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On the importance of being structured: instantaneous
coalescence rates and human evolution—lessons for
ancestral population size inference?

O Mazet1,7, W Rodríguez1,7, S Grusea1, S Boitard2,3 and L Chikhi4,5,6

Most species are structured and influenced by processes that either increased or reduced gene flow between populations.
However, most population genetic inference methods assume panmixia and reconstruct a history characterized by population size
changes. This is potentially problematic as population structure can generate spurious signals of population size change through
time. Moreover, when the model assumed for demographic inference is misspecified, genomic data will likely increase the
precision of misleading if not meaningless parameters. For instance, if data were generated under an n-island model
(characterized by the number of islands and migrants exchanged) inference based on a model of population size change would
produce precise estimates of a bottleneck that would be meaningless. In addition, archaeological or climatic events around the
bottleneck’s timing might provide a reasonable but potentially misleading scenario. In a context of model uncertainty (panmixia
versus structure) genomic data may thus not necessarily lead to improved statistical inference. We consider two haploid genomes
and develop a theory that explains why any demographic model with structure will necessarily be interpreted as a series of
changes in population size by inference methods ignoring structure. We formalize a parameter, the inverse instantaneous
coalescence rate, and show that it is equivalent to a population size only in panmictic models, and is mostly misleading for
structured models. We argue that this issue affects all population genetics methods ignoring population structure which may
thus infer population size changes that never took place. We apply our approach to human genomic data.
Heredity (2016) 116, 362–371; doi:10.1038/hdy.2015.104; published online 9 December 2015

INTRODUCTION

Most species are structured and do not behave as panmictic popula-
tions (Wakeley, 1999; Harpending and Rogers, 2000; Goldstein and
Chikhi, 2002; Charlesworth et al., 2003; Harding and McVean, 2004).
They have been influenced by habitat fragmentation, expansion or
reconnection events that either increased or reduced the amount of
gene flow between local populations, as a result of climatic or
anthropogenic events (Goossens et al., 2006; Quéméré et al., 2012).
Although genomic data offer the possibility to reconstruct with
increasing precision major events in that complex history
(Gutenkunst et al., 2009; Li and Durbin, 2011; Sheehan et al., 2013;
Schiffels and Durbin, 2013; Liu and Fu, 2015), it is computationally
very difficult to account for population structure. As a consequence,
many inferential methods tend to ignore population structure
(Li and Durbin, 2011; Sheehan et al., 2013; Liu and Fu, 2015). This
is potentially problematic because an increasing number of studies
have shown that population structure generates spurious signals of
changes in population size, even when populations were stationary
(Wakeley, 1999, 2001; Nielsen and Beaumont, 2009; Chikhi et al.,
2010; Peter et al., 2010; Heller et al., 2013; Paz-Vinas et al., 2013;

Mazet et al., 2015). Here, we provide a simple theoretical framework
that explains why any inferential method ignoring population
structure will always infer population size changes as soon as
populations are actually structured. In other words, this theory
explains why any real demographic history, with or without structure,
will necessarily and optimally be interpreted as a series of changes in
population size by methods ignoring population structure.
We consider the case of two haploid genomes and we study T2, the

coalescence time for a sample of size two (that is, the time to the
common ancestor of two randomly sampled sequences (Herbots,
1994; Griffiths and Tavaré, 1994; Mazet et al., 2015)). We predict
the history that any coalescent-based population genetics methods
ignoring structure will try to reconstruct. We introduce a parameter
that we call the inverse instantaneous coalescence rate (IICR). As
coalescence rates are expected to be inversely related to effective
population sizes, it may seem natural to see the IICR as an
‘instantaneous population size’. However, we stress that the IICR is
equivalent to a population size only in panmictic models. For
models incorporating population structure the IICR exhibits a
temporal trajectory that can be strongly disconnected from the real
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demographic history (that is, identifying a decrease when the popula-
tion size was actually constant or increasing).
We apply our approach to simulated data and use the pairwise

sequentially Markovian coalescent (PSMC) method (Li and Durbin,
2011) as a reference method because it allows to reconstruct the
history of a population or species from one single diploid genome. In
addition, this method has been applied to a wide array of vertebrate
species including reptiles (Green et al., 2014), birds (Zhan et al., 2013;
Hung et al., 2014) and mammals such as primates (Prado-Martinez
et al., 2013; Zhou et al., 2014), pigs (Groenen et al., 2012) and pandas
(Zhao et al., 2013), and its outputs have been and typically are
interpreted in terms of population size changes. However, our results
are general and not specifically related to that particular method.
We then apply our approach to human data and show that an

alternative model involving a minimum of three changes in migration
rates can explain the PSMC results obtained by Li and Durbin (2011).
The scenario that we infer represents an alternative to the population
crashes and increases depicted in various population genetic studies,
but is strikingly in phase with fossil data and provides a more realistic
framework as several authors have suggested (Goldstein and Chikhi,
2002; Harding and McVean, 2004). Altogether, we call for a major
reevaluation of what genomic data can actually tell us about the
demographic history of our species. Beyond our species we argue that
genomic data should be reinterpreted as a consequence of changes in
levels of connection rather than simple changes in population size
(see also Wakeley, 1999, 2001 and Harding and McVean, 2004 for
interesting models incorporating structure).

