact 670 450 0.11 8,060 659 0.11 630 721 1.00

into Prolog. The latter takes 20, 200, and 78,140 msec for Small, Medium, and

Biomine, respectively. Furthermore, as YAP indexes the database at query time,

we query for the explanation probability of path(‘HGNC 620’,‘HGNC 582’,Path)

before starting runtime measurements. This takes 0, 50, and 25,900 msec for Small,

Medium, and Biomine, respectively. We report TP , the time spent by ProbLog to

search for proofs, as well as TB , the time spent to execute BDD programs (whenever

meaningful). We also report the estimated probability P . For approximate inference

using bounds, we report exact intervals for P , and also include the number n of

BDDs constructed. We set both initial threshold and shrinking factor to 0. 5. We

computed k-probability for k = 1, 2, . . . , 1024. In the bounding algorithms, the error

interval ranged between 10% and 1%. Monte Carlo recalculates confidence intervals

after m = 1, 000 samples. We also report the number S of samples used.

Small-sized sample. We first compared our algorithms on Small. Table 1 shows the

results for k-probability and exact inference. Note that nodes 620 and 582 are close

to each other, whereas node 983 is farther apart. Therefore, connections involving the

latter are less likely. In this graph, we obtained good approximations using a small

fraction of proofs (the queries have 13,136, 155,695, and 16,048 proofs respectively).

Our results also show a significant increase in running times as ProbLog explores

more paths in the graph, both within the Prolog and BDD codes. The BDD running

times can vary widely, we may actually have large running times for smaller BDDs,

depending on the BDD structure. However, using SimpleCUDD instead of the C++

interface used in Kimmig et al. (2008) typically decreases the BDD time by at least

one or two orders of magnitude.

Table 2 gives corresponding results for bounded approximation. The algorithm

converges quickly, as few proofs are needed and BDDs remain small. Note however

On the implementation of ProbLog 21

Table 2. Inference using bounds on Small

983 − 620 983 − 582 620 − 582

path

δ TP TB n P TP TB n P TP TB n P

0.10 0 48 4 [0.07,0.12] 10 74 6 [0.06,0.11] 0 25 2 [0.91,1.00]

0.05 0 71 6 [0.07,0.11] 0 75 6 [0.06,0.11] 0 486 4 [0.98,1.00]

0.01 0 83 7 [0.11,0.11] 140 3,364 10 [0.10,0.11] 60 1,886 6 [1.00,1.00]

Table 3. The Monte Carlo inference on Small

983 − 620 983 − 582 620 − 582

path

δ S TP P S TP P S TP P

0.10 1,000 10 0.11 1,000 10 0.11 1,000 30 1.00

0.05 1,000 10 0.11 1,000 10 0.10 1,000 20 1.00

0.01 16,000 130 0.11 16,000 170 0.11 1,000 30 1.00

that exact inference is competitive for this problem size. Moreover, we observe large

speedups compared to the implementation with meta-interpreters used by De Raedt

et al. (2007), where total runtimes to reach δ = 0. 01 for these queries were 46,234,

206,400, and 307,966 msec, respectively. Table 3 shows the performance of the Monte

Carlo estimator. On Small, Monte Carlo is the fastest approach. Already within the

first 1,000 samples a good approximation is obtained.

The experiments on Small thus confirm that the implementation on top of

YAP-Prolog enables efficient probabilistic inference on small-sized graphs.

Medium-sized sample. For graph Medium with around 11,000 edges, exact inference

is no longer feasible. Table 4 again shows results for the k-probability. Comparing

these results with the corresponding values from Table 1, we observe that the

estimated probability is higher now: This is natural, as the graph has both more nodes

and is more connected, therefore leading to many more possible explanations. This

also explains the increase in running times. Approximate inference using bounds only

reached loose bounds (with differences >0. 2) on queries involving node ‘HGNC 983’,

as upper bound formulae with more than 10 million conjunctions were encountered,

which could not be processed.

The Monte Carlo estimator using the standard definition of path/3 on Medium

did not complete the first 1, 000 samples within one hour. A detailed analysis shows

that this is caused by some queries backtracking too heavily. Table 5, therefore,

reports results using the memorising version memopath/3. With this improved

definition, Monte Carlo performs well: it obtains a good approximation in a few

seconds. Requiring tighter bounds, however, can increase runtimes significantly.

