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ABSTRACT: Polymer dissolution was described by chain reptation incorporated into penetrant transport.
The penetrant concentration field was divided into three regimes which delineate three different transport
processes. Solvent penetration through the polymer was modeled to occur as a consequence of a diffusional
flux and an osmotic pressure contribution. Species momentum balances were written that coupled the
polymer viscoelastic behavior with the transport mechanism. Transport in the second penetrant
concentration regime was modeled to occur in a diffusion boundary layer adjacent to the rubbery—solvent
interface, where a Smoluchowski type diffusion equation was obtained. The disentanglement rate of the
polymer is given by the ratio between the radius of gyration of the polymer and the reptation time. This
rate was used to write the mass balance at the rubbery—solvent interface. Scaling law expressions for
the disentanglement rate were derived. The model equations were numerically solved, and the effect of
the polymer molecular weight and the diffusion boundary layer thickness on the dissolution mechanism
was investigated for polystyrene dissolution in methyl ethyl ketone. The results showed that upon
increasing the polymer molecular weight, the dissolution became disentanglement-controlled. Decrease
in the diffusion boundary layer thickness led to a shift in the dissolution mechanism from disentanglement

control to diffusion control.

Introduction

Polymer dissolution is an important phenomenon in
polymer science and engineering. For example, in
microlithographic applications, selectively irradiated
regions of a photosensitive polymer are dissolved in
appropriate solvents to obtain desired circuit patterns.!
In the field of controlled drug release, zeroth-order drug
release systems have been designed? by rendering the
polymer dissolution phenomenon as the controlling step
in the release process. Polymer dissolution also finds
applications in membrane science,® treatment of un-
sorted plastics for recycling,* the semiconductor indus-
try,® and packaging applications.b

The dissolution of a polymer in a solvent involves two
transport processes, namely, solvent diffusion and chain
disentanglement. When an uncross-linked, amorphous,
glassy polymer is brought in contact with a thermody-
namically compatible solvent, the latter diffuses into the
polymer, and when the solvent concentration in the
swollen polymer reaches a critical value, chain disen-
tanglement begins to dominate and eventually the
polymer is dissolved. Ueberrieter and co-workers’—9
summarize the various types of dissolution and the
surface structure of glassy polymers during dissolution.
Important parameters like the polymer molecular weight,
the solvent diffusion coefficient, the gel layer thickness,
the rate of agitation, and the temperature were identi-
fied. Since then, various mathematical models have
been proposed to understand polymer dissolution.

The approaches to model polymer dissolution can be
broadly classified as (i) use of phenomenological models
and Fickian equations, (ii) models with external mass
transfer as the controlling resistance to dissolution, (iii)
models based on stress relaxation, and (iv) analysis
using anomalous transport models for solvent transport
and scaling laws for actual polymer dissolution.

Tu and Ouano?® proposed a phenomenological model
with Fickian equations for polymer dissolution. They
studied the motion of both the liquid—gel boundary and
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the gel—glass boundary. These boundaries were ob-
served due to sharp changes in viscosity and refractive
index at the surface. The important parameter in this
model was the polymer disassociation rate, defined as
the rate at which the polymer goes from a gel-like phase
to a less viscous liquid solution. However, their simula-
tions failed to quantitatively predict this disassociation
rate from the molecular properties of the polymer.
Devotta et al.*! considered the Fickian dissolution of a
spherical polymeric particle. They modeled chain “dis-
engagement” by defining a flux that was proportional
to the concentration of the polymer at the polymer—
solvent interface. The transport of the chains in the
solvent was assumed to be controlled by an external
mass transfer resistance. Numerical simulations yielded
the effect of the particle size on the dissolution process.
The approach contained some parameters, the physical
origin of which is unclear.

Lee and Peppas?? proposed the idea of external mass
transfer-controlled dissolution in their mathematical
model. Fickian equations were used to describe the
transport, and the diffusion of the polymer chains at
the gel-liquid boundary was assumed to be controlled
by the resistance offered by a liquid film. Approximate
solutions of the model equations were obtained. Intui-
tive though the external mass transfer-controlled poly-
mer dissolution approach may be, experiments have
indicated that for dissolution of poly(methyl methacry-
late) in methyl ethyl ketone,!3 vigorous agitation of the
solvent increased the dissolution rate by only 15%
relative to that for a stagnant solvent. Also, since the
chain disentanglement mechanism was not considered,
this approach failed to explain the swelling time needed
before dissolution.