MATERIALS AND METHODS

Coalescence time for a sample of size 2 in a model of population
size change
We consider a model of arbitrary population size change, where N(t) represents
the population size (N, in units of genes or haploid genomes) as a function of
time (t) scaled by the number of genes (that is, in units of coalescence time,
corresponding to INð0Þtm generations). We consider that t= 0 is the present,
and positive values represent the past. As N represents the population size in
terms of haploid genomes, the number of individuals will be N/2 for diploid
species. We can then apply the generalization of the coalescent in populations
of variable size (Griffiths and Tavaré, 1994; Donnelly and Tavaré, 1995; Tavaré,
2004). If we denote by λ(t) the ratio NðtÞ

Nð0Þ, we can then compute the probability
density function (pdf) f PSCT2

ðtÞ of the coalescence time T2 of two genes sampled
in the present-day population. Indeed, the probability that two genes will
coalesce at a time greater than t is

ℙðT24tÞ ¼ e�
R t

0
1

lðxÞdx ð1Þ
Given that

f PSCT2
ðtÞ ¼ ð1� ℙðT24tÞÞ0 ð2Þ

we can write the pdf as

f PSCT2
ðtÞ ¼ ð1� e�

R t

0
1

lðxÞdxÞ0 ¼ 1

lðtÞe
�
R t

0
1

lðxÞdx ð3Þ
Consequently, if we know the pdf of the coalescence time T2, the

corresponding population size change function λ(t) can be computed as:

lðtÞ ¼ ℙðT24tÞ
f PSCT2

ðtÞ ð4Þ

This equation may be seen as a simple rearrangement of previously known
results (Griffiths and Tavaré, 1994; Tavaré, 2004), which we cited above, and to
some extent it is. However, it practically means that if we only had access to a
finite set of T2 values we could in theory infer the history λ(t) by simply
computing this ratio. In the case of a model of population size change, this
computation is by definition giving us the actual history of population size
change. We show below how this ratio can be computed for any demographic

scenario for which T2 distributions can be derived or simulated. And it is this
computation for other models that significantly changes the outlook to genetic
data and coalescence rates.

Instantaneous coalescence rate for a sample of size 2
If we consider now the coalescence time of two genes sampled in a population
under an arbitrary model, whichever model this may be (structured or not,
with population size change or not, and so on), and if we assume that we know
its pdf, f T2

ðtÞ, it is straightforward to compute the ratio λ(t) of Equation (4)

lðtÞ ¼ ℙðT24tÞ
f T2

ðtÞ ð5Þ

Let us now denote gðtÞ ¼ ℙðT24tÞ. We then have by definition
f T2

ðtÞ ¼ �g 0ðtÞ, hence
1

lðtÞ ¼ �g 0ðtÞ
gðtÞ ¼ �log ðgðtÞÞ0 ð6Þ

from where we get, as g(0)= 1,

gðtÞ ¼ elog ðgðtÞÞ ¼ e�
R t

0
1

lðxÞdx ð7Þ
It therefore follows that the pdf f T2

ðtÞ ¼ �g 0ðtÞ can always be written as

f T2
ðtÞ ¼ 1

lðtÞe
�
R t

0
1

lðxÞdx ð8Þ

even if the so-computed function λ(t) has nothing to do with any population
size change.
In other words, for any given model, there always exists a function λ(t) that

explains the coalescence time distribution of this model for a sample of size two,
f T2

ðtÞ. The pdf of T2 can thus always be written as a function of λ(t) as in
Equation (8), exactly as if the model under which the data were produced was
only defined by population size changes. This function λ(t) is a fictitious or
spurious population size change function whose coalescence time T2 would
mimic perfectly the demographic model.
Now, if we define μ(t) as

mðtÞ ¼ 1

lðtÞ ¼
f T2

ðtÞ
ℙðT24tÞ ð9Þ

it should be natural to see μ(t) as an instantaneous coalescence rate, as it
represents the probability that two lineages that have not yet coalesced at time t
(as expressed by the denominator) will do so in an infinitesimal amount of time
starting at t (as expressed in the numerator). Another way to realize it is to use
theoretical results and terminology from reliability theory. If we note that T2
can be seen as a lifetime, then we can also note that the quantity mðtÞ ¼ 1

lðtÞ,
known as the hazard function or failure rate in the reliability engineering
community, represents the instantaneous rate of failure of a system at time t
(see, for instance, Ruegg, 1989 or Klein and Moeschberger, 2003). The term
instantaneous is central and we show in the next section that it is crucial for the
interpretation of structured models.

Linking population structure and population size change
We now consider a model of population structure such as the classical
symmetric n-island model (Wright, 1931), where we have a set of n islands (or
demes) of constant size N, interconnected by gene flow with a migration rate
m, where M

2 ¼ Nm is the number of immigrants (genes) in each island every
generation. The total number of genes or haploid genomes in the whole
metapopulation is nN and it is therefore constant. Again, N is the number of
haploid genomes, and N/2 the number of diploid individuals.
Under this model we can write the pdf for T2 (see Herbots, 1994; Wilkinson-

Herbots, 1998; and Mazet et al., 2015 for details and notation and Bahlo and
Griffiths, 2001 for related results and Charlesworth et al., 2003 for an insightful
review) by considering the cases when the two genes are sampled from the
same (s) or from different (d) demes:

f StSITs
2
ðtÞ ¼ ae�at þ ð1� aÞe�bt ð10Þ

f StSITd
2
ðtÞ ¼ ce�at � ce�bt ð11Þ

Population structure and demographic inference
O Mazet et al

363

Heredity



where

a ¼ g� a
b� a

; c ¼ g
b� a

ð12Þ

and where −α and − β are the roots of the polynomial

y2 þ yð1þ ngÞ þ g ð13Þ
whose discriminant is Δ= (1+nγ)2− 4γ, and therefore

a ¼ 1

2
1þ ngþ

ffiffiffiffi
D

p� �
ð14Þ

and

b ¼ 1

2
1þ ng�

ffiffiffiffi
D

p� �
ð15Þ

with g ¼ M
n�1 ¼ ab:

Now let us consider a hypothetical demographic history characterized by
population size changes but without any population structure. For that history
to explain the data generated by a model of population structure, this
hypothetical demographic history will correspond to the function λ(t) as
defined by Equation (5). Thus, in the case of two haploid genomes sampled in
the same deme (a most reasonable assumption for a diploid individual) we get:

lsðtÞ ¼ ℙðT24tÞ
f StSITS

2
ðtÞ ¼

a
ae

�at þ 1�a
b e�bt

ae�at þ ð1� aÞe�bt ¼
ð1� bÞe�at þ ða� 1Þe�bt

ða� gÞe�at þ ðg� bÞe�bt

ð16Þ
It is then trivial to compute the function λs(t) for any set of parameters n and
M. For instance, Figure 1a shows the corresponding curves for n= 50 and M
values between 0.1 and 50. As expected (Chikhi et al., 2010; Mazet et al., 2015),
we observe a (fictitious) population decrease from a large hypothetical ancestral
population of size Nh

a to a smaller hypothetical current population of size Nh
c .

Note that λs(t) is a population size ratio that does not provide absolute values of
the effective population size. In our case, it is however trivial to show that for t
sufficiently close to 0, we find that λs(t)= 1 and hence it follows that Nh

c ¼ N ,
the size of a deme. Indeed, at the time of sampling, the coalescence history for
two genes sampled from the same deme is mostly dependent on the size of the
local deme. Interestingly, this is true for any value of M. Figure 1 indicates that

as M becomes larger, Nh
a ¼ N lim

t-þN
lsðtÞ becomes closer to nN, represented

by the horizontal dashed line. This is expected: when the migration rate
increases the whole set of populations behaves less and less like a structured
model and increasingly like a single random mating population of size nN.
Several authors have shown that under the strong migration condition, it is
possible to define a coalescent effective population size toward which the
structured population tends (Sjödin et al., 2005; Wakeley and Sargsyan, 2009).
Figure 1b shows indeed that when M is very high (M= 100 and M= 500),
the n-island model behaves as a population characterized by a constant size
until the very recent past. For instance, when M= 500, λs(t) only drops at
time t= 0.02 that for N= 100 would correspond to 2 generations ago. In
other words, the strong migration assumption implicitly assumes that the
bottleneck seen in our results is so recent that it can be neglected. Using the
terminology introduced by Wakeley (1999), it assumes that the scattering
phase is very short. Altogether, our results provide a more general
framework that allows us to easily incorporate the strong migration
assumptions.
Coming back to Figure 1a, we also note that as M decreases, the fictitious

bottleneck becomes older and the ancestral population becomes larger, for a
constant value of n, the number of islands. We can derive the asymptotic
coalescent effective size of this n-island model by computing the limit of λ(t)
when t goes to infinity, and find that, as 0oβoα,

Nh
a ¼ N lim

t-þN
lsðtÞ ¼ N

a� 1

g� b
¼ N

b
; ð17Þ

where we recall that �β was the largest of the roots found above (Equation 15).

By developing Equation (15), we find

b ¼ 1

2
1þ n

n� 1
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

n� 1
M

� �2
� 4M

n� 1

r !
ð18Þ

Here we can see that for large values of M, λs(t) is close to

Nh
a ¼ Nðnþ ðn� 1Þ2

nM
Þ ð19Þ

This is the nucleotide diversity effective size computed in Nei and Takahata
(1993) for the n-island model.
If we now perform the same analyses and computations for the case where

the haploid genomes are sampled from different demes, it leads to the following
result:

ldðtÞ ¼
1
ae

�at � 1
be

�bt

e�at � e�bt ¼ be�at � ae�bt

ge�at � ge�bt ð20Þ
Here the population dynamics is inverted, and we observe a fictitious

population expansion. Figure 2 shows some plots of λd(t) for different values of
M. This is in agreement with several previous studies that noted that when
sampling is carried out across demes, the bottleneck signal either disappears
or can be replaced by a population expansion signal (Peter et al., 2010;
Chikhi et al., 2010; Heller et al., 2013). We note that lim

t-0
ldðtÞ ¼ þN. The two

lineages being in different demes at time t= 0, it is by definition impossible for

them to coalesce in the very recent past, as a migration event has first to occur.

Let us note also that lim
t-N

ldðtÞ ¼ 1
b as for λs.