22 A. Kimmig et al.

Table 4. k-probability on Medium

983 − 620 983 − 582 620 − 582

path

k TP TB P TP TB P TP TB P

1 180 6 0.33 1,620 6 0.30 10 6 0.92

2 180 6 0.33 1,620 6 0.30 20 6 0.92

4 180 6 0.33 1,630 6 0.30 10 6 0.92

8 220 6 0.33 1,630 6 0.30 20 6 0.92

16 260 6 0.33 1,660 6 0.30 30 6 0.99

32 710 6 0.40 1,710 7 0.30 110 6 1.00

64 1,540 7 0.42 1,910 6 0.30 200 6 1.00

128 1,680 6 0.42 2,230 6 0.30 240 9 1.00

256 2,190 7 0.55 2,720 6 0.49 290 196 1.00

512 2,650 7 0.64 3,730 7 0.53 1,310 327 1.00

1024 8,100 41 0.70 5,080 8 0.56 3,070 1,357 1.00

Table 5. Monte Carlo inference using memopath/3 on Medium

983 − 620 983 − 582 620 − 582

memo

δ S TP P S TP P S TP P

0.10 1,000 1,180 0.78 1,000 2,130 0.76 1,000 1,640 1.00

0.05 2,000 2,320 0.77 2,000 4,230 0.74 1,000 1,640 1.00

0.01 29,000 33,220 0.77 29,000 61,140 0.77 1,000 1,670 1.00

Biomine Database. The Biomine Database covers hundreds of thousands of entities

and millions of links. On Biomine, we therefore restricted our experiments to the

approximations given by the k-probability and Monte Carlo. Given the results on

Medium, we directly used memopath/3 for Monte Carlo. Tables 6 and 7 show the

results on the large network. We observe that on this large graph, the number of

possible paths is tremendous, which implies success probabilities practically equal

to 1. Still, we observe that ProbLog’s branch-and-bound search to find the best

solutions performs reasonably on this size of network also. However, runtimes for

obtaining tight confidence intervals with Monte Carlo explode quickly even with

the improved path definition. Given that sampling a program that does not entail

the query is extremely unlikely for the setting considered so far, we performed

an additional experiment on Biomine, where we restrict the number of edges on

the path connecting two nodes to a maximum of 2 or 3. Results are reported in

Table 8. As none of the resulting queries have more than 50 proofs, exact inference is

much faster than Monte Carlo, which needs a higher number of samples to reliably

estimate probabilities that are not close to 1.

Altogether, the experiments confirm that our implementation provides efficient in-

ference algorithms for ProbLog that scale to large databases. Furthermore, compared

On the implementation of ProbLog 23

Table 6. k-probability on Biomine

983 − 620 983 − 582 620 − 582

path

k TP TB P TP TB P TP TB P

1 5,760 49 0.16 8,910 48 0.11 10 48 0.59

2 5,800 48 0.16 10,340 48 0.17 180 48 0.63

4 6,200 48 0.16 13,640 48 0.28 360 48 0.65

8 7,480 48 0.16 15,550 49 0.38 500 48 0.66

16 11,470 49 0.50 58,050 49 0.53 630 48 0.92

32 15,100 49 0.57 106,300 49 0.56 2,220 167 0.95

64 53,760 84 0.80 146,380 101 0.65 3,690 167 0.95

128 71,560 126 0.88 230,290 354 0.76 7,360 369 0.98

256 138,300 277 0.95 336,410 520 0.85 13,520 1,106 1.00

512 242,210 730 0.98 501,870 2,744 0.88 23,910 3,444 1.00

1024 364,490 10,597 0.99 1,809,680 100,468 0.93 146,890 10,675 1.00

Table 7. The Monte Carlo Inference using memopath/3 on Biomine

983 − 620 983 − 582 620 − 582

memo

δ S TP P S TP P S TP P

0.10 1,000 100,700 1.00 1,000 1,656,660 1.00 1,000 1,696,420 1.00

0.05 1,000 100,230 1.00 1,000 1,671,880 1.00 1,000 1,690,830 1.00

0.01 1,000 93,120 1.00 1,000 1,710,200 1.00 1,000 1,637,320 1.00

Table 8. The Monte Carlo inference for different values of δ and exact inference using

