
On the Importance of Idempotence

Sunil Arya∗

Department of Computer
Science

The Hong Kong University of
Science and Technology

Clear Water Bay, Kowloon,
Hong Kong

arya@cs.ust.hk

Theocharis Malamatos
Max-Planck-Institut für

Informatik
Im Stadtwald, D-66123
Saarbrücken, Germany

tmalamat@mpi-
inf.mpg.de

David M. Mount†
Department of Computer

Science and
Institute for Advanced

Computer Studies
University of Maryland

College Park, Maryland 20742

mount@cs.umd.edu

ABSTRACT
Range searching is among the most fundamental problems
in computational geometry. An n-element point set in R

d

is given along with an assignment of weights to these points
from some commutative semigroup. Subject to a fixed space
of possible range shapes, the problem is to preprocess the
points so that the total semigroup sum of the points lying
within a given query range η can be determined quickly. In
the approximate version of the problem we assume that η is
bounded, and we are given an approximation parameter ε >
0. We are to determine the semigroup sum of all the points
contained within η and may additionally include any of the
points lying within distance ε · diam(η) of η’s boundary.

In this paper we contrast the complexity of range search-
ing based on semigroup properties. A semigroup (S, +) is
idempotent if x + x = x for all x ∈ S, and it is integral if
for all k ≥ 2, the k-fold sum x + · · · + x is not equal to
x. For example, (R, min) and ({0, 1},∨) are both idempo-
tent, and (N, +) is integral. To date, all upper and lower
bounds hold irrespective of the semigroup. We show that
semigroup properties do indeed make a difference for both
exact and approximate range searching, and in the case of
approximate range searching the differences are dramatic.

First, we consider exact halfspace range searching. The
assumption that the semigroup is integral allows us to im-
prove the best lower bounds in the semigroup arithmetic
model. For example, assuming O(n) storage in the plane

and ignoring polylog factors, we provide an Ω∗(n2/5) lower
bound for integral semigroups, improving upon the best
lower bound of Ω∗(n1/3), thus closing the gap with the

O(n1/2) upper bound.
We also consider approximate range searching for Eu-

∗This author’s work was supported in part by the Research
Grants Council, Hong Kong, China (HKUST6184/04E).
†This author’s work was supported in part by the National
Science Foundation under grant CCR-0098151.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06,May21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

clidean ball ranges. We present lower bounds and nearly
matching upper bounds for idempotent semigroups. We also
present lower bounds for range searching for integral semi-
groups, which nearly match existing upper bounds. These
bounds show that the advantages afforded by idempotency
can result in major improvements. In particular, assuming
roughly linear space, the exponent in the ε-dependencies is
smaller by a factor of nearly 1/2. All our results are pre-
sented in terms of space-time tradeoffs, and our lower and
upper bounds match closely throughout the entire spectrum.

To our knowledge, our results provide the first proof that
semigroup properties affect the computational complexity of
range searching in the semigroup arithmetic model. These
are the first lower bound results for any approximate geo-
metric retrieval problems. The existence of nearly matching
upper bounds, throughout the range of space-time trade-
offs, suggests that we are close to resolving the computa-
tional complexity of both idempotent and integral approxi-
mate spherical range searching in the semigroup arithmetic
model.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY

General Terms: Algorithms

Keywords: Range searching, approximation algorithms,
idempotence.

1. INTRODUCTION
Answering range queries is a problem of fundamental im-

portance in spatial information retrieval and computational
geometry. The objective is to store a set of n points P
in R

d, each associated with a weight, so that it is possible
to count (or more generally to compute some function of
the weights of) the points lying inside a given query range.
Range searching is a well studied problem, and many search
structures have been proposed and analyzed [1, 15]. At an
abstract level the problem has been one of the success stories
of theoretical computational geometry, where years of study
by numerous researchers have resulted in nearly matching
asymptotic upper and lower bounds for many formulations
of the problem. There is a spectrum of space-time trade-
offs. The most relevant work to ours involves halfspace
range counting queries, which Matoušek [14] has shown can

be answered in O(n/m1/d) time from a data structure of
space O(m). Nearly matching lower bounds were given by

Chazelle [8] for the more general problem of simplex range
searching, and these were later refined to halfspace range
searching by Brönnimann, Chazelle and Pach [7]. Through-
out, we refer to this paper as BCP.

Given the relatively high complexity of range searching, it
is natural to consider the problem in the context of approx-
imation. We are given an approximation parameter ε > 0
and assume that ranges are bounded. Let η denote a range,
and let diam(η) denote its diameter. All the points that lie
in the range must be counted, and any of the points that
lie within distance ε · diam(η) of the range’s boundary may
be counted as well. Arya and Mount [5] showed that in any
fixed dimension d with O(n log n) preprocessing time and
O(n) space, ε-approximate range queries for any bounded
convex range can be answered in time O(log n+1/εd−1) [5].
Later, Chazelle, Liu, and Magen [9] considered approximate
halfspace range and Euclidean ball searching in the high di-
mensional setting. Ignoring polylogarithmic factors, they
showed that is possible to answer queries in O(d/ε2) time

with O(dnO(1/ε2)) space.
In fixed dimensional spaces a natural goal is to achieve

query times that are polylogarithmic in n while using space
that is roughly linear in n. If we were to focus exclusively on
n and assume that ε is a fixed constant, then the results of [5]
would seem to be the end of the story. However, the additive
term that depends on ε grows rapidly, and in practice these
ε-dependencies dominate the query time. Throughout, we
treat both n and ε as asymptotic quantities, and assume
that n � ε−1.

We are concerned with the following very broad question:
What is the computational complexity of approximate range
searching in spaces of constant dimension? This line of
thought raises a number of questions. What are the best
ε-dependencies that can be achieved? How do various as-
pects of the problem formulation affect these dependencies?
What sorts of models, tools, and structures need to be de-
veloped to provide meaningful lower and upper bounds? As
mentioned above, in range searching we are computing some
function of the weights of the points lying within a range.
Such a function is commonly assumed to arise from a com-
mutative faithful semigroup over the domain of weights. We
consider how semigroup properties affect the complexity of
approximate (and exact) range searching.

A key semigroup property is idempotence. A semigroup
is said to be idempotent if x + x = x for all semigroup
elements x. For example, (R, min) and ({0, 1},∨) are both
idempotent. The first is useful for reporting the smallest
weight of any point in the range. The latter is useful for
range emptiness queries, which is closely related to nearest
neighbor queries. In contrast, if for all nonzero semigroup
elements x and all natural numbers k ≥ 2 the k-fold sum
x + · · · + x is not equal to x, the semigroup is said to be
integral [11]. For example, (N, +) is integral. It is useful for
traditional counting queries.

To see the relevance of idempotence, consider how range
searching usually works. At preprocessing time the algo-
rithm implicitly computes the semigroup sum of a number
of suitably chosen subsets of P , called generators.1 To an-

1Our use of the term generator is nonstandard. It is more
commonly used to refer to a linear form involving subsets.
We use it to refer to the subsets themselves, but since we
only charge one unit of storage per generator, the computa-
tional model is identical.

swer a query η, the algorithm determines an (ideally small)
set of generators whose union covers P ∩ η, and then re-
turns their total sum. If the semigroup is idempotent, these
generators may overlap, but for integral semigroups they
must be disjoint. Because of the constraint of disjointness,
one would expect that range searching over integral semi-
groups should be harder than for idempotent semigroups. It
is remarkable, however, that for virtually all formulations of
range searching, idempotence seems to be of no advantage.
In their survey Agarwal and Erickson state, “Although in
principle, storage schemes can exploit special properties of
the semigroup, in practice, they never do. All known upper
and lower bounds in the semigroup arithmetic model hold
for all faithful semigroups.” [1].

Our main result is that semigroup properties, idempo-
tence in particular, do indeed make a difference in the com-
plexity of both exact and approximate range searching. We
show that for exact halfspace range searching, the assump-
tion that the semigroup is integral allows us to prove a
stronger lower bound in the semigroup arithmetic model
than the one proved in BCP. For example, assuming O(n)
storage in the plane and ignoring polylog factors, we provide
an Ω∗(n2/5) lower bound for integral semigroups, improving

upon the BCP lower bound of Ω∗(n1/3), which holds for ar-

bitrary semigroups, thus closing the gap with the O(n1/2)
upper bound [14]. Our proof requires the assumption of
convex generators, which states that the convex hull of each
generator subset contains no other points of P (see Sec-
tion 3). We conjecture that our bounds hold even without
this assumption.

Given the lengthy history of range searching, it is sur-
prising that this fact has escaped notice until now. This
may be because for higher dimensions the lower bounds
for exact integral range searching are only marginally bet-
ter than the BCP bounds for arbitrary semigroups. We
show, however, that the story is dramatically different for
approximate range searching. We present lower bounds for
approximate range searching for both types of semigroups.
We also present nearly matching upper bounds for idempo-
tent semigroups (and upper bounds for integral semigroups
were given in [4]). These bounds show that in the idem-
potent case, given O(n/ε) space, the exponent in the ε-
dependencies is smaller by a factor of nearly 1/2.

We consider space-time tradeoffs for this problem. Rather
than expressing our space and time tradeoffs in the conven-
tional manner (query time as a function of space and data
size) we adopt a notation that more clearly illustrates the
incremental benefits of increased space. Recall that n de-
notes the data size, and let m denote the space of the data
structure. Let ρ = m/n denote the expansion ratio of the
data structure size over data size. Clearly m ≥ n, and so
ρ ≥ 1. We express query times as a fraction whose numer-
ator gives the running time assuming the smallest amount
of space supported by the data structure (which is typically
O(n)), and the denominator gives the tradeoff rate, that is,
the rate with which query time decreases as a function of
a multiplicative increase in space. For example, for exact
halfspace range queries, the conventionally expressed query

time of n/m1/d would instead be expressed as n1−1/d
/

ρ1/d.

In this form it is readily seen from the numerator that the
problem can be solved in O(n1−1/d) time given linear space,
and that by doubling space, the query time is decreased by

Idempotent Integral

Exact (Halfspaces) Lower Bound n
1− 2

d
+O

(
1

d2

)
[7] n

1− 1
d
−O

(
1

d2

)
(new)

Upper Bound n1− 1
d [14] n1− 1

d [14]

Approximate (Balls) Lower Bound
(

1
ε

) d
2−O(1)

(new)
(

1
ε

)d−O(1)
(new)

Upper Bound
(

1
ε

) d
2−O(1)

(new)
(

1
ε

)d−O(1)
[4]

Table 1: Query times (ignoring logarithmic factors) for n points and O(n) space, except for the upper bound
for approximate idempotent case, which requires O(n/ε) space.

a factor of 21/d. For one of our results (the upper bound
for approximate idempotent queries) the minimum allow-
able space is O(n/ε). To indicate this we specify that ρ is
at least Ω(1/ε).

Here is a summary of our results. (Also see Table 1 for
a somewhat simpler presentation.) We use the notation O∗

and Ω∗ to indicate the omission of polylogarithmic factors.
Our lower bound results are for worst-case query time in the
semigroup arithmetic model assuming a faithful semigroup.

• We present a lower bound for exact halfspace range
searching over integral semigroups. Assuming convex
generators, we show that the query time is at least

Ω∗
(

n
1− 1

d
−O

(
1

d2

)/
ρ

1
d
+ 1

d2

)
. By contrast, the BCP

lower bound is Ω∗
(

n
1− 2

d
+O

(
1

d2

)/
ρ

1
d

)
. See Theo-

rem 1 for details.

• We present a lower bound for answering ε-approximate
range queries for Euclidean balls over arbitrary semi-
groups (and hence for idempotent semigroups). We

show that the query time is Ω∗
((

1
ε

) d
2−1

/
ρ

1
2− 1

2(d+1)

)
.

See Theorem 2(i) for details.

• We present a lower bound for answering ε-approximate
range queries for Euclidean balls over integral semi-
groups. Assuming convex generators, we show that

the query time is at least Ω∗
((

1
ε

)d−5
/

ρ1− 4
d

)
. See

Theorem 2(ii) for details.

• We present a data structure for answering ε-approxi-
mate range queries for Euclidean balls over idempo-
tent semigroups. We show that if ρ is at least Ω(1/ε),

queries can be answered in O∗
((

1
ε

) d
2 − 1

2d

/
ρ

1
2− 1

2d

)
time. See Theorem 3 for details.

In [4] we showed that Euclidean ball range queries over in-
tegral semigroups can be answered with a space-time trade-

off of O∗
(

(1/ε)d−1
/

ρ1− 1
d

)
. Our results show that the re-

striction to idempotent semigroups can be of great benefit
for approximate range searching. Although both data struc-
tures are based on the general concept of an AVD (or ap-
proximate Voronoi diagram) [2,3,13], the methods used for
constructing generators in this paper are considerably dif-
ferent. Table 1 summarizes our results on exact halfspace
range searching and approximate range searching for Eu-
clidean balls in dimension d, assuming n points and O(n)
space, and ignoring logarithmic factors.

These are the first results we know of that exhibit the
impact of semigroup properties on the complexity of range
searching. These are the first lower bound results for any

approximate geometric retrieval problems. The existence
of nearly matching upper bounds, throughout the range of
space-time tradeoffs, suggests that we are close to resolving
the computational complexity of both idempotent and inte-
gral approximate spherical range searching in the semigroup
arithmetic model.

2. PRELIMINARIES
Before presenting our results we make some preliminary

remarks about the computational model. Throughout we
assume that the dimension d is a fixed constant and treat n
and ε as asymptotic quantities. Unless otherwise stated, we
will use the term “constant” to refer to any fixed quantity
that may depend on d but not on n or ε. Throughout, let
U

d denote the unit hypercube in R
d, and given a body C in

R
d, let µ(C) denote its Lebesgue measure.
Let (S, +) be a commutative semigroup. We will assume

that each element in S can be stored in unit space, and that
for any two elements x, y ∈ S, their semigroup sum x+y can
be computed in constant time. Let P be a set of n points
in R

d and let w : P → S be a function that assigns a semi-
group value in S to each point in P . For any subset G of
P , we define its weight w(G) =

∑
p∈G w(p), where the sum-

mation is taken over the semigroup. Let Q denote the set
of query ranges being considered. Recall that in the exact
range searching problem, we are required to preprocess Q so
that for any query range η ∈ Q, we can efficiently compute
w(P ∩ η). In the approximate range searching problem, in-
stead of computing w(P ∩ η), it suffices to compute w(X),
where X is any subset of P satisfying P ∩ η ⊆ X ⊆ P ∩ η+.
Here η+ denotes the expanded range, which consists of all
points that lie within distance ε · diam(η) of η.

Our lower bound proofs are in the semigroup arithmetic
model [7, 8, 12, 16]. Due to space limitations, we omit its
technical definition. Lower bound proofs in this model as-
sume that the semigroup is faithful, meaning that any two
identically equal linear forms have the same set of variables.
For example, (N, +), (R, min), and ({0, 1},∨) are faithful,
but ({0, 1}, + mod 2) is not. Let G be any set of m gen-
erators. For any range η ∈ Q, define Aη ⊆ G to be the
smallest set such that

⋃
G∈Aη

G = P ∩ η. Define T (P,Q, m)

to be minimum, over all sets G consisting of m generators,
of maxη∈Q |Aη|. Then in the semigroup arithmetic model,
the following holds: Given m units of storage, for any com-
mutative faithful semigroup, the worst-case query time for
range searching is at least equal to T (P,Q, m) [8]. The only
modification necessary for approximate range searching is
to define Aη ⊆ G to be the smallest set such that the union
of the corresponding generators,

⋃
G∈Aη

G, contains all the

points of P lying within η but none of the points lying out-
side of η+.

3. EXACT HALFSPACE RANGE SEARCH
In BCP a lower bound of Ω

(
(n/ log n)

1− d−1
d(d+1) /m1/d

)
is derived for exact halfspace range searching for arbitrary
semigroups in the semigroup arithmetic model. In this sec-
tion we present an improved lower bound for the case of in-
tegral semigroups. We need an additional assumption. Let
P denote the point set and G be the set of generators. We
say that G satisfies the convex generator assumption if for
all G ∈ G, we have G = P ∩conv(G), where conv(G) denotes
the convex hull of G. This assumption does not seem to be
very restrictive. Although it does not apply to the most effi-
cient data structure for halfspace range searching [14], after
minor modifications it does apply to the quasi-optimal data
structure of Chazelle, Sharir, and Welzl [10].

Our proof is based on a framework similar to that devised
in BCP. In their proof the generators used to answer a query
are allowed to overlap. A key contribution of our paper is to
show how to enhance their proof, so it yields a better lower
bound for the integral case, by exploiting the fact that the
generators used to answer a query must be disjoint. Our
new idea leads to only a marginal improvement for exact
halfspace range searching, but in Section 4 we shall see that
this leads to a much better lower bound for approximate
range searching for Euclidean balls.

We assume some prior familiarity with the BCP proof [7].
Here we restrict ourselves to a brief description of it, which
will allow us to illustrate the intuition underlying our im-
provements for the integral case. The lower bound example
consists of a scattered set P of n data points in the unit hy-
percube U

d. Roughly speaking, scattered here means that
the number of data points in any suitably large convex body
C ⊆ U

d is Θ(n · µ(C)). (A random set of n points sampled
uniformly and independently in U

d is scattered with high
probability.) Let G denote a set of generators that allow
for any halfspace query to be answered in time t in the
semigroup arithmetic model. A suitable set H+

0 of query
halfspaces is defined along with an appropriate differential
element dH for halfspaces. In BCP it is observed that the
complexity of halfspace range searching stems from the dif-
ficulty of covering points that lie close to the boundary of
the halfspace. To formalize this idea, for each halfspace
H ∈ H+

0 , define a region of interest RH ⊆ H to be a slab of
thickness (ct log n)/n (for a suitable constant c) adjacent to
the bounding hyperplane of H . A lower bound on the query
time t is obtained by computing lower and upper bounds on
the quantity Φ =

∫
H+

0
|P ∩ RH | dH .

For any halfspace H ∈ H+
0 , the BCP proof shows that

|P ∩RH | is at least 3at log n, where a is a suitable constant.
In order to compute an upper bound on Φ, let us say that
a generator G is absolutely fat with respect to an H ∈ H+

0

if |G ∩ RH | > 2a log n and G ⊆ H . The BCP proof makes
crucial use of the following simple fact.

Lemma 1. For any H ∈ H+
0 , a constant fraction of the

points of P lying within RH are covered by generators in G
that are absolutely fat with respect to H.

Using the lemma, it follows that, up to constant factors,
Φ ≤ ∑

G∈G
∫
∆G

|G ∩ RH | dH , where ∆G is the set of half-

spaces in H+
0 for which G is absolutely fat. Intuitively,∫

∆G
|G ∩ RH | dH serves as a measure of the usefulness of

generator G. Note that a generator is viewed as useful for

only those query halfspaces H for which it is absolutely fat,
and its contribution in this case is the number of data points
it covers in RH . Naturally, for a fixed number of generators,
an upper bound on the usefulness of any generator would
imply a lower bound on the query time t. It is not easy to
bound the usefulness of a generator, and in BCP some beau-
tiful techniques are devised to compute it. We can present
the intuition behind our improvement without these details.
In the integral case, since the generators used to answer a
query are required to be disjoint, intuitively it seems that
this must reduce the usefulness of a generator. To formalize
this intuition, we devise a different notion of a generator’s
usefulness, more suited to the integral case. Let us say that
a generator G is relatively fat with respect to an H ∈ H+

0 if
|G∩RH | > (at log n/2n)|G| and G ⊆ H . We can now easily
establish the following lemma in the integral case.

Lemma 2. For any H ∈ H+
0 , a constant fraction of the

points of P lying within RH are covered by generators in G
that are both absolutely and relatively fat with respect to H.

The proof of the lemma is omitted due to space limita-
tions. The lemma implies that

Φ ≤
∑
G∈G

∫
∆′

G

|G ∩ RH | dH,

where ∆′
G is the set of halfspaces in H+

0 for which G is
both absolutely and relatively fat. In the integral case,∫
∆′

G
|G∩RH | dH measures the usefulness of generator G. In

contrast to the idempotent case, a generator is now viewed
as useful for only those query halfspaces H for which it is
both absolutely and relatively fat. Intuitively, to see that
this is a considerably stronger condition, let us first con-
sider the case of a large generator that covers a constant
fraction of the data points in U

d. To be absolutely fat with
respect to a halfspace H , it would only need to cover 2a log n
points in RH , but to be relatively fat, it would need to cover
roughly t times as many points in RH (neglecting constant
factors). It follows that, by our new criterion, a large gener-
ator has smaller usefulness than it would possess by virtue
of the BCP criterion. On the other hand, if a generator
is small, then in any case its usefulness would be small as
fewer halfspaces in H+

0 would find such a generator close to
their boundary. Considerations such as these suggest that
our new criterion should lead to a smaller estimate for the
maximum possible usefulness of a generator. Indeed, sub-
ject to the convex generator assumption, it is not too hard to
adapt the proof in BCP and confirm the accuracy of this ba-
sic intuition. We omit these details due to space limitations.
(But see Section 4 for calculations of a similar flavor in the
context of approximate range searching.) We conclude with
the main result of this section.

Theorem 1. Let d > 1 be a fixed dimension. Consider a
range space consisting of all halfspaces and a weight function
over any integral semigroup. Then for all sufficiently large
n, the worst-case query time in the semigroup arithmetic
model, for exact range searching among n points, using m ≥
n units of storage, is at least

Ω

(
n

m
d+1

d2+1 log n

)
= Ω

(
n

1− 1
d
−O

(
1

d2

)/
ρ

1
d
+ 1

d2

)
,

where ρ = m/n is the expansion ratio.

4. EUCLIDEAN BALLS: LOWER BOUNDS
Here are the main results of this section. The first result

applies to arbitrary (faithful) semigroups, and so applies to
idempotent semigroups, and the second applies to integral
semigroups. This theorem implies that the upper bounds
on query times presented in Section 5 for idempotent semi-
groups and in [4] for arbitrary semigroups are both nearly
optimal.

Theorem 2. Let d > 1 be a fixed dimension. Consider
ε-approximate range searching for n points over the range
space of Euclidean balls for a weight function over a faithful
semigroup. Then for all sufficiently small ε and sufficiently
large n, and for m ≥ n units of storage (that is, ρ = m/n),

(i) The worst-case query time in the semigroup arithmetic
model is at least

Ω

((
1

ε

) d
2−1 (

n

m log 1
ε

) 1
2− 1

2(d+1)
)

= Ω∗
((

1

ε

) d
2 −1

/
ρ

1
2− 1

2(d+1)

)
.

(ii) Further, if the semigroup is integral it is at least

Ω

((
1

ε

)d−5 (n

m

)1− 4
d

)
= Ω

((
1

ε

)d−5
/

ρ1− 4
d

)
.

We begin with the proof of Theorem 2(i). Our proof is
structurally similar to the proof in BCP for establishing the
hardness of exact halfspace range searching. However, a
considerable number of nontrivial modifications are needed
in order to adapt their framework to our context. We begin
with a high-level description of these modifications.

As with exact halfspace range searching, the complexity
of approximate spherical range searching arises from the dif-
ficulty of covering points close to the boundary of the query
range. Recall from Section 3 that this idea is formalized in
BCP for the exact case by defining a thin slab RH close to
the boundary of each query halfspace H , and showing that
if any generator covers a lot of points in this slab, then it
cannot be useful in this manner for many queries. More pre-
cisely, the usefulness of a generator G is measured by the
quantity

∫
∆G

|G∩RH | dH , where ∆G is the set of query half-

spaces for which G is absolutely fat. In BCP a lower bound
on the query time is derived by estimating the maximum
possible usefulness of any generator.

The notion of a slab for halfspace range queries naturally
corresponds in our context to the concept of a generalized
annulus, that is, the difference of two concentric Euclidean
balls. With both exact and approximate range searching, re-
ducing the thickness of the slab or annulus (assuming a cer-
tain given radius) leads in general to better lower bounds.
However, if the slab or annulus is too thin, then it would
contain too few points, and such a region can be easily cov-
ered using generators consisting of single points. With ex-
act range searching, this is a key factor limiting how thin
to make the slabs. In approximate range searching, how-
ever, there is an additional very important factor to consider.
Let r denote the radius of the range. Using an annulus of
width smaller than o(εr) is counterproductive because the
algorithm is at liberty to include points that lie outside the

range within distance 2εr of the boundary and so effectively
increasing the annulus width to Θ(εr). This suggests that
we should set the annulus width to εr. But note that we
can now adjust the parameter r. To obtain the best lower
bound, we want to make r as small as we can, subject to
the above constraint on the minimum number of points the
annulus must contain. Our approach, which is essentially
equivalent, is to use query balls whose radii are allowed to
range over some constant interval, create many separate in-
stances of the same point distribution, called replicants, and
apply the lower bound argument separately to each one.

The second important issue involves the technique used to
compute an upper bound on the usefulness of any generator.
In the exact case, this is computed with the help of a so-
phisticated decomposition of the convex hull of a generator
into convex bodies called Macbeath regions. (See Lemma 4.)
Unfortunately, this machinery seems to break down utterly
on replacing hyperplane slabs by our “annulus slabs.” Not
only are annulus slabs not convex, the intersection of the
convex hull of a generator and an annulus may even consist
of many connected components.

An obvious approach for overcoming this difficulty is to
use the standard transformation of lifting to the paraboloid.
This reduces problems involving Euclidean balls in R

d to
problems involving halfspaces in R

d+1. The problem here
is that we lose the uniformity of the point distribution (a
central element to the BCP proof) since the lifted points
are constrained to lie on the paraboloid. Thus, we cannot
directly relate the volume of a convex body in R

d+1 to the
number of points that are expected to lie within the body.
To handle this problem we establish a type of isoperimetric
inequality that relates the surface area of a convex body in
R

d to the volume in R
d+1 of the convex hull of the lifted

body on the paraboloid. With its aid, we can determine
the relationship between the volume of the convex bodies in
R

d+1 that arise in our proof and the number of lifted points
inside it. (See Property 3 of the scattered set properties
given below). Furthermore, we show that the Macbeath-
region machinery developed in the BCP proof can now be
applied in our context.

Next we present some of the tools from [7,8] that will be
needed in our analysis and show how these are modified and
generalized to the context of range queries with Euclidean
balls. Our proof will make use of the standard lifting map.
Given a point p ∈ R

d, let p↑ denote its projection onto the
paraboloid xd+1 =

∑d
i=1 x2

i in R
d+1. Given a ball B in R

d

of radius r centered at some point q, let h(B) denote the
d-dimensional hyperplane in R

d+1 passing through the lift
of all the points on the boundary of B. It is well known that
p lies inside/on/outside B if and only if p↑ lies respectively
below/on/above h(B) [6]. Let h−(B) denote the lower half-
space containing lifted points that lie within B, and define
h+(B) analogously for points outside of B.

Given a set X ⊂ R
d, let X↑ denote the image of X under

the lifting transformation. Thus, if X is some connected
region of R

d, the lifted set X↑ will form a connected surface
patch on the paraboloid. After lifting, we will be interested
in the (d + 1)-dimensional volume of the convex hull of the
lifted set, which will generally lie both on and above the
surface of the paraboloid. Let µC(X↑) denote this volume of
the convex hull of the lifted set, or more formally, µC(X↑) =
µ(conv(X↑)).

Let P be a set of n points in the unit hypercube U
d =

[0, 1]d. We say that P is scattered if the following three
properties hold for some constant a > 1 depending only on
dimension. The first property provides a lower bound on
the number of points in a convex body in terms of its vol-
ume. The second provides a lower bound on the number
of points in a generalized annulus in terms of the volume
of the annulus. The third provides an upper bound on the
number of points lying in the difference of a convex body
and a ball. Such a difference need not be convex or even
connected, but as mentioned above we can relate it to the
volume of an appropriate convex set in the lifted space, de-
noted L(K, B), which consists of taking the convex hull of
K↑ and intersecting it with h+(B).

Property 1: Let K be any convex body contained in U
d,

and let k = |P∩K|. If k ≥ log n, then k ≥ (n/a)µ(K).

Property 2: Let B1 and B2 be any two concentric balls
contained in U

d such that the radii of both balls ex-
ceeds some fixed constant, and let k = |P ∩ (B1 \B2)|.
If µ(B1\B2) ≥ (a log n)/n, then k ≥ (n/a)µ(B1\B2).

Property 3: Let K be any convex body and B be any ball,
both contained in U

d. Define L(K, B) = conv(K↑) ∩
h+(B), and let k = |P ∩ (K \ B)|. If k ≥ log n, then

k ≤ an(n/ log n)2/dµ(L(K, B)).

The following lemma asserts the existence of sets satisfy-
ing these properties. The proof of the lemma is omitted due
to space limitations.

Lemma 3. A random set of n points chosen uniformly
and independently in a unit hypercube U is scattered with
probability 1 − o(1).

Following BCP, our lower bound proof requires us to de-
compose generators in order to analyze their impact on cov-
ering points close to the boundary of the query range. The
following tool, which involves important convex bodies called
Macbeath regions, will help us in that task. We state this
and the following lemma in dimension d + 1 since we will
apply them to lifted sets.

Lemma 4. (Brönnimann, Chazelle and Pach [7]) Given
a compact convex body K ⊂ R

d+1 of unit volume and 0 <
β < 1, there exists a collection of O((1/β)1−2/(d+2)) convex
bodies, K1, K2, . . . ⊆ K, satisfying the following condition:
For any halfspace τ with µ(K ∩ τ) ≥ β, there exists Ki ