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Abstract—Edge computing promises to extend Clouds by
moving computation close to data sources to facilitate short-
running and low-latency applications and services. Providing
fast and predictable service provisioning time presets a new and
mounting challenge, as the scale of Edge-servers grows and the
heterogeneity of networks between them increases. This paper
is driven by a simple question: can we place container images
across Edge-servers in such a way that an image can be retrieved
to any Edge-server fast and in a predictable time. To this end, we
present KCBP and KCBP-WC, two container image placement
algorithms which aim to reduce the maximum retrieval time of
container images. KCBP and KCBP-WC are based on k-Center
optimization. However, KCBP-WC tries to avoid placing large
layers of a container image on the same Edge-server. Evaluations
using trace-driven simulations show that KCBP and KCBP-WC
can be applied to various network configurations and reduce
the maximum retrieval time of container images by 1.1x to
4x compared to state-of-the-art placements (i.e., Best-Fit and
Random).

Index Terms—Edge Computing, Services provisioning, Con-
tainer Image, Placement.

I. INTRODUCTION

Cloud computing has played a significant role in increasing

the agility of web service deployment while minimizing the

cost by leveraging the economy of scale. However, these cen-

tralized Cloud data-centers might not be a suitable deployment

platform for every type of application. For example, latency

sensitive applications should run physically close to the source

of data (e.g., smart city applications) and data analysis on

distributed data has to be done in place without moving the

data to a central place for performance and privacy concern

(i.e., video stream analysis). To overcome these limitations and

provide new opportunities, a more distributed Cloud model

has been emerging, named Edge computing [1]. Edge com-

puting, promising to extend Clouds by moving computation

close to data sources, has been successfully deployed and

utilized in practice to facilitate short-running and low-latency

applications and services. For instance, running smart city

applications at the Edge shows to be up to 56% more efficient

compared to Clouds [2].

In general, services are deployed as containers (a

lightweight virtualization technology) in the Edge, therefore,

container images are needed to run those services. However,

unlike Clouds, where all container images are available locally,

provisioning (deploying) a service in the Edge usually requires

pulling the corresponding container image over the wide area

network (WAN) from a central repository. This may result in

long provisioning time; depending on the container images

sizes and the network bandwidth [3]. Usually, the bandwidth

between Cloud and Edge-servers can be a few tens of Mb/s [4],

hence, an image of a size of 1 GB needs at least 100

seconds to be transferred to the Edge-server if the bandwidth

is 10 MB/s. This is unacceptable for most Edge services

and applications, especially for short-running services and

latency-sensitive applications. For example, we often scale-out

live video stream analytics to handle data burst; thus, as the

response time of those applications is in order of milliseconds,

it is not acceptable to wait for hundreds of seconds to provision

a new container.

As Edge-servers have limited storage capacity, storing all

the images locally is not feasible, especially as the local

storage should be exploited to store application data instead

of container images. However, given that Edge-servers are

featured with high network bandwidth among them compared

to the bandwidth with Clouds (e.g., running distributed IoT ap-

plication on a cluster of Edge-servers is 5.3x times faster than

running it on Clouds [5]); a possible solution is to distribute

container images across Edge-servers, thus, the network band-

width and available storage (a small fraction) can be exploited

efficiently. Unlike most approaches in the Cloud, container

image retrieval in Edge environments needs to be aware of

the network heterogeneity between Edge-servers. Even worse,

container images and layers are highly heterogeneous. As

a result, the retrieval time will depend on the image sizes

and the distribution of their layers (and the replicas: usually

layers are replicated for performance and fault-tolerance);

hence, it is hard to predict the retrieval time of a container

image. In this paper, we argue that the initial placement is

important for fast service provisioning in Edge environments.

Moreover, a service can be provisioned on multiple Edge-

servers and an Edge-server may host multiple applications

(e.g., camera devices host multiple applications [6]), therefore,

it is essential to ensure predictable provisioning time as well.

Our work tackles this problem (i.e., fast and predictable service

provisioning in the Edge) by introducing novel placement

algorithms that target reducing the maximum retrieval time of

an image to any Edge-server. To the best of our knowledge, no

previous studies have worked on container image placement in



Edge environments or targeted reducing the maximum retrieval

time of container images.