Our results, as expressed by equations (16) and (20), stress the difficulty in
defining an effective size for a structured population, because a structured

Figure 1 Inferred population size changes for n-island models with constant
size. This figure shows λs(t) for different values of M, the number of
migrants, and n, the number of islands. In (a) we assumed an island model
with n=50, and varied M, the number of migrants between 0.1 and 50. In
(b) we varied n between 50 and 500 and used two large values for M,
namely 100 and 500. For both panels, the y axis is scaled by N and the
horizontal dashed lines correspond to nN, the total population size. In all
cases, λs(t) identifies a population decrease.
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population has properties that a stationary nonstructured population does not
have. It behaves like a nonstructured population that changes in size. The IICR
is therefore what connects the two (structured and panmictic) models. As a
consequence, there is no overwhelming reason to summarize its properties by
one single number when it actually is defined either by a number of islands and
a migration rate or by a full trajectory of effective sizes. We point toward the
studies of Sjödin et al. (2005) and Wakeley and Sargsyan (2009) for models and
conditions under which an effective size can be defined. What we wish to stress
is that the theory presented here provides a general framework for explaining
and predicting population size changes that population genetics methods will
infer. Below, we illustrate how this can be applied to simple and complex
structured models and we also predict the population size changes that
methods ignoring structure will infer. Given that λ(t) does not necessarily
correspond to actual changes in Ne (effective size), we introduce the inverse
instantaneous coalescence rate or IICR that we will use for the rest of the

manuscript instead of λ(t). The reason for this is that the IICR is only
equivalent to an instantaneous coalescent Ne in the case of models without
structure. For other models, it is, in the absence of a better term, the inverse of
an instantaneous coalescence rate. The IICR is of course by definition a
function of time and implicitly leads us to consider a trajectory rather than a
single value even for constant size models such as the n-island model.

Application to simulated and real data
In order to illustrate how an observed distribution of T2 values can be used to
infer the IICR we carried out simulations under structured and unstructured
scenarios. Data were simulated using the ms software (Hudson, 2002). For each
scenario, we simulated independent values of T2 and used them to estimate the
IICR at various time points ti, as follows:

bIICRðtiÞ ¼ 1�bFT2 ðtiÞbfT2 ðtiÞ
ð21Þ

wherebFT2 ðtiÞ is the estimated or empirical cumulative distribution function

of T2 and
bfT2 ðtiÞ is an estimated approximation of its density around ti. The two

scenarios of population size change without structure were simulated with the
following ms commands: ms 2 100 -T -L -G -16.094 -eG 0.1 0.0 for the
exponential population size change (Figure 3a) and ms 2 100 -T -L -eN 0.01 0.1
-eN 0.06 1 -eN 0.2 0.5 -eN 1 1 -eN 2 2 (Figure 3b) for the stepwise population
size change.
In addition, for the scenarios involving population structure (Figures 4 and 5)

we simulated both T2 values and DNA sequences assuming an n-island model
with n= 10 demes of size of N= 1000 haploid genomes each (that is, 500
diploids), and a mutation rate of μ= 10− 8. We then computed the empirical
IICR from the T2 values, and did a PSMC analysis using the corresponding
DNA sequences. The ms commands used to produce the data for a model with
three changes in migration rates were ms 2 100 -t 600 -r 120 30000000 -I 10 2 0
0 0 0 0 0 0 0 0 1 -eM 3 5 -eM 6 0.8 -eM 15 5 -p 8 and ms 2 100 -t 600 -r 120
30000000 -I 10 2 0 0 0 0 0 0 0 0 0 1 -eN 1 0.5 -p 8 for a model in which deme
sizes doubled (and hence the metapopulation too). We also simulated
scenarios with a 10- and a 50-fold deme size increase. We either kept M, the
number of migrants, or m, the migration rate, constant after the changes in
N (Supplementary Figures S1 and S2). In addition, we simulated a scenario

Figure 2 Inferred population size changes for n-island models and samples
from different demes. This figure shows λd(t) for different values of M, the
number of migrants. The number of islands was assumed to be n=50.
Samples come from different islands. In all cases, λd(t) identifies a
population increase.

Figure 3 Inferred population size changes for populations without structure. For both panels the x axis represents time in generations, whereas the y axis
represents population size in units of 104 diploids (an IICR of 0.5 corresponds to 500×10=5000 diploid genomes). (a) A panmictic population that
experienced an exponential decrease from a previously constant size ancestral population. The solid blue line (theoretical IICR) was obtained using Equation (4).
The dashed line represents the simulated demographic history and corresponds to the total number of haploid genomes (the actual size). The stepwise red
solid curve (estimated IICR) was obtained using the simulated T2 values and Equation (21). (b) A history of stepwise population size changes is shown.
The color codes are identical to (a). A full color version of this figure is available at the Heredity journal online.
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where the deme size varied according to a complex step function, and inferred
the IICR under various migration rates (see Supplementary Figure S3).
For the comparisons with the analyses of the human data we assumed the

mutation rate used by Li and Durbin (2011), namely μ= 2.5× 10− 8. These
authors note that the PSMC is not expected to give reliable estimates of recent
population sizes (that is, o10 kyr in humans), and we therefore carried out
simulations with and without a recent demographic expansion following the

Neolithic transition. The simulations incorporating a recent increase in deme
size in humans produce PSMC and IICR profiles similar to the PSMC
estimations on human data, whereas the lack of a recent increase produces a
curve that is flat in the recent past (see Supplementary Figure S4). For
simplicity, the genomic data for the scenario with three migration rate changes
were simulated assuming n= 10 demes. The ms command used was ms 2 100 -t
1590 -r 318 30000000 -I 10 2 0 0 0 0 0 0 0 0 0 0.55 -eM 4.5 4 -eM 18.0 0.55 -eM

Figure 4 Inferred population size changes under population structure and two sampling schemes. This figure shows the predicted population size changes
that will be inferred for an n-island model under the assumption that populations are not structured. For both panels the x axis represents time in
generations, whereas the y axis represents real or inferred population size in units of 104 diploid genomes. We simulated an n-island model with n=10 and
M=1 and computed the theoretical IICR using Equation (4), and the estimated IICR using the simulated T2 values and Equation (21). The color codes are
identical to Figure 3. The green solid lines represent the history inferred by the PSMC. (a) The results when the two haploid genomes are sampled in the
same deme are shown. In (b) they come from different demes. The constant size of the metapopulation at y=0.5 corresponds to 5000 diploid genomes or
10 islands of size 500 diploids. A full color version of this figure is available at the Heredity journal online.

Figure 5 Inferred population size changes under population structure with changes in migration rates or deme size. The x axis represents time in generations,
whereas the y axis represents real or inferred population size in units of 104 diploid genomes. Color codes are identical to Figure 4. Data were simulated
under an n-island model with n=10. In (a) the population size was constant in size with each deme having a size N=1000 haploid genomes (500 diploids)
but three changes in migration rate occured at T3=30000, T2=12000 and T1=6000 generations in the past. Before T3 the migration rate was M3=5.
At T3 it changed to M2=0.8 and remained constant until T2, and then changed to M1=5 at T1. After that it remained at M=1 until the present. In (b) all
the demes doubled in size from 500 to 1000 haploids (or 250 to 500 diploids) at T=2000 generations and migration was constant with M=1. A full color
version of this figure is available at the Heredity journal online.
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47.5 0.85. This command simulates an n-island model of n= 10 islands, of size
N= 1060 haploid genomes or 530 diploids. A generation time of 25 years and a
mutation rate μ= 2.5× 10− 8 were assumed as in Li and Durbin (2011).
Following these authors we simulated 100 independent 30Mb long ‘chromo-
somes’ that were then used together to represent the full 3 Gb long human
genome. Under that scenario, the scaled mutation is θ= 4 × 530 × 2.5 × 10 − 8

× 30 × 106 = 1590. Given that each island has 530 diploid individuals, the
metapopulation is composed of 5300 diploid individuals. In ms commands,
the migration rate and time are scaled in units of the diploid deme size. The
number of migrants exchanged was M= 0.55 in the recent past and M= 0.85
in the most ancient past, and changed at various times indicated by the eM
flag in the ms command. Going from the past to the present, the ms
commands thus simulate the following demographic events: M decreased
from 0.85 to 0.55 at ∼ 47.5 × 4 × 530 × 25= 2 517 500 years ago, then M
increased from 0.55 to 4.00 at ∼ 18 × 4 × 530 × 25= 954 000 years ago and
finally M decreased 4.5 × 4 × 530 × 25= 2 38 500 years ago from 4.00 to 0.55.
After that M remained constant. Moreover, in addition to scenarios where
the deme size never changed we also simulated scenarios with a rapid
increase in deme size 0.25 × 4 × 530 × 25= 13 250 years ago by a factor 40, to
represent the Neolithic transition. The figure without this change is in the
Supplementary Material, Figure S4.

RESULTS

Predicting the inferred demographic history of nonstructured and
structured populations: illustrations by simulations
Figure 3 shows the results for nonstructured populations that were
subjected to various histories of population size change. The left-hand
panel shows a population that experienced an exponential decrease
from a previously constant size ancestral population. As expected, the
blue solid line obtained using the full theoretical T2 distribution is
identical to the simulated history of population size changes (that is,
the real population size changes). The stepwise red solid line
represents the empirical IICR. The number of ti values or steps can
be changed depending on the precision that one wishes to reach and
the total number of T2 values. We chose values similar to those
typically used in recent genomic studies for comparison (Zhao et al.,
2013; Zhan et al., 2013; Zhou et al., 2014) but a much greater
precision can be achieved under our framework. The right-hand panel
shows similar results but for a population that went through various
stepwise population size changes. This shows the remarkable match
between the theoretical and empirical IICR curves and the simulated
history. When a population is not structured the IICR will exactly
match the real history in terms of population size changes.
Figure 4 is similar to Figure 3 but with structured populations: we

sampled two haploid genomes under the n-island model, with n= 10
and M= 1. Figure 4a shows the results when the genomes were
sampled in the same deme (a single diploid individual), whereas
Figure 4b shows the results when the two haploid genomes were
sampled in different demes. These figures show again that the
empirical and theoretical IICR distributions match each other. More-
over, they predict the population size change history inferred by the
PSMC. This suggests that the PSMC does not infer a population size
change but the IICR and estimates it rather well. Finally, the IICR and
the PSMC identify a (spurious) population decrease or increase
depending on the sampling scheme, even though the total number
of haploid genomes was constant (horizontal dashed line representing
the real population size). These results are in agreement with several
studies showing that different sampling strategies applied to the same
set of populations may lead to infer quite distinct demographic
histories (Chikhi et al., 2010; Heller et al., 2013), even though they
used different methods. Whereas the effect described by Heller et al.
(2013) was observed using the Bayesian Skyline Plot method

(Drummond et al., 2005), Chikhi et al. (2010) used the msvar
approach of Beaumont (1999).
Although Figures 3 and 4 illustrate and validate the theory

developed in previous sections using two models (the n-island and
population size change) for which the T2 distribution is known, our
approach to estimate the IICR is still valid when we have values of T2
but the distribution is not known. This can happen for models that
can be simulated but for which no analytical results exist (Figure 5). In
Figure 5a, we considered an n-island model with n= 10 demes where
the total population size remained constant (each deme had a size of
N= 1000 haploid genomes or N/2= 500 diploids) but migration rates
changed at three different moments in the last 30 000 generations, as
indicated by the vertical arrows. This scenario mimics a set of
populations whose connectivity is changing because of fragmentation
or reconnection of habitat either due to climatic or anthropogenic
effects (Goossens et al., 2006; Quéméré et al., 2012). The demographic
history reconstructed by the PSMC matches again the history
predicted by the empirical IICR, but it is strikingly different from
the actual size of the metapopulation (horizontal line). Whereas the
total population size was constant throughout, the reconstructed
history suggests that the population expanded and contracted on at
least two occasions. A more serious issue arises from the fact that the
population size changes inferred by the PSMC do not appear to match
the times at which the migration rates changed, at least at the level of
precision provided by the PSMC. For instance, the last change in
migration rate, M1, occurred 6000 generations in the past. Instead, the
PSMC infers a population expansion and contraction after that event.
Figure 5b corresponds to a scenario in which the size of all demes
doubled 2000 generations before the present. Here the striking result
comes from the fact that whereas the population size doubled (black
broken line), the IICR and PSMC would suggest a continuous
population decrease over a very long period, whose timing has again
little to do with the actual history of the population. The population
size change is thus missed by the PSMC. See Supplementary Figures S1
and S2 for cases where the population increased by a factor 10 and 50
and where either M or m was constant. Altogether, this figure and the
associated Supplementary Figures suggest that changes in migration
patterns or changes in deme size may be misinterpreted by population
genetics methods that ignore population structure, and that there is a
need for methods able to distinguish population structure from
population size change (see Peter et al., 2010; Chikhi et al., 2010;
Heller et al., 2013; Mazet et al., 2015).

A tentative reinterpretation of human past demography: on the
importance of being structured
In their study, Li and Durbin (2011) applied the PSMC to genomic
data obtained from humans and inferred a history of population size
changes. As demonstrated above, what the PSMC estimates is the IICR
that does not necessarily correspond to real population size changes,
but may also arise from a model with changes in migration rates. To
illustrate this we applied our approach to identify an island model with
constant population size reproducing closely the IICR obtained by Li
and Durbin (2011). For simplicity we arbitrarily assumed that the
number of islands was n= 10, and that there were three changes in
migration rates as this is the minimum number of changes required to
obtain an IICR curve with two humps, assuming a constant deme size.
We propose a history in which migration rates (Mi, i= 1, 2, 3, 4)
changed at three moments (Ti, i= 1, 2, 3), and where M1 corresponds
to the number of migrants exchanged between demes each generation
during the period between the present and T1. More specifically, we
found a change in migration rates (from M4= 0.85 to M3= 0.55) at
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∼T3= 2.52 million years (Myr) ago, then a major increase (from
M3= 0.55 to M2= 4) at ∼T2= 0.9–1.0 Myr and finally a major
decrease (from M2= 4 to M1= 0.55) at ∼T1= 0.23–0.25 Myr ago. In
other words, our results would suggest changes in connectivity at the
start of the Lower Pleistocene (dated at 2.58 Myr) that corresponds to
the emergence of the genus Homo. The most striking change
corresponds to major increase in connectivity just before the transition
between the Lower and Middle Pleistocene (dated at 0.78 Myr). We
find that the Middle Pleistocene is characterized by high and sustained
gene flow. Finally, connectivity abruptly decreases at 210–230 kyr ago
just before the earliest remains of anatomically modern humans Homo
sapiens at ca. 200 kyr.

DISCUSSION

The IICR and the PSMC
In this study we have shown that it is always possible to find a
demographic history involving only population size changes that
perfectly explains any distribution of coalescence times T2, even when
this distribution was actually generated by a model in which there was
no population size change. To illustrate this we first focused on a
simple n-island model for which the pdf of T2 can be derived, and
obtained an analytic formula of the fictitious population size change
history, named IICR, as a function of the number of islands and the
migration rate of the model. We also showed that the IICR can be
computed for any (neutral) model from any observed distribution of
T2 values. We showed that the empirical and theoretical IICRs were
identical when the latter could be obtained. We then obtained the
empirical IICR under models involving changes in migration rates or
in deme size. This suggests that, at least for a sample of size 2, even an
infinite amount of genetic data from independent loci alone may not
allow to distinguish structure and population size change models. In
addition, the history of population size changes in Figure 5 would
suggest that four demographic changes occured, two expansions and
two contractions, whereas only three changes of the migration rate
were actually simulated.
The theory presented here is simple and general. It allows us to

predict the IICR and state that any method ignoring population
structure will try to estimate the IICR. In the case of complex
demographic histories with population structure, interpreting the IICR
as a population size or a ratio of population sizes can be misleading.
To clarify the difference between the IICR and an effective population
size we can consider the following rationale. If a structured population
could be summarized by a single Ne then a change in gene flow should
be matched by a simultaneous change in Ne. In that case, changes in
Ne would be misleading (as the size would not change) but their
timing might still be meaningful. For instance a ‘hump’ inferred using
diCal or the PSMC could be easily translated into a change in gene
flow patterns. In such a case, we could reinterpret the changes in Ne by
saying, for each hump, that gene flow decreased and then increased
again. What the IICR shows is that it is not that simple. The fact that a
structured model can only be summarized by a trajectory of spurious
population sizes means that the timing of changes in migration rates
will interact in a complex manner, hence generating IICR profiles that
may be only loosely related with population-related events. This can be
seen in Figures 5 and 6 (and the Supplementary Figures S1–S4).
These results do not invalidate the use of panmictic models for the

reconstruction of population history as long as population structure
can indeed be neglected (Figure 3 and Supplementary Figure S3), but
it certainly stresses the need for caution in the interpretation of this
history. When Li and Durbin published their landmark study in 2011
(Li and Durbin, 2011), they showed for the first time that it was