lenpath/4 with length at most 2 (top) or 3 (bottom) on Biomine. For exact inference, runtimes

include both Prolog and BDD time

983 − 620 983 − 582 620 − 582

len

δ S T P S T P S T P

0.10 1,000 21,400 0.04 1,000 18,720 0.11 1,000 19,150 0.58

0.05 1,000 19,770 0.05 1,000 20,980 0.10 2,000 35,100 0.55

0.01 6,000 112,740 0.04 16,000 307,520 0.11 40,000 764,700 0.55

exact – 477 0.04 – 456 0.11 – 581 0.55

0.10 1,000 106,730 0.14 1,000 105,350 0.33 1,000 45,400 0.96

0.05 1,000 107,920 0.14 2,000 198,930 0.34 1,000 49,950 0.96

0.01 19,000 2,065,030 0.14 37,000 3,828,520 0.35 6,000 282,400 0.96

exact – 9,413 0.14 – 9,485 0.35 – 15,806 0.96

24 A. Kimmig et al.

to the original implementation of De Raedt et al. (2007), we obtain large speedups

in both Prolog and BDD part, thereby opening new perspectives for applications of

ProbLog.

6 Conclusions

ProbLog is a simple but elegant probabilistic logic programming language that

allows one to explicitly represent uncertainty by means of probabilistic facts denoting

independent random variables. The language is a simple and natural extension of the

logic programming language Prolog. We presented an efficient implementation of the

ProbLog language on top of the YAP-Prolog system that is designed to scale to large-

sized problems. We showed that ProbLog can be used to obtain both explanation

and (approximations of) success probabilities for queries on a large database. To

the best of our knowledge, ProbLog is the first example of a probabilistic logic

programming system that can execute queries on such large databases. Owing to the

use of BDDs for addressing the disjoint-sum-problem, the initial implementation

of ProbLog used by De Raedt et al. (2007) already scaled up much better than

alternative implementations such as Fuhr’s pD engine HySpirit (Fuhr 2000). The

tight integration in YAP-Prolog presented here leads to further speedups in runtime

of several orders of magnitude.

Although we focused on connectivity queries and Biomine in this work, similar

problems are found across many domains; we believe that the techniques presented

apply to a wide variety of queries and databases because ProbLog provides a clean

separation between background knowledge and what is specific to the engine. As

shown for the Monte Carlo inference, such an interface can be very useful to

improve performance as it allows incremental refinement of background knowledge,

e.g., graph procedures. Initial experiments with Dijkstra’s algorithm for finding the

explanation probability are very promising.

ProbLog is closely related to some alternative formalisms such as PHA and

ICL (Poole 1993b, 2000), pD (Fuhr 2000), and PRISM (Sato and Kameya 2001), as

their semantics are all based on Sato’s distribution semantics even though there

exist also some subtle differences. However, ProbLog is – to the best of the

authors’ knowledge – the first implementation that tightly integrates Sato’s original

distribution semantics (Sato 1995) in a state-of-the-art Prolog system without making

additional restrictions (such as the exclusive explanation assumption made in PHA

and PRISM). As ProbLog, both PRISM and the ICL implementation AILog2 use a

two-step approach to inference, where proofs are collected in the first phase,

and probabilities are calculated once all proofs are known. AILog2 is a meta-

interpreter implemented in SWI-Prolog for didactical purposes, where the disjoint-

sum-problem is tackled using a symbolic disjoining technique (Poole 2000). PRISM,

built on top of B-Prolog, requires programs to be written such that alternative

explanations for queries are mutually exclusive. PRISM uses a meta-interpreter to

collect proofs in a hierarchical data structure called explanation graph. As proofs

are mutually exclusive, the explanation graph directly mirrors the sum-of-products

structure of probability calculation (Sato and Kameya 2001). ProbLog is the first

On the implementation of ProbLog 25

probabilistic logic programming system using BDDs as a basic data structure for

probability calculation, a principle that receives increased interest in the probabilistic

logic learning community (cf., for instance, Riguzzi (2007) and Ishihata et al.

(2008)).

Furthermore, as compared to SLPs (Muggleton 1995), CLP(BN) (Santos Costa

et al. 2003), and BLPs (Kersting and De Raedt 2008), ProbLog is a much simpler

and in a sense more primitive probabilistic programming language. Therefore, the

relationship between probabilistic logic programming and ProbLog is, in a sense,

analogous to that between logic programming and Prolog. From this perspective, it

is our hope and goal to further develop ProbLog so that it can be used as a general

purpose programming language with an efficient implementation for use in statistical

relational learning (Getoor and Taskar 2007) and probabilistic programming (De

Raedt et al. 2008b). One important use of such a probabilistic programming language

is as a target language in which other formalisms can be efficiently compiled. For

instance, it has already been shown that CP-logic (Vennekens et al. 2004), a recent

elegant probabilistic knowledge representation language based on a probabilistic

extension of clausal logic, can be compiled into ProbLog (Riguzzi 2007) and it is

well known that SLPs (Muggleton 1995) can be compiled into Sato’s PRISM, which

is closely related to ProbLog. Further evidence is provided by De Raedt et al. (2008a).

Another related use of ProbLog is as a vehicle for developing learning and

mining algorithms and tools (Kimmig et al. 2007; De Raedt et al. 2008c; Gutmann

et al. 2008; De Raedt et al. 2009; Kimmig and De Raedt 2009). In the context of

probabilistic representations (Getoor and Taskar 2007; De Raedt et al. 2008b) one

typically distinguishes two types of learning: parameter estimation and structure

learning. In parameter estimation in the context of ProbLog and PRISM, one starts

from a set of queries and the logical part of the program and the problem is to find

good estimates of the parameter values, i.e., the probabilities of the probabilistic facts

in the program. Gutmann et al. (2008) introduces a gradient descent approach to

parameter learning for ProbLog that extends the BDD-based methods discussed here.

In structure learning, one also starts from queries but has to find the logical part of

the program as well. Structure learning is therefore closely related to inductive logic

programming. The limiting factor in statistical relational learning and probabilistic

logic learning is often the efficiency of inference, as learning requires repeated

computation of the probabilities of many queries. Therefore, improvements on

inference in probabilistic programming implementations have an immediate effect

on learning. The above compilation approach also raises the interesting and largely

open question whether not only inference problems for alternative formalisms can be

compiled into ProbLog but whether it is also possible to compile learning problems

for these logics into learning problems for ProbLog.

Finally, as ProbLog, unlike PRISM and PHA, deals with the disjoint-sum-problem,

it is interesting to study how program transformation and analysis techniques

could be used to optimize ProbLog programs by detecting and taking into account

situations where some conjunctions are disjoint. At the same time, we currently

investigate how tabling, one of the keys to PRISM’s efficiency, can be incorporated

in ProbLog (Kimmig et al. 2009; Mantadelis and Janssens 2009).

26 A. Kimmig et al.

Acknowledgements

We would like to thank Hannu Toivonen, Bernd Gutmann, and Kristian Kersting

for their many contributions to ProbLog, the Biomine team for the application, and

Theofrastos Mantadelis for the development of SimpleCUDD. This work is partially

supported by the GOA project 2008/08 Probabilistic Logic Learning. Angelika

Kimmig is supported by the Research Foundation-Flanders (FWO-Vlaanderen).

Vı́tor Santos Costa and Ricardo Rocha are partially supported by the research

projects STAMPA (PTDC/EIA/67738/2006) and JEDI (PTDC/ EIA/66924/2006),

and Fundação para a Ciência e Tecnologia.

References

Bachmair, L., Chen, T. and Ramakrishnan, I. V. 1993. Associative commutative

discrimination nets. In International Joint Conference on Theory and Practice of Software

Development, M.-C. Gaudel and J.-P. Jouannaud, Eds. LNCS, Vol. 668. Springer, New

Mexico, 61–74.

Bryant, R. E. 1986. Graph-based algorithms for boolean function manipulation. IEEE

Transactions Computers 35 (8), 677–691.

Cussens, J. 2000. Stochastic logic programs: Sampling, inference and applications. In

Uncertainty in Artificial Intelligence, C. Boutilier and M. Goldszmidt, Eds. Morgan

Kaufmann, Massachusetts, 115–122.

Dalvi, N. N. and Suciu, D. 2004. Efficient query evaluation on probabilistic databases.

In International Conference on Very Large Databases, M. A. Nascimento, M. T. Özsu,

D. Kossmann, R. J. Miller, J. A. Blakeley and K. B. Schiefer, Eds. Morgan Kaufmann,

Massachusetts, 864–875.

Dantsin, E. 1991. Probabilistic logic programs and their semantics. In Russian Conference on

Logic Programming, A. Voronkov, Ed., LNCS, Vol. 592. Springer, 152–164.

De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,

Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I. and

Vennekens, J. 2008a. Towards digesting the alphabet-soup of statistical relational learning

[online]. In NIPS Workshop on Probabilistic Programming. URL: http://probabilistic-

programming.org/wiki/NIPS*2008 Workshop.

De Raedt, L., Frasconi, P., Kersting, K. and Muggleton, S., Eds. 2008b. Probabilistic

Inductive Logic Programming – Theory and Applications, LNCS, Vol. 4911. Springer.

De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K. and Toivonen, H. 2008c. Compressing

probabilistic Prolog programs. Machine Learning 70 (2–3), 151–168.

De Raedt, L., Kimmig, A., Gutmann, B., Kersting, K., Santos Costa, V. and Toivonen, H.

2009. Probabilistic Inductive Querying Using ProbLog, Tech. Rep. CW 552. Department of

Computer Science, Katholieke Universiteit Leuven.

De Raedt, L., Kimmig, A. and Toivonen, H. 2007. ProbLog: A probabilistic Prolog and

its application in link discovery. In International Joint Conference on Artificial Intelligence,

M. M. Veloso, Ed. AAAI Press/The MIT Press, 2462–2467.

Fredkin, E. 1962. Trie Memory. Communications of the ACM 3, 490–499.

Fuhr, N. 2000. Probabilistic Datalog: Implementing logical information retrieval for advanced

applications. Journal of the American Society for Information Science (JASIS) 51 (2), 95–110.

Getoor, L. and Taskar, B., Eds. 2007. Statistical Relational Learning. The MIT Press,

Cambridge, MA.

On the implementation of ProbLog 27

Graf, P. 1996. Term Indexing. LNAI, Vol. 1053. Springer, New Mexico.

Gutmann, B., Kimmig, A., Kersting, K. and De Raedt, L. 2008. Parameter learning in

probabilistic databases: A least squares approach. In European Conference on Machine

Learning, W. Daelemans, B. Goethals, and K. Morik, Eds., LNCS, Vol. 5211 Springer, New

Mexico, 473–488.

Ishihata, M., Kameya, Y., Sato, T. and ichi Minato, S. 2008. Propositionalizing the EM

algorithm by BDDs. In Proceedings of Inductive Logic Programming (ILP 2008), Late

Breaking Papers, F. Železný and N. Lavrač, Eds. Prague, Czech Republic, 44–49.

Kersting, K. and De Raedt, L. 2008. Basic principles of learning bayesian logic programs.

In Probabilistic Inductive Logic Programming, L. De Raedt, P. Frasconi, K. Kersting, and

S. Muggleton, Eds., LNCS, Vol. 4911. Springer, New Mexico, 189–221.

Kimmig, A. and De Raedt, L. 2009. Local query mining in a probabilistic Prolog. In

International Joint Conference on Artificial Intelligence, C. Boutilier, Ed. AAAI Press, 1095–

1100.

Kimmig, A., De Raedt, L. and Toivonen, H. 2007. Probabilistic explanation based learning.

In European Conference on Machine Learning, J. N. Kok, J. Koronacki, R. L. de Mántaras,

S. Matwin, D. Mladenic and A. Skowron, Eds., LNCS, Vol. 4701. Springer, New Mexico,

176–187.

Kimmig, A., Gutmann, B. and Santos Costa, V. 2009. Trading memory for answers: Towards

tabling ProbLog [online]. In International Workshop on Statistical Relational Learning, P.