On the basis of the idea that polymer swelling due to
solvent influx results in an elastic-like stress opposing
the solvent penetration, Brochard and de Gennes4
proposed relaxation-controlled polymer dissolution Ki-
netics. The dissolution flux was expressed as the
difference between the polymer stress gradient and the
solvent osmotic pressure gradient. After the formation
of a swollen gel layer, the sequential dissolution of the
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polymer from the swollen state was assumed to be
controlled by the local stress relaxation rate. This rate
was shown to be of the order of the reptation time.
Herman and Edwards?® extended the above approach
by considering in detail the stress accompanying the
swelling of the polymer within the reptation model.
They proposed that the solvent swelling induces a
nonrandom distribution of polymer chain orientation.
This contribution to the free energy and the chemical
potential of the polymer and the solvent were evaluated
in closed form using reptation theory. This approach
could account for both solvent penetration and polymer
dissolution but required several parameters that were
difficult to measure experimentally.

Recognizing the presence of entanglements in poly-
mers, dissolution has been understood as the transfor-
mation undergone by the polymer from an entangled
gel-like phase to a disentangled liquid solution. The
dynamics of these chains have been described by means
of the reptation idea.’® On the basis of the above
arguments, Papanu et al.1” proposed a reptation model
for polymer dissolution. The dissolution rate was
expressed as the ratio between the radius of gyration
of the polymer and the reptation time. The dependence
of the radius of gyration and the reptation time on the
polymer molecular weight and the solvent concentration
was derived using scaling laws.181° The effective sur-
face solvent concentration was identified as an impor-
tant parameter and estimated by thermodynamics of the
swollen network. Peppas et al.?% recently proposed a
polymer dissolution model, using an anomalous trans-
port model for solvent penetration coupled with a
reptation model for dissolution. The disentanglement
time was proposed to be of the order of the reptation
time. This model introduced the concept of the “dis-
solution clock” that controls the dissolution process and
proposed that the magnitude of a “dissolution number”
determined the gel layer thickness. This approach
assumes that the solvent concentration at the polymer—
solvent interface is independent of the solvent concen-
tration history. Also, this approach fails to account for
the decrease in the melt viscosity observed as a result
of disentanglement.

A phenomenological model that accommodated mo-
lecular theories was recently proposed by Narasimhan
and Peppas?' to describe the dissolution of rubbery
polymers. This approach delineated the concentration
field into different regimes, and transport equations
were written in each regime. Molecular arguments
were used to predict the reptation diffusion coefficient
and the disentanglement rate. The simulations indi-
cated that the dissolution can be either disentangle-
ment- or diffusion-controlled depending on the polymer
molecular weight. This approach describes dissolution
of rubbery polymers only, and the effects of a glass
transition and the viscoelastic properties of the polymer
on the dissolution process are not studied.

The objectives of the present research were (i) to
develop a solvent transport model accounting for diffu-
sional and relaxational mechanisms, in addition to
effects of the viscoelastic properties of the polymer of
the dissolution behavior, and (ii) to perform a molecular
analysis of the polymer chain disentanglement mecha-
nism, develop a mathematical model for polymer dis-
solution, and study the influence of various molecular
parameters like the reptation diffusion coefficient, the
disentanglement rate, and the gel layer thickness on
the phenomenon.
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Figure 1. Schematic representation of a one-dimensional
solvent diffusion and polymer dissolution process: (a) initial
slab of thickness 2I, (b) initial swelling step showing the
increasing position of the rubbery—solvent interface (S) and
the decreasing position of the glassy—rubbery interface (R),
(c) onset of the dissolution step showing the decreasing position
of the interface S along with the decreasing position of the
interface R, and (d) final dissolution step where the slab has
been transformed into a rubbery material (disappearance of
interface R) and the position of interface S still decreases.

Model Development

A model is developed for one-dimensional solvent diffusion
in a thin polymer slab of thickness 2I. The solvent is
component 1 and the polymer component 2. It is assumed that
the molar volumes of the components remain constant during
mixing.

The physical mechanism of the dissolution phenomenon is
depicted in Figure 1. During the initial stage of the dissolution
process, a glassy polymer of thickness 2l starts swelling due
to the penetration of the solvent into it and the simultaneous
transition from the glassy to the rubbery state. Thus two
distinct fronts are observed—a swelling interface at position
R and a polymer/solvent interface at position S. Front R
moves inward while front S moves outward. When the
concentration of the penetrant in the polymer exceeds a critical
value, macromolecular disentanglement begins. After the
concentration exceeds the critical value, true dissolution
commences. After macromolecular disentanglement is com-
plete, the polymer is dissolved. During this time, front R
continues to move toward the center of the slab, while front S
moves inward as well. After the disappearance of the glassy
core, only front S exists, and it continues to move inward
toward the center of the slab till all of the polymer is dissolved.

The entire concentration field is divided into three regimes.
We define the swollen polymer (i.e., the region R < x < S'in
Figure 1) as the “concentrated” regime. We postulate the
existence of a diffusion boundary layer adjacent to the rub-
bery—solvent interface, S, through which the disentangled
chains diffuse. The diffusion boundary layer is defined as the
“semidilute” regime and has a constant thickness, 6. When
the polymer is fully dissolved, the disentangled chains move
freely in the solvent and exhibit Brownian motion. This region
is referred to as the “dilute” regime. These regimes are
depicted in Figure 2.

Model Equations in the Concentrated Regime. The
continuity equation in one dimension for the solvent can be
written as

R CA)
ot x

1)
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Figure 2. Disentanglement of polymer chains. (a) Before
dissolution starts, there is no disentanglement; this is a
swellable system. (b) Onset of disentanglement in the diffusion
boundary layer occurs. (c) Dissolution is complete, and the
disentangled chains exhibit Brownian motion in the solvent.

where v; is the volume fraction of the solvent and v; is the
velocity of the solvent in the x-direction.
According to Fick's law,

. dpy
hix= _DIZ& (2

where ji« is the solvent mass diffusion flux relative to the
volume-averaged velocity, D1, is the mutual diffusion coef-
ficient, and p; is the mass of solvent per unit volume. The
mutual diffusion coefficient, D1, can be expressed as??

_ D1010,V20u, 3)
12 RT  9p;

where D, is the self-diffusion coefficient of the solvent, u; is
the solvent chemical potential, V; is the specific volume of the
polymer, R is the universal gas constant, and T is the
temperature.

The equation for chemical potential of a penetrant in a
swollen polymer is given as

= pd+ RT[In v, + (l - %)(1 —v) + 2@ —v)?[+
Vo (4)
Here, x is the number of monomer units per polymer chain, y

is the Flory solvent—polymer interaction parameter, and x is
the osmotic pressure. Using eq 4 in eq 3, we obtain

Dy, = Dy3(1 — 2xvy) (5)

The solvent flux relative to stationary coordinates is given
by
Dyv1v,9u

V1T TR g ©)

In the case where the solvent chemical potential is a
function of both concentration and pressure, we have

D1U1U2|.3M13“1 1 o
RT |dv,0x  omox

@)

vV =

Rearranging the above equation and substituting eq 6 into it,
we obtain

_ dv, Dy,Viv; o
A (€

— D —
29x " RT(1 — vy)(1 — 2yv,) X

Thus, the solvent flux is expressed as a sum of contributions
from diffusive and osmotic pressure terms. The osmotic
pressure in the solvent flux expression depends upon the
viscoelastic properties of the polymer. The relationship be-
tween the osmotic pressure and the stresses within the
polymer can be derived by writing momentum balances.
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The momentum balance for component i (i = 1, 2) is®

Dyv; i
Pipt T VT; + pib; + pip; ©)

where T;j is the total stress tensor for component i, b; is the
body force, and pit is the exchange of linear momentum or
diffusion drag between components. The total stress tensor
of the solvent can be expressed as

T,=-P4l (20)
where the shear stresses between the solvent molecules are
assumed to be negligible because of slow flow. The total stress
tensor of the polymer can be expressed as?*

T,=-P,l+o0 (11)

where o is the stress tensor of the polymer. For momentum
conservation,

Plpir + lozpz+ =0 (12)

Adding the two-component balances yields

D,v, D,v,
VJT=V(P1+P2):VU— pth‘sz Dt +

P10y + p,b, (13)

The inertial terms in the above equation are generally very
small in penetrant diffusion in glassy polymers. For instance,
if the acceleration rate is 0.01 m/s?, the inertial term has a
magnitude of 10 N/m3. However, if the polymer is in the glassy
state and the relaxation rate of the polymer is much slower
than the penetrant diffusion rate, the stress difference at the
glassy—rubbery interface can exceed 10 N/m?, leading to a
stress gradient of >10° N/m2. In this case, the internal stresses
are so high that some microcracks can be observed at the
interface. Thus the inertial terms can safely be neglected,
yielding

Vr = Vo (14)
In one dimension, the above equation reduces to

o _ 30
X ox

(15)

Substituting this equation into the solvent flux equation (eq
8), we observe that the flux is proportional to the gradient of
the stress.

We have used the Maxwell model as the constitutive
equation to describe viscoelastic behavior. In one dimension,
this can be expressed as

aOrxx _ Oxx aExx
ot T TEG (16)

where 7 is the Maxwell relaxation time and E is the spring
modulus. 7 and E are related as

r=_ (17)

The viscosity, 7, is expressed as a function of the penetrant
concentration, v,, as

17 = 1 exp(—a,v,) (18)

where a, is a plasticization parameter.

In continuum mechanics, the deformation gradient tensor,
F, is used to relate the deformed state to the undeformed
state.?> Expressing this in one dimension, we can derive
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1
GXX=F11—1=U—2_1 (19)

The above equation describes the coupling between the local
deformation and the local penetrant concentration.

Substitution of the flux equation, eq 8, and the momentum
balance equation, eq 15, into the mass balance equation, eq 1,
yields

Dy,Viv, o
RT(1 — v)(1 — 2yv,)9X

(20)

81)1_3 v, 9
ot ox| Zox| ' ox

Then, by substituting eq 19 into the stress—strain constitutive
equation, eq 16, we obtain

00y _ Oxx E

ot E) (1 -t

vy

(1)

The above two equations represent the model equations for
transport of solvent in the rubbery polymer, i.e., in the region
R < x < S as shown in Figure 1.

The Kinetics of glass transition have been described by
Astarita and Sarti®® as

dR
at = K(U1\><=R - Ul,t)n (22)

where v1; is the solvent volume fraction corresponding to a
threshold activity for swelling. K and n are the parameters
of the kinetic model.

The appropriate initial and boundary conditions for the
model egs 20 and 21 are

t=0,v,=v10,0,=0 (23)
00,
x=0, roa 0 (24)
dR
x=R, (v, — Ul,o)a =v,v,, R0)=1 (25)
X=S§,v,=v, ,0,=0 (26)

where v;1~ is the volume fraction of the solvent at the gel side
of the gel—liquid interface.

Model Equations in the Diffusion Boundary Layer. As
the polymer chains disentangle, they move out of the gel-like
phase to a liquid solution through a diffusion boundary layer.
The chain transport through this boundary layer is described
as

v, 9 v, dsadv,
ot~ ax[ Pax] dtax

27)

where Dy, is the polymer diffusion coefficient in the solvent.
The above equation is valid in a boundary layer of constant
thickness ¢, which can be estimated by the following relation:

o=— (28)

where k; is a mass transfer coefficient.
The initial and boundary conditions for eq 27 are as follows:
t=0,v,=0 (29)

At the end of the boundary layer, the conventional boundary
condition is

x=8(t)+d,v,=0 (30)

The boundary condition on the solvent side of the gel—solvent
interface can be written by considering that a polymer chain
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requires a minimum time to disentangle and move out of the
gel. This minimum time is the reptation time.** Hence, the
disentanglement rate is zero till a time equal to the reptation
time elapses:

8’[12 +
—Dp& =0,x=8 (t)1 0<t< treptatior‘l (31)

After a time equal to the reptation time has elapsed, the
transport of the chains at the gel—solvent interface may be
disentanglement- or diffusion-limited. At times just greater
than the reptation time, the rate of diffusion is sufficiently
high, and hence the flux is disentanglement-limited. Hence,
the boundary condition can be written as

BUZ +
Dyt = K X = S0, > tpragon (32)

where kg is the disentanglement rate. An exact expression
for kq will be derived later.

As the disentanglement continues, the polymer concentra-
tion in the boundary layer increases till it reaches an equi-
librium value, v2%9. At this instant, the diffusion rate becomes
insufficient to transport the chains, and hence the polymer
concentration is always maintained at v2®9. It is proposed that
an equilibrium exists between the polymer rich gel and the
polymer lean solvent in the diffusion boundary layer. Hence
the boundary condition becomes

X= S+(t)! U; = vgq, t> treptation (33)

The rubbery—solvent interface, S, moves due to the swelling
of the polymer due to solvent ingress and by subsequent chain
disentanglement. This can be expressed as

ds Dp(avz)+

wen S(0) = (34)

This completes the formulation of the moving boundary
problem.

Interfacial Concentration. At the rubbery—solvent in-
terface, there is thermodynamic equilibrium between the
solvent and the polymer phases. Due to the presence of
entanglements, the Flory—Huggins theory cannot be directly
applied.

The change in the chemical potential of the solvent in the
swollen polymer due to the presence of entanglements can be
used to estimate the concentration at the rubbery—solvent
interface.?” As solvent penetration proceeds, there is a resis-
tance due to the elastic deformation of the entangled chains,
and the entangled network behaves like a permanent network
for a short duration of time. This time scale is very small
compared to the time scale of the dissolution process, and
hence the Flory—Rehner theory can be applied in this situa-
tion.

The solvent chemical potential in a polymer—solvent mix-
turel” is given by

uy =ui +RT

|nv1+(1—l(1—v1)+
Xn
VlVe( 2

e R () | N

where the term v¢/2N is the moles of cross-links and N is the
number of monomers per chain. Here, x, is the ratio between
the molar volume of the polymer and that of the solvent, and
x is the solvent—polymer interaction parameter.

The moles of cross-links are replaced with the moles of
entanglements, and this can be expressed as
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_ Vop2( M
=) @

where M. is the molecular weight between entanglements.
From rheological studies,®

M, ~— (37)

where M. is the critical molecular weight of the polymer,
defined by a sharp increase in the slope of the viscosity vs the
molecular weight curve, which is attributed to the onset of
entanglements.?® Hence, the chemical potential of the solvent
is

w =ud+RT |nv1+(l—xl)(l—vl)+
n

(@ —v)? + V_1P2(M£ %)(L) -(1- Ul)] (38)

c 1_Ul

The chemical potential of the solvent in the diffusion
boundary layer is calculated by a similar argument except that
in this case, the entanglements are absent and, hence, there
is no need to account for them. Therefore, the chemical
potential of the solvent in the diffusion boundary layer can be
written as

/‘1+ =/12 + RT[In v+ (l - 1)(1 —vy) +x(1 - vl)2

X,
(39)

By assuming that an equilibrium exists between the chemical
potential of the solvent in the swollen polymer and that in the
diffusion boundary layer, the solvent concentration on the gel
side of the gel—liquid layer can be obtained.

Analysis of Diffusion Coefficient. It is necessary to
appropriately define the diffusion coefficients that appear in
all of the preceding transport equations. It can be demon-
strated® that in dissolving systems there exists a critical
solvent concentration, v,*, at which the mode of mobility of
the polymer chains undergoes a change. This can be math-
ematically expressed as a change in the diffusivity.? This can
be represented as

Dy, =Dy, vy <07 (40)
D,, = Dy, vy > vY

where
D, = D, exp(aqvy) (41)

where Dy is the diffusivity of the solvent in a glassy polymer
and D, is a “reptation” diffusion coefficient. An expression for
the concentration and molecular weight dependence of D, can
been derived®! as

_ A
RERITRE e

where A is a constant that depends on the polymer molecular
weight, the solvent viscosity, and the temperature.

To determine the critical solvent concentration, v1*, at which
the diffusivity changes to a reptative mode, the following
argument is applied. The characteristic crossover concentra-
tion for a change from a concentrated to a semidilute solution
for polymer melts® is used as an initial estimate for v,*:

3N
vy =

(43)

Here, N is the number of monomers, and ry is the radius of
gyration of the polymer.
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The diffusion coefficient D, that appears in the transport
equations in the diffusion boundary layer is defined by treating
the disentangling chains in the boundary layer as Brownian
spheres. Thus, a Stokes—Einstein type diffusivity arises:

__kT
P Bamyry

(44)

Here, 71 is the solvent viscosity, and ry is the polymer radius
of gyration. Using an exact expression for rg,?! D, can be
rewritten as

D, =1.1648 x 10T (45)

771NO.5

where T is the temperature and N is the number of monomers
in the chain.

We postulate that for a dissolving polymer, the disentangle-
ment rate, kg, can be given as the ratio of the radius of
gyration, rg, to the reptation time, treptation:

r
kg = — (46)

treptation

Exact expressions for ry and trepration have been derived else-
where.?* The final expression for the disentanglement rate is

B
ky=———= 47
’ 1 -op)*? “n
where B is a constant that depends on the polymer molecular
weight, solvent viscosity, and temperature.

This completes the formulation of the problem with all
parameters defined a priori except for the “equilibrium”
concentration, v2%9, in the diffusion boundary layer. Owing to
lack of any prior knowledge of this concentration, this is
treated as a parameter. Hence we have formulated a one-
parameter model through the foregoing arguments.

Numerical Simulations

Equations 20, 21, and 27 lead to a system of two
coupled, nonlinear, partial differential equations, one
of which is coupled with an ordinary differential equa-
tion. The solution of the above system of equations
would also generate the temporal evolution of the two
moving boundaries and hence the gel layer thickness.
The concentration profiles can be integrated to obtain
the mass of the polymer dissolved as a function of time.
The moving boundary problem was transformed into a
fixed boundary problem by using “front-fixing” tech-
niques3! that utilize a new set of space coordinates. A
modified Landau transform32 was applied to the con-
centrated regime, i.e., in the region R < x < S. This
transform is given by

X—R
E=5—R (48)
This fixed the moving boundary as &; varies from 0
to 1. This transform is valid till the glassy core exists.
Once the glassy core disappears, symmetry conditions
for both the solvent concentration and the stress prevail
at x = 0. The new Landau transform that fixes the
rubbery solvent interface is

=g (49)

A similar modified Landau transform was applied to
the diffusion boundary layer, i.e., in the region S < x <
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Figure 3. MEK volume fraction, v,, as a function of normal-
ized position, &;. The polystyrene molecular weight was M, =
52 000. The position & = 0 is the center of the slab. The time
increment starting from the first curve on the right is At =
1000 s.

S + 4. The transform is given by

g="52 (50)

This fixed the moving boundary as &, varies from 0
to 1 and is valid even after the polymer becomes
completely rubbery. These transforms suitably modified
the model equations. A fully implicit backward time-
centered space finite difference technique was then
utilized to transform the set of differential equations
to a set of nonlinear algebraic equations at each time
step. The details of the numerical algorithm are
presented elsewhere.®® The resulting system was solved
by using the Thomas algorithm.34

To perform simulations with the model, the system
methyl ethyl ketone (MEK)/polystyrene was used as a
model system. Therefore, relevant thermodynamic and
structural parameters were determined independently
for this system at 25 °C. The MEK—polystyrene inter-
action parameter,3 y, was 0.49, and the M. for polysty-
rene®® was 38 000. The preexponential factor for the
diffusion coefficient (see eq 41) was taken as 4 x 10710
cm?/s, and the exponential factor was chosen as 7. The
interfacial concentration, v;~, was calculated to be 0.796
for polystyrene of molecular weight 52 000. The thick-
ness of the diffusion boundary layer was chosen to be
5% of the initial half thickness of the slab. The
modulus, E, was taken as 3 x 108 Pa, and the preex-
ponential factor for the viscosity (see eq 18) was chosen
as 25. Exact expressions3! were used to calculate the
reptation time, the disentanglement rate, and the
Stokes—Einstein diffusion coefficient.

The effect of the polymer molecular weight on the
dissolution mechanism was investigated. Figure 3
shows the solvent concentration profile in the polymer
(M, =52 000) as a function of normalized position based
on the undeformed coordinate system. The center of the
slab is at & = 0, and the rubbery—solvent interface is
at &, = 1. Dramatic changes in the concentration profile
are observed at the glassy—rubbery interface. The steep
profiles are indicative of a relaxation-controlled dissolu-
tion mechanism, thus leading to case Il type behavior.
The flat profiles in the rubbery region have been
attributed to very small diffusional resistance. The
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Figure 4. Polystyrene volume fraction, v, in the diffusion
boundary layer as a function of normalized position, &. The
polystyrene molecular weight was M, = 52 000. The position
&, = 0 represents the initial half-thickness of the slab.
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Figure 5. Internal stress, oy, as a function of normalized
position, &;. The polystyrene molecular weight was M, =
52 000. The position & = 0 represents the center of the slab.
The time increment starting from the first curve on the right
is At = 1000 s.