possible to reconstruct the demographic history of a population by
using the genome of a single diploid individual. It was a remarkable
feat based on the SMC model introduced by McVean and Cardin
(2005). Its application to various species (Groenen et al., 2012; Prado-
Martinez et al., 2013; Zhao et al., 2013; Zhan et al., 2013; Green et al.,
2014; Hung et al., 2014; Zhou et al., 2014) has been revolutionary and
led to the development of new methods (Sheehan et al., 2013; Schiffels
and Durbin, 2013; Liu and Fu, 2015). However, the increasing number
of studies pointing at the effect of population structure (Leblois et al.,
2006; Nielsen and Beaumont, 2009; Chikhi et al., 2010; Heller et al.,
2013; Paz-Vinas et al., 2013) or changes in population structure
(Wakeley, 1999,2001; Wakeley and Aliacar, 2001; Städler et al., 2009;
Broquet et al., 2010; Heller et al., 2013; Paz-Vinas et al., 2013) in
generating spurious changes in inferred population size suggested that
new models should be analyzed that can incorporate population
structure (Goldstein and Chikhi, 2002; Harding and McVean, 2004.
For instance, Mazet et al. (2015) have recently shown that genomic
data from a single diploid individual can be used to distinguish an
n-island model from a model with a single population size change.
Their likelihood-based approach uses the distribution of coalescence
times for a sample of size two (T2). This study represents an interesting
alternative as it should be possible to determine whether a model of
population structure is more likely than a model of population size

Figure 6 Human history with changes in migration rates. This figure shows,
in red, the history of population size changes inferred by Li and Durbin
(2011) from the complete diploid genome sequences of a Chinese male
(YH) (Wang et al., 2008). The 10 green curves correspond to the IICR of 10
independent replicates of the same demographic history involving three
changes in migration rates. The x axis represents time in years in a log
scale, whereas the y axis represents real or inferred population size in units
of diploid genomes. The times at which these changes occur are represented
by the vertical arrows at 2.52 Myr ago, 0.95 Myr ago and 0.24 Myr ago. The
blue shaded areas correspond to (1) the beginning of the Pleistocene
(Pleist.) at 2.57–2.60 Myr ago, (2) the beginning of the Middle Pleistocene
(Mid. Pleist.) at 0.77–0.79 Myr ago and (3) the oldest known fossils of
anatomically modern humans (AMH) at 195–198 kyr ago. Following Li and
Durbin (2011), we assumed that the mutation rate was μ=2.5×10−8 and
that generation time was 25 years. We also kept their ratio between
mutation and recombination rates. Each deme had a size of 530 diploids
and the total number of haploid genomes was thus constant and equal to
10 600. A full color version of this figure is available at the Heredity journal
online.
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change to explain a particular data set. The approach of Mazet et al.
(2015) is however limited to a very simple model of population size
change. Demographic models inferred by several recent methods
(Li and Durbin, 2011; Schiffels and Durbin, 2013; Sheehan et al., 2013;
Liu and Fu, 2015) are not limited to one population size change. They
are thus more realistic and, as we have shown here, this comes at a
certain price. As they allow for several tens of population size changes,
they mimic more precisely the genomic patterns arising from
structured models. Therefore, they reconstruct a demographic history
that can optimally explain any particular pattern of genomic variation
only in terms of population size changes. As we have shown here, and
until we can separate models (see below), this casts doubts on any
history reconstructed from genomic data by the above-mentioned
approaches. Indeed, if any pattern of (neutral) genomic variation can
be interpreted efficiently in terms of population size changes, then
how can we identify the cases where the observed genomic data were
not generated by population size changes?
Li and Durbin (2011) acknowledged that one should be cautious

when interpreting the changes inferred by their method. For instance,
they showed (see their Supplementary Materials, Figure S5) that when
one population of constant size N splits in two half-sized populations
that later merge again, their method will identify a change of N even
though N actually never changed. Still, their method is implicitly or
explicitly used and interpreted in terms of population size changes,
including by themselves. There are therefore several issues that need to
be addressed. One issue is to determine whether it is possible to
separate models of population size change from models of population
structure (Mazet et al., 2015, and see perspectives below). When
population structure can be ignored, our results actually contribute to
the validation of the PSMC (Figure 3 and Supplementary Figure S3).
We found that the PSMC performed impressively well and generally
reconstructed the IICR with great precision. It is therefore at this stage
one of the best methods (Sheehan et al., 2013; Schiffels and Durbin,
2013; Liu and Fu, 2015) published so far and remains a landmark in
population genetics inference.

The IICR: toward a critical interpretation of effective population
sizes
The concept of effective size is central to population genetics. It allows
population geneticists to replace complex real-world populations by
equivalent and simpler Wright–Fisher populations that would have the
same ‘rate of genetic drift’ (Wakeley and Sargsyan, 2009). The concept
is however far from trivial and it is not always clear what authors mean
when they mention the Ne of a particular species or population, as
rightly noted by Sjödin et al. (2005) among others. Several Nes have
been defined depending on the property of interest (inbreeding,
variance in allele frequency over time and so on) and its relationship
to genetic drift (Wakeley and Sargsyan, 2009). This is a complex issue
that we do not aim at reviewing or discussing in detail here.
The IICR is related to the coalescent Ne (Sjödin et al., 2005; Wakeley

and Sargsyan, 2009) but it is explicitly variable with time. Given that
most species are likely to be spatially structured, interpreting the
IICR as a simple (coalescent) effective size may generate serious
misinterpretations.
The IICR is a trajectory of instantaneous ‘population sizes’ that fully

explains complex models without loss of information. The circum-
stances under which this trajectory can indeed be appropriately
summarized by one effective population size are still to be determined
and will depend on the questions asked and the amount of markers
used. For instance, for ‘strong migration scenarios’ (M= 500 and
M= 100) the inferred population size changes are recent and abrupt,

and the period during which the population was stationary will be
significant in generating patterns of genetic diversity (Wakeley, 1999,
2001; Wakeley and Aliacar, 2001; Charlesworth et al., 2003; Wakeley
and Sargsyan, 2009). However, even for such cases of low genetic
differentiation (FST≈ 1/2001= 0.0005 and FST≈ 1/401= 0.0025,
respectively), the spurious population size drop could perhaps be
detected with genomic information. For M= 100 the population size
decrease starts between t= 0.05 and t= 0.10, which for N= 100 to
N= 1000 could correspond to values between 5 and 100 generations
ago, respectively. In other words, an n-island model may actually
behave differently from a Wright–Fisher model even under some
‘strong migration’ conditions. The approximation will therefore be
valid for some questions and data sets, and invalid for others
(Charlesworth et al., 2003; Wakeley and Sargsyan, 2009). Note also
that for very low migration rates (M= 0.1, M= 0.2, corresponding to
very high FST≈ 0.71 and FST≈ 0.56, respectively) the recent history is
also characterized by a stationary IICR. Most genes will then coalesce
within demes and only a small proportion will provide information on
the ancient IICR values and therefore on population structure (see
Mazet et al., 2015).

The IICR and the complex history of species: toward a critical
reevaluation of population genetics inference
The PSMC has now been applied to many species, generating curves
that are very similar to those represented in Figure 5. In Figure 5a, the
population size changes detected by the PSMC were not correlated in a
simple manner to the changes in gene flow or deme size. This is likely
the result of two factors. First, a structured population cannot always be
summarized by a single number. Second, the PSMC requires a
discretized distribution of time that may lead to missing abrupt
changes such as those simulated here. For real data sets where changes
in migration rates or in population size may be smoother, this may not
be so problematic. For the human data, assuming a simple model of
population structure, we inferred periods of change in gene flow that
correspond to major transitions in the recent human evolutionary
history, including the emergence of anatomically modern humans.
Given that humans are likely to have been subjected to a complex
history of spatial expansions and contractions and changes in the levels
of gene flow (Wakeley, 1999, 2001; Harpending and Rogers, 2000;
Goldstein and Chikhi, 2002; Harding and McVean, 2004), our results
are necessarily simplistic but suggest that a reinterpretation of
panmictic models may be needed and possible. Our results are at
odds with a history of population crashes and increases depicted in
various population genetic studies, but it is in phase with fossil data and
provides a more realistic interpretation framework. We thus wish to
call for a critical reappraisal of what can be inferred from genetic or
genomic data. The histories inferred by methods ignoring structure
represent a first approximation but they are unlikely to provide us with
the information we need to better understand the recent evolutionary
history of humans or other species. It is difficult to imagine that
humans have been one single panmictic population whose size has
changed over the last few million years (that is, since the appearance of
the Homo genus). This does not minimize the achievement of the Li
and Durbin (2011) study, but it does question how inference from
genetic data are sometimes presented and interpreted.

Perspectives
We focused throughout this study on T2, the time to the most recent
common ancestor for a sample of size two. For larger samples we can
define Tk as the time during which there are k lineages. It would be
important to determine whether, for structured models, the IICR
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estimated from the distribution of Tk varies significantly with k. If that
were the case, that would suggest that it is possible to separate
structure from population size change with the distributions of Tk for
various k values. The reason for this is that population size change
models should generate identical IICR for all Tk distributions, as they
should all correspond to the same (real) history of population size
change. To our knowledge the distribution of Tk for k42 has not yet
been explicitly derived for the n-island or other structured models (but
see interesting studies such as Herbots, 1994; Wakeley and Aliacar,
2001; Wakeley, 2001; Nielsen and Wakeley, 2001).
One simple solution to this question is to simulate genetic data

under a structured model of interest and then compare the simulated
Tk distributions under that model and the Tk distributions of the
corresponding model of population size change identified using the T2
distribution. Preliminary simulations suggest that the Tk distributions
produce different IICRs, at least for some models of population
structure. For instance, we predict that the analysis of human genomic
data with the PSMC and MSMC (multiple sequentially Markovian
coalescent) should produce different curves under a model of
population structure but identical ones for a model of population
size change. This prediction can be tested by comparing the PSMC
and MSMC curves of Li and Durbin (2011) and Schiffels and Durbin
(2013), respectively. Visual inspection of the corresponding figures
suggests indeed that they are different, and therefore that our model of
population structure is a valid alternative. However, we stress that an
independent study is required. Indeed, the history reconstructed by
these methods with real data is not very precise and the two curves are
not easily comparable because they are expected to provide poor
estimates at different moments. Any difference between the two
analyses should thus be evaluated and validated with simulations.
Finally, one underlying assumption of our study is that

the coalescent represents a reasonable model for the genealogy of the
genes sampled. Given that the coalescent is an approximation of the
true gene genealogy, and that there are species for which the coalescent
may not be the most appropriate model (Wakeley and Sargsyan,
2009), we should insist that our results can, at this stage, only be
considered for coalescent-like genealogies. The development of similar
approaches for other genealogical models would definitely be a very
interesting avenue of research.
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