Domingos and K. Kersting, Eds. URL: http://dtai.cs.kuleuven.be/ilp-mlg-srl/index.php

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B. and De Raedt, L. 2008. On the Efficient

Execution of ProbLog Programs. In International Conference on Logic Programming, M. G.

de la Banda and E. Pontelli, Eds., Number 5366 in LNCS. Springer, New Mexico, 175–189.

Lakshmanan, L. V. S., Leone, N., Ross, R. B. and Subrahmanian, V. S. 1997. ProbView:

A flexible probabilistic database system. ACM Transactions on Database Systems 22 (3),

419–469.

Mantadelis, T. and Janssens, G. 2009. Tabling relevant parts of SLD proofs for ground

goals in a probabilistic setting [online]. In International Colloquium on Implementation of

Constraint and Logic Programming Systems, P. Tarau, P. Moura and N.-F. Zhou, Eds. 36–50.

URL: http://www.cse.unt.edu/∼tarau/ciclops09/

Muggleton, S. 1995. Stochastic logic programs. In Advances in ILP, L. De Raedt, Ed. IOS

Press, 254–264.

Poole, D. 1993a. Logic programming, abduction and probability. New Generation

Computing 11, 377–400.

Poole, D. 1993b. Probabilistic Horn abduction and Bayesian networks. Artificial

Intelligence 64, 81–129.

Poole, D. 2000. Abducing through negation as failure: Stable models within the independent

choice logic. Journal of Logic Programming 44 (1–3), 5–35.

Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T. and Warren, D. S. 1999. Efficient

access mechanisms for tabled logic programs. Journal of Logic Programming 38 (1), 31–54.

Riguzzi, F. 2007. A top down interpreter for LPAD and CP-logic. In Congress of the Italian

Association for Artificial Intelligence (AI*IA), R. Basili and M. T. Pazienza, Eds., LNCS,

Vol. 4733. Springer, New Mexico, 109–120.

Santos Costa, V. 2007. Prolog performance on larger datasets. In Practical Aspects of

Declarative Languages, 9th International Symposium, PADL 2007, Nice, France, January 14–

15, 2007, M. Hanus, Ed., LNCS, Vol. 4354. Springer, New Mexico, 185–199.

Santos Costa, V., Page, D., Qazi, M. and Cussens, J. 2003. CLP(BN): Constraint

logic programming for probabilistic knowledge. In Conference on Uncertainty in Artificial

Intelligence, C. Meek and U. Kjærulff, Eds. Morgan Kaufmann, Massachusetts, 517–524.

28 A. Kimmig et al.

Santos Costa, V., Sagonas, K. and Lopes, R. 2007. Demand-driven indexing of prolog

clauses. In International Conference on Logic Programming, V. Dahl and I. Niemelä, Eds.

LNCS, Vol. 4670. Springer, New Mexico, 305–409.

Sato, T. 1995. A statistical learning method for logic programs with distribution semantics.

In International Conference on Logic Programming, L. Sterling, Ed. MIT Press, Cambridge,

MA, 715–729.

Sato, T. and Kameya, Y. 2001. Parameter learning of logic programs for symbolic-statistical

modeling. Journal of Artificial Intelligence Research (JAIR) 15, 391–454.

Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K. and Toivonen, H. 2006. Link discovery in

graphs derived from biological databases. In Data Integration in the Life Sciences, U. Leser,

F. Naumann, and B. A. Eckman, Eds., LNCS, Vol. 4075. Springer, New Mexico, 35–49.

Valiant, L. G. 1979. The complexity of enumeration and reliability problems. SIAM Journal

on Computing 8 (3), 410–421.

Vennekens, J., Verbaeten, S. and Bruynooghe, M. 2004. Logic programs with annotated

disjunctions. In International Conference on Logic Programming, B. Demoen and V. Lifschitz,

Eds., LNCS, Vol. 3132. Springer, New Mexico, 431–445.

Widom, J. 2005. Trio: A system for integrated management of data, accuracy, and lineage

[online]. In Conference on Innovative Data Systems Research, M. Stonebraker, G. Weikum

and D. DeWitt, Eds. 262–276. URL: http://www.cidrdb.org/cidr2005/