Contributions. In an attempt to demonstrate the importance

of container image placement across Edge-servers, in this

paper, we propose and evaluate through simulation two novel

container image placement algorithms based on k-Center opti-

mization. In particular, we introduce a formal model to tackle

down the problem of reducing the maximum retrieval time

of container images, which we denote as MaxImageRetrieval-

Time. Based on the model, we propose KCBP and KCBP-WC,

two placement algorithms which target reducing the maximum

retrieval time of container images to any Edge-server. While

KCBP is based on a k-Center solver (i.e., placing k facilities

on a set of nodes to minimize the distance from any node

to the closet facility) which is applied on each layer and

its replicas (taking into account the storage capacities of the

nodes), KCBP-WC uses the same principle but it tries to avoid

simultaneous downloads from the same node. More precisely,

if two layers are part of the same image, then they cannot be

placed on the same nodes. We have implemented our proposed

algorithms alongside two other state-of-the-art placement al-

gorithms (i.e., Best-Fit and Random) in a simulator written in

Python. We simulate the behavior of the algorithms on realistic

and synthetics networks with a dataset of container images

from IBM production Cloud data-center [7]. Simulation results

show that the proposed algorithms can outperform state-of-

the-art algorithms by a factor of 1.1x to 4x depending on

the characteristics of the networks. For example, on the Sanet

network [8], we reduce the retrieval time by 13% and 18%

compared to Best-Fit and Random, respectively.

The remainder of this paper is organized as follows. First,

Section II introduces Edge computing and container image

management, followed by a state-of-the-art in Section III.

Next, the problem alongside the proposed algorithms are

formalized in Section IV. Simulation methodology is discussed

in Section V. Then, the obtained results are presented in

Section VI and discussed in more details in Section VII.

Finally, Section VIII concludes this study.

II. BACKGROUND

A. Edge computing

The Edge is an extension to the Cloud that includes all

the devices that are virtualized and placed on/near the data

sources ranging from surveillance cameras [6], to Cloudlet [9]

and micro data-center [10]. As in traditional Cloud, those

resources are leveraged by the users to run their services.

Unlike Clouds, Edge-servers have limited computation and

storage capacity. However, they are featured with high network

bandwidth among them compared to the bandwidth to the

Clouds. Hence, they can act as one cluster and serve a wide

range of smart city applications [11]: despite the data exchange

across Edge-servers, by eliminating the data transmission to

Clouds, the response time of face recognition application can

be reduced from 900ms to 169ms [5].

B. Container Image management

Most services run in virtualized environments in both

Clouds and Edge. While Virtual Machines (VMs) are widely

used in Clouds; containers, being more lightweight in terms

of provisioning times and image sizes, are often deployed

in the Edge [12], [13]. Many container technologies have

been developed recently such as LXC [14] and Docker [15].

Container images are structured as layers. Each image consists

of an ordered set of layers that are stacked one on top of

the other, and a manifest that maintains the layers of that

image. Each layer is a collection of files that are stored as

a gzip-compressed tar file. Layers could range in size from

few Kilobytes to several Megabytes [7]. The registry is the

component responsible for container image management in

the Docker ecosystem. It stores all the layers (from all the

container images). Since the same layer could be shared by

multiple container images, Docker registry uses layers level

deduplication to reduce the size of stored data. Docker registry

could be a remote online registry (e.g., Docker Hub [16]), a

central private registry, or a local registry on the same machine

of the Docker daemon.

III. RELATED WORK

Container image management. Slacker [17] uses chunks

level deduplication to speed up container provisioning by

transferring the accessed blocks on demands. This is motivated

by the fact that just a small fraction of the image is needed

to boot the container. However, dividing Docker images into

chunks may break the layer structure among the layers and

could bring integrity issues if these chunks are transferred

over an insecure network. BitTorrent protocol has been used

to distribute container layers in a single data-center setup

[18]. It has been shown that a great reduction in provisioning

time could be achieved when the same image is requested

by a large number of machines simultaneously. However, for

single image provisioning, no improvement can be achieved.

Moreover, BitTorrent protocol does not guarantee a predictable

performance.

Docker image placement and container provisioning have

been studied in [19]. The authors in [19] propose a collabora-

tive docker registry where the private registries on the cluster

(compute) nodes can collaborate to store and retrieve docker

images instead of relying on a central or remote registry.

Also, the authors opt for layer placement rather than complete

image placement to avoid redundancy in common layers. For

layer placement, they employ simple heuristics by sorting the

layers and the nodes Ascending/Descending. Bipartite graphs

have been used to balance the retrieval of missing layers from

multiple nodes. All the layers are 3-way replicated. While this

work targets homogeneous and single cluster environments,

this paper deals with heterogeneous network environments.

In contrast to the aforementioned works, which focus on single

data-center setup, in this study, we opt for fast and predictable

image provisioning in Edge environments, where the network

links between the Edge-servers are heterogeneous.



Virtual Machine Image (VMI) management. Most of the

work on VMI management focuses on reducing the storage

capacity required to store VMIs by leveraging deduplication

[20], [21] and improving the provisioning time of VMs by ex-

ploiting the already available chunks of the host machine [22],

[23], [24]. Few studies have targeted geo-distributed VMI

retrieval [25], [26] where the goal is to minimize the transfer

time of VMIs over a heterogeneous WAN. While all the

aforementioned works target VMI management and focus on

data retrieval, in this work, we investigate the importance of

container image placement on the provisioning time.

IV. CONTAINER IMAGE PLACEMENT

In this section, we introduce the formal model we use

to study the container image placement problem. We also

introduce the two heuristics we propose to distribute a set of

replicated layers through a network (across Edge-servers). In

Section IV-A, we focus only on a set of individual layers and

try to optimize the maximal retrieval time. In Section IV-B,

we show how to extend the problem to a set of images (that

are themselves sets of layers) and how to adapt our placement.

A. Layer Placement

1) Formal Model: For the moment, we focus on layers

placement and put aside complete images. First, a layer li is

defined by its size si (i.e., its storage cost) and its replication

number ni (i.e., how many times a layer is replicated). We

denote by Li = l1i , . . . , l
ni

i the replicas of li. In the following,

the complete set of layers is denoted as L and LR represents

the set of replicas (LR =
⋃
Li).

In our model, the network is defined as a set of nodes V

that are fully connected (thus a complete graph). We denote

as c the storage capacity of all nodes (the allocated storage

space on each node). For all the pairs of nodes u, v, we denote

as buv the bandwidth between these two nodes (if u = v then

bu,v = +∞).

Given a set of layers L, a set of nodes V and a storage

capacity c, we define a placement as a function σ from LR to

V (we want to place all replicas). A placement is said to be

valid if for each u ∈ V ,
∑

lk
i
∈σ−1(u) si ≤ c (i.e., the sum of the

sizes of stored replicas does not exceed the storage capacity)

and for each k, k′ ∈ [1, ni], σ(l
k
i ) 6= σ(lk

′

i ) (i.e., replicas of

the same layer have to be placed on different nodes).

From a valid placement, we derive the retrieval time of a

layer li on a node u as follows. Let uσ
i be the node owning

a replica of li that is the closest to u (i.e., with maximal

bandwidth, formally uσ
i = arg(maxv∈σ(Li) buv). The retrieval

time of li on u is thus Tu
i = si

buuσ
i

. Our goal here is to minimize

the maximal retrieval time for all layers on all nodes. We

denote this problem MaxLayerRetrievalTime.

Problem 1 (MaxLayerRetrievalTime): Let V be a set of

nodes with storage capacity c and L be a set of layers. Return

a valid placement that minimizes: max
u∈V, li∈L

Tu
i .

MaxLayerRetrievalTime is close to the k-Center problem,

that aims to place facilities on a set of nodes to minimize the

distance from any node to the closest facility. See below for

a formal definition.

Problem 2 (k-Center): Given a set V with a distance func-

tion d (defined between all elements of V ), and a parameter

k, return a set S ⊆ V such that |S| = k that minimizes:

max
u∈V

min
v∈S

d(u, v).

MaxLayerRetrievalTime is similar to the k-Center problem

if considering only one layer. k-Center problem is known for

being NP-complete [27] and thus MaxLayerRetrievalTime is

also NP-complete. In addition, it has been proven that the best

possible approximation is a 2-approximation (unless P=NP)

[28].

The solution we introduce to solve MaxLayerRetrievalTime

is based on a solver for k-Center. The basic principle of this

heuristic, KCBP (k-Center-Based Placement), is to sort the

layers in descending order by their sizes and then use this

solver several times to place replicas, one layer after another.

The distance used is the inverse of bandwidths. A pseudo-code

of KCBP is provided in Algorithm 1.

For our implementation, we use SCR, a polynomial k-Center

problem solver that was introduced by Robič and Mihelič [29].

SCR is based on a pruning technique (i.e., removing some

edges and find a solution on the induced subgraph) and a

Dominant Set problem solver (as the Dominant Set problem is

also NP-complete, SCR relies on a heuristic). Note that SCR is

a 2-approximation, but its experimental average approximation

factor is far better and as far as we know the best among

polynomial heuristics: 1.058 for SCR on a classical benchmark

for graph partitioning [29].

The time complexity of SCR is O(m2 logm), where m is

the number of nodes. Hence, the overall complexity of KCBP

is O(|L||V |2 log |V |).

Algorithm 1: KCBP (L, V, c)

Sort L by decreasing size ;

foreach u ∈ V do

cu = c ;

foreach li ∈ L do

V ′ = {u ∈ V, cu ≥ si} ;

S = Scr(V ′, ni) ;

k = 1 ;

foreach u ∈ S do

σ(lki ) = u ;

k ++ ;

cu ← cu − si ;

return σ

B. Image Placement

MaxLayerRetrievalTime focuses on layers. However, we

target the retrieval of complete container images.

1) Formal definition: We define an image as a set of layers

Ij = {li1 , . . . , liq}. The complete set of images is denoted

as I. To retrieve an image Ij , a node u has to download a



replica of each layer that is in Ij . As a first approximation,

we could consider the downloads are done in parallel and thus

the retrieval time is defined by the largest retrieval time among

this different layers (as in MaxLayerRetrievalTime). However,

multiple downloads from a same source may degrade the per-

formance by reducing the bandwidth. Therefore, in our model,

we consider that if a node requests an image that requires

several layers where the closest replicas are on the same node,

then the download of these replicas is made sequentially (that

is equivalent to do it in parallel with shared bandwidth). More

formally, given an image Ij , a valid placement σ, and a node

u ∈ V , let V σ
u,Ij

= {v ∈ V, li ∈ Ij and uσ
i = v} the set of

nodes that are the closest nodes to u for at least one replica

of the layers of Ij . The retrieval time of an image Ij is thus:

Tu
Ij

= max
v∈V σ

u,Ij

∑

i,uσ
i
=v

si

buv
.

We define now MaxImageRetrievalTime where the goal is

to minimize the maximal retrieval time of a set of images.

Problem 3 (MaxImageRetrievalTime): Let V be a set of

nodes with storage capacity c and I be a set of images. Return

a valid placement that minimizes: max
u∈V,Ij∈I

Tu
Ij

.

2) Without-Conflict: If two layers are part of the same

image, then their replicas should not be on the same nodes.

However, applying this constraint to all layers can lead to a

huge spreading of the replicas and even to a lack of eligible

nodes (i.e., nodes with enough remaining storage capacities

and have no conflicting layers). Thus, we limit the number of

layers that are concerned. More precisely, we add a parameter

f that is a percentage of the layers. If a layer li is among

the f% largest layers, then this layer cannot be placed on a

node that already has a replica of a layer li′ which belongs

to the same image Ij . We denote this algorithm KCBP-WC

(KCBP-Without-Conflict) and a pseudo-code is provided in

Algorithm 2.

C. Limitations

To simplify the scenario, we assume that there is a direct

link between each pair of Edge-servers. Edge networks are

more complex with more network components (switches,

routers, etc) with complex and sometimes redundant paths

between nodes. Software level approached as Traffic Engi-

neering [30] and Software-Defined Networking (SDN) [31]

are widely employed to abstract the physical network topology

from the application and ensure some network properties (e.g.,

bandwidth) between nodes. Hence, the general trend of the

relative performance between the placement algorithm could

be preserved. Note that the main goal of this work is to

shed light on the importance of container image placement

in the Edge. Moreover, we plan to address the problems of

path sharing and the load variation of the network during the

retrieval time (by introducing a network-aware layer retrieval

approach, similar to [26]).

Algorithm 2: KCBP-WC (I,L, V, c, f )

Sort L by decreasing size ;

foreach u ∈ V do

cu = c ;

foreach li ∈ L do

V ′ = {u ∈ V, cu ≥ si} ;

if li is one of the f% largest layer then

foreach Ij ∈ I such that li ∈ Ij do

V ′ ← V ′ \ {u ∈ V ′, ∃li′ ∈ Ij , σ(lki′) = u}

S = Scr(V ′, ni) ;

k = 1 ;

foreach u ∈ S do

σ(lki ) = u ;

k ++ ;

cu ← cu − si ;

return σ

V. SIMULATION METHODOLOGY

We developed a simulator in Python to evaluate the perfor-

mance of the two proposed placement algorithms on different

networks and using real container images dataset.

Our simulator is written in Python and the source

code is publicly available at https://gitlab.inria.fr/jdarrous/

image-placement-edge.

A. Network topology

We generate synthetic networks with different bandwidth

characteristics and use real-world networks topologies for our

evaluation. All the networks are described in Table I.

Synthetic networks. As we consider that network topolo-

gies have no interference, we generate complete graphs (i.e.,

there is a direct link between each pair of nodes) and then

assign bandwidths to these links. Four distributions have been

considered: (1) Homogeneous: where all the links have the

same bandwidth. (2) Low: where the majority of the links

have low bandwidth. (3) High: where the majority of the links

have high bandwidth. (4) Uniform: where the links bandwidths

follow a uniform distribution between 8Mbps and 8Gbps.

Real-world networks. In addition to synthetic networks,

we choose two real-world networks to demonstrate the ap-

plicability of our algorithms. We select the national networks

of France (Renater) and Slovakia (Sanet) [8]. To compute the

bandwidth between two nodes that are not directly connected,

we do the following: suppose that n is the minimum number

of nodes to reach one node from the other, and minb is equal

to minimum bandwidth of the links that form the shortest

unweighted path between these two nodes. Accordingly, the

bandwidth between these two nodes is set to minb ∗ 0.95n.

B. Container images dataset

Container images and their corresponding layers are re-

trieved from publicly released IBM Cloud traces [7]. We

extract the images and layers from the traces of frankfort



TABLE I
THE SIZES AND LINKS BANDWIDTHS CHARACTERISTICS OF THE STUDIED

NETWORKS.

Network
Number

of nodes

Links bandwidths (bps)

min 25th median 75th max

Homogeneous 50 4G 4G 4G 4G 4G

Low 50 8M 763M 1G 2G 8G

High 50 478M 5G 6G 7G 8G

Uniform 50 8M 2G 4G 6G 8G

Renater 38 102M 126M 132M 139M 155M

Sanet 35 63M 6G 8G 8G 10G

data-center. The data set is composed of 996 images with

5672 layers, see Table II. The majority of images (56%)

have between 5 and 15 layers, however, some images are

composed by up to 34 layers, see Fig. 1a. The layers are highly

heterogeneous in size (vary from 100B to 1GB). Moreover,

30% of the layers are larger than 1MB, see Fig. 1b.

TABLE II
THE CHARACTERISTICS OF THE CONSIDERED IMAGES DATASET.

Total #images 996

Total size of images 93.76 GB

Total #layers 5672

Total size of unique layers 74.25 GB

(a) CDF of the number of layers per
image

(b) CDF of layer size (byte)

Fig. 1. The characteristics of layers.

C. Node storage capacity

For each network, we limit the nodes’ capacities according

to the total dataset size and number of nodes. First, the

theoretical minimum node capacity that is needed to store all

the layers (considering that the layers can be split at a byte

level) is equal to the dataset size (with replication) divided

by the number of nodes. However, this capacity will not

satisfy any placement in practice as the integrity of the layers

should be preserved. This can be achieved by storing only a

complete layer on the same node. Therefore, we set the nodes’

capacities as the theoretical minimum capacity multiplied by

a capacity scaling factor. In our experiments, we test the

following values for the capacity scaling factor: 1.1, 2, and

INF . We include INF – which represents unlimited storage

– just for comparison.

D. State-of-the-art placement algorithms

We compare our proposed algorithms with two placements

algorithms: Random and Greedy (Best-Fit). These algorithms

are not network-aware (i.e., they do not take into account links

bandwidths). They serve as a comparison baseline.

1) Best-Fit placement: The Best-Fit placement is a greedy

algorithm to place layers on nodes. The algorithm places the

replicas of a layer li on the ni nodes with the largest remaining

storage capacity. The algorithm iterates over all the layers

sorted by their decreasing size. As a result, Best-Fit distributes

the layers evenly on the nodes in such a way that the nodes

have almost the same total storage cost. When the layers have

the same size, the behavior of Best-Fit will be like that of a

round robin distribution. The algorithm is deterministic when

the nodes initially presented in the same order, therefore, we

shuffle the initial nodes ordering in every iteration to get a

different placement.

2) Random placement: The Random placement serves as

a very base solution. The algorithm distributes the layers

randomly on the nodes. For each layer, we filter out the nodes

that do not have sufficient storage space to host the layers, and

then we select r random nodes to place the layer’s replicas.

E. Methodology

For our experiments, we consider a default replication factor

of 3 (as many storage systems [32]) for each layer (ni = 3
for all i), therefore, the total dataset size with replication is

3 × 74.25GB. For KCBP-WC, we set the limit to define the

“large” layers to 10%. For Best-Fit and Random placement

algorithms, we run the placement 50 times and we draw the

average retrieval times and the variation. KCBP and KCBP-

WC are deterministic.

VI. SIMULATION RESULTS

In this section, we present the results of our simulations on

the container images dataset presented earlier. We first focus

on synthetic networks before considering real-world networks.

A. Results for Synthetic Networks

We would like to note that even though the retrieval

times are presented in seconds, their relative values are more

important than their absolute ones as the absolute retrieval

time depends on the networks bandwidths. Similarly, for the

synthetic networks, the distribution of link bandwidths is the

important factor, not their actual values.

1) Homogeneous Network: All the links in the Homoge-

neous network have the same bandwidth, therefore, all the

nodes have the same priority to place a layer in case of

network connectivity. Fig. 2a shows the retrieval times of the

placement algorithms when varying the capacity scaling factor.

When the capacity scaling factor is set to 2, KCBP-WC has

a maximum retrieval time of 1.97s, which is 1.8x faster than

KCBP that needs 3.71s. With homogeneous link bandwidths,

placing layers of the same image on the same node can prolong

the retrieval time as in the case of KCBP. KCBP-WC handles

this by distributing the layers of the same images. Moreover,

as the bandwidths are homogeneous, we can notice that the

performance of KCBP-WC is similar to Best-Fit and Random

because the links bandwidths have no impact on the optimal
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Fig. 2. Retrieval time for Synthetic networks.

(a) Homogeneous Network (b) Low Network (c) High Network (d) Uniform Network

Fig. 3. Retrieval time for Synthetic networks where the best obtained solution is shown for Best-Fit and Random.

(a) Renater Network (b) Sanet Network

Fig. 4. Retrieval time for Real-world Networks.

placement. Best-Fit has the same maximum retrieval time of

KCBP-WC (i.e., 1.97s), while the maximum retrieval time of

Random is 2.05s.

2) Low Network: In this network, the majority of the nodes

are not well connected, therefore, the placement of the layers

(especially large ones) is critical for the retrieval performance.

Best-Fit and Random experience a high variation in retrieval

times and their best-found placements are still worse than that

of KCBP-WC (Fig. 2b). For example, for a capacity scaling

factor of 2, KCBP-WC achieves 7.85s while KCBP requires

10.09s. Best-Fit and Random have an average retrieval time of

23.15s and 26.63s, while their best retrieval times are 12.63s

and 11.35s, respectively.

3) High Network: With High network, the majority of

links have high bandwidths, which shows that there are many

nodes that are well connected to the rest. In contrary to the

Low network, the probability of placing a “large” layer on

a low-connected node is smaller, and therefore, we notice a

smaller variation in the performance for Best-Fit and Random.

Moreover, Best-Fit and Random have better retrieval times

than KCBP-WC in their best case. They achieve 1.34s and

1.36s, respectively, while KCBP-WC has a retrieval time of

1.50s in case of capacity scaling factor of 2. Fig. 2c depicts

the results.

4) Uniform Network: The Uniform Network (Fig. 2d)

shows a similar trend to the Low network as both networks

have a high percentage of low-bandwidth links and therefore

low-connected nodes. We can notice that Best-Fit and Random

exhibit high variation and KCBP-WC has better retrieval time

even compared to their best case.

B. Results for Real-world Networks

1) Renater Network: Renater Network exhibits only small

variations for links bandwidths, therefore, it shows similar

behavior to Homogeneous network. For example, as we can

see in Fig. 4a, for a capacity scaling factor of 2 KCBP-WC

has a maximum retrieval time of 59s while KCBP achieve

111s, that is more or less the ratio expected according to

previous results on homogeneous bandwidth. However, even

if the bandwidths are more or less homogeneous, the existing

small variations result in differences between the performance

of KCBP-WC and the ones of Best-Fit and Best-Fit has a
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Fig. 5. Retrieval time for KCBP-WC algorithm with different values for the f parameter on Synthetic networks.

(a) Low Network (b) High Network

Fig. 6. Retrieval time of individual Layers for Synthetic networks.

maximum retrieval time of 72s, which is 22% worse than

KCBP-WC.

2) Sanet Network: With Sanet network, the majority of

links have high bandwidth (the bandwidths of 75% of the links

are higher than 6 Gbps). Thus the results are close to that of

High network. However, contrary to the High network, in this

setup, KCBP performs better with increasing nodes capacities.

For example, it achieves 96s, 42s, and 2.3s for 1.1, 2, and

INF capacity scaling factor, respectively (Fig. 4b). The main

difference between Sanet and High network is the number of

nodes (i.e., 35 against 50). Thus, the chance of placing some

layers on low-connected nodes with KCBP-WC increases as

does the retrieval time (85s for capacity scaling factor of 2).

In such a case, pulling more than one layer from the same

node is better than having a layer on a low-connected node.

VII. DISCUSSION

In this section, we discuss the previous results and highlight

our findings. We focus on five aspects: conflicts, heterogeneity

of the bandwidth, storage capacity, percentage of layers con-

sidered as large for KCBP-WC, and maximal retrieval time

per image.

A. Impact of conflicts

In Fig. 6, we provide the maximum retrieval time for layers

instead of images in order to evaluate the impact of conflict.

As expected all strategies are not impacted the same way. For

example, KCBP doubles its retrieval time when images are

considered instead of individual layers on the High network

(Fig. 2c and Fig. 6b). However, for KCBP-WC, the impact

is small (more obvious with INF capacity) as the algorithm

avoids as much as possible putting layers of the same image

on the same node. In the case of Random and Best-Fit, as they

tend to produce close to even distribution of layers on nodes,

the probability of having more than one “large” layer on the

same node is less than the case of KCBP and KCBP-WC,

thus, conflicts between large layers are rare.

Thus, in general, avoiding conflict is an important factor to

consider while placing replicas.

B. Impact of the heterogeneity of the bandwidth

As expected, having nodes with different connectivity

change the behavior of the placement strategies. Here,

bandwidth-aware strategies are able to deal more efficiently

with this heterogeneity, even when it is small (as in case of

Renater network). However, we note some important differ-

ences between High and Low networks. In the first case, the

difference in retrieval times between KCBP-WC and average

values of Best-Fit or Random is small, and the variation

in the performances of the last two is rather low. For Low

network, this variation greatly increases as does the average

performance. In this case, the performance of KCBP is even

close to KCBP-WC. However, this does not apply to High

network. Hence, it seems that centrality of layers is more

important for Low network than for High network. In the

first case, it is important to target a few nodes with high

connectivity while in the second it is important to avoid the

few nodes with low connectivity (at least for the largest layers).

Thus, in Low network, KCBP compensates the conflicts with

a general good connectivity in comparison to the other node,

while in High network, the node used by KCBP are not that

much better than the average ones. At the same time, it is

easier for Best-Fit and Random to avoid few low connectivity

nodes than to reach the few high connectivity ones. KCBP-WC

is able to manage both situations when the number of nodes

is sufficient, otherwise, as in Sanet, it may suffer from the

spreading of the layers, as Best-Fit and Random do. Note that

in Uniform network, where bandwidths differ significantly,

KCBP-WC and KCBP perform well, even against the best

results from Best-Fit and Random for KCBP-WC.
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Fig. 7. CDF of maximal retrieval time per image with storage capacity scaling factor of 2.

C. The extra space effect

A phenomenon that is interesting to point out is the fact that

the performances of KCBP and KCBP-WC can be improved

by decreasing the node capacity. For example, this effect is

visible for KCBP-WC on the Homogeneous network, and for

KCBP on all the networks. The reason for this phenomenon

is that several layers of the same image are more likely to be

placed on the same node (and thus retrieved from the same

node) when the node capacity is larger. As explained earlier,

we proposed KCBP-WC to avoid such placements that are

common with KCBP. However, in order to avoid having layers

dispersed on too many nodes (or not being able to place all

layers), we only apply this strategy on “large” layers, implying

that, in some cases, the placement of layers of the same image

still happens and thus slightly decreases the performances.

D. Impact of the percentage of layers concerned by KCBP-

WC mechanism

Increasing the percentage of layers considered as “large” in

KCBP-WC leads to a diminution of conflicts that should result

in decreasing the retrieval time. However, it may also spread

layers on nodes with low connectivity, leading to potentially

longer retrieval times for some layers (and thus images). The

extreme case is when there are no remaining nodes with

enough storage capacity. As a result, KCBP-WC does not

return a valid placement. This was the case on Sanet network

which has only a small number of nodes (Fig. 4b). When

testing different values for this percentage (5%, 10%, and

20%) as shown in Fig. 5, we observe almost no difference

between them, except that with 20%. Moreover, the algorithm

does not succeed to find a solution when the capacity factor

is 1.1 on Homogeneous network.

We can not give a general conclusion from this result, as it

is strongly correlated with the container images dataset, but it

appears here that avoiding conflicts between only the largest

layers is enough and expanding this policy to smaller layer

offer no clear gain.

E. Maximal retrieval time per image

In this subsection, we discuss the maximal retrieval time

per image (i.e., the maximal time to retrieve an image to

any node). The cumulative distribution functions (CDFs) are

presented in Fig. 7 for synthetic networks and capacity scaling

factor of 2. We notice that the performances are close for

all strategies in case of Homogeneous and High networks

(Fig. 7a and Fig. 7c), with Best-Fit performing slightly better

for a portion of images (i.e., around 20% of the images on

High network). On such networks, the overall good quality

of links does not favor strategies that aim to spread as little

as possible the different replicas, as pointed out earlier when

evaluating the impact of bandwidth heterogeneity. In addition,

KCBP and KCBP-WC favor the largest layers, that may

slightly degrade performances for images with smaller layers.

Combined together, these two reasons fully explain these

results in comparison to the overall equal distribution of layers

among the nodes proposed by Best-Fit (even if the difference is

not that important). However, for Low and Uniform networks

(Fig. 7b and Fig. 7d) the trends are different. In these networks,

centrality is important and thus KCBP and KCBP-WC perform

well, even when we are considering other images than the

ones with maximal retrieval times. More precisely, KCBP and



KCBP-WC present better maximal retrieval times for 20% of

the images (images with longest retrieval time), with a small

advantage for KCBP-WC that also performs better for other

images. On Uniform network, KCBP outperforms all other

strategies, at the exception of KCBP-WC that has finally a

better overall maximum retrieval time (Fig. 2d).

From these distribution functions, we observe that although

KCBP and KCBP-WC mainly target large layers (and the

images they belong to), their performances are “good enough”

compared to Best-Fit, when considering all images. Note that,

Best-Fit can propose better retrieval times for intermediate

images when network bandwidth is overall high. In a network

with lower connectivity, the centralization of layers we propose

with KCBP and KCBP-WC allows general improvement of

maximal retrieval time for images.

VIII. CONCLUSION

Images management in Edge, especially container images,

is gaining more importance with the widespread of Edge-

servers. In this work, we propose to store the images across

these Edge-servers, in a way that the missing layers of an

image could be retrieved from nearby Edge-servers. The main

goal behind this approach is to ensure predictable and reduced

service provisioning time. To this end, we have proposed two

image placement algorithms based on k-Center optimization to

reduce the maximum retrieval time for an image to any Edge-

server. Through extensive simulation, using synthetic and

realistic networks with production container images dataset,

we have shown that our proposed algorithm can reduce the

maximum provisioning time by 1.1x to 4x compared to

Random and Best-Fit based placements.

In considering future work, we plan to implement our

solution in Docker and test its applicability on a real testbed.

In addition, we will investigate how to address path sharing

and the load variation of the network when retrieving a single

and multiple container images.
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