glassy core essentially behaves like an impervious wall,
and as diffusional resistance increases, smoother con-
centration profiles are observed. Figure 4 shows a plot
of the polymer volume fraction in the diffusion boundary
layer as a function of the undeformed coordinate, &,. The
gradient of the polymer concentration becomes constant
once the profiles fully develop, as is expected of bound-
ary layer profiles. The stress profiles are shown in
Figure 5. It is observed that the maximum stress level
is at the interface. Figure 6 shows the temporal
evolution of the glassy—rubbery interface, R, the rub-
bery—solvent interface, S, and the gel layer thickness,
defined as (S — R). The concentration profiles were
integrated to obtain the fraction of polymer dissolved,
and this is shown in Figure 7. The profile is linear, once
again providing evidence of case Il transport. A more
extended discussion of typical case Il behavior during
solvent transport through glassy polymers was recently
provided by Rossi et al.3”

As the polymer molecular weight is increased to
520 000, the reptation time increases and hence the
diffusion coefficient decreases. The solvent concentra-
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Figure 7. Fraction of polystyrene dissolved as a function of
time. The polymer molecular weight was M, = 52 000.

tion profiles in this case (Figure 8) are not as well
developed, as the chains take much longer to disen-
tangle and reptate out. The velocity of the moving
interfaces also decreases as shown in Figure 9. The
mass fraction of the polymer dissolved decreases with
increase in the molecular weight as expected (Figure
10). Also, with increase in the molecular weight, the
dissolution starts shifting toward a disentanglement-
controlled mechanism as is seen from the thicker gel
layer thicknesses. For polymer of molecular weight
1 040 000, the concentration profile is steep (Figure 11)
and the gradient of the interface with time drastically
decreases. This is as expected as the gradient (and
hence the thickness of the gel layer) is controlled by the
ratio of the diffusivity in the gel to that in the diffusion
boundary layer. The fractional release profiles in Figure
12 show that until the reptation time elapses, no
polymer dissolves. The dissolution mechanism in this
case is completely disentanglement-controlled. It is
interesting to observe that as the mechanism shifts to
a disentanglement-controlled one, evidences of case Il
transport still persist.

The effect of the diffusion boundary layer thickness
on the dissolution mechanism was studied. Figure 13
shows the solvent concentration profile in the swollen
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polymer (M,, = 520 000) for a diffusion boundary layer
thickness that is 25% of the initial half-thickness of the
polymer slab. Integrating this profile, we obtain the
fraction of the polymer dissolved with time (Figure 14).
Comparing this profile to that in Figure 10, it is
observed that the mass of polymer dissolved has de-
creased. So even though the polymer molecular weight
was unchanged, the dissolution rate dropped due to
increased diffusional resistance through the boundary
layer. This is typical of disentanglement control. Hence,
diffusion-controlled dissolution can be achieved for high
molecular weight polymers if the boundary layer thick-
nesses are high enough. This also shows a transition
from case Il transport to Fickian behavior. This is as
expected as the mechanism is diffusion-controlled.

Conclusions

A new mathematical model to describe the dissolution
of glassy polymers was developed by incorporating the
mechanisms of chain disentanglement and reptation.
The dissolution was envisaged to occur due to solvent
penetration and subsequent chain disentanglement. The
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penetrant concentration field was divided into three
regimes which delineate three distinctly different trans-
port processes. A continuum mechanics- based ap-
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proach was used to treat solvent penetration in the
swollen polymer. The solvent flux was expressed as the
sum of contributions due to diffusion and osmotic
pressure. The effect of the viscoelastic properties of the
polymer on the transport was studied by coupling the
solvent mass balance with an appropriate constitutive
equation for the polymer. Molecular arguments were
invoked to derive expressions for the diffusivity, the
reptation time, and the disentanglement rate. Trans-
port in the second penetrant regime was modeled to
occur in a diffusion boundary layer adjacent to the
rubbery—solvent interface. A fully implicit numerical
technique was developed to solve the model equations,
and the simulations were used to study the effect of the
polymer molecular weight and the thickness of the
diffusion boundary layer on the dissolution mechanism
for polystyrene dissolution in MEK. The simulations
demonstrated that the dissolution mechanism was
disentanglement-controlled for higher molecular weight
polymers and shifted to diffusion-controlled behavior on
increasing the diffusion boundary layer thickness. This
was observed by the difference in the profiles of the
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fraction of polymer dissolved with time. The mechanism
of MEK penetration into polystyrene was established
to be of the case Il type though the dissolution process
shifted to a Fickian mode on increasing the diffusion
boundary layer thickness.
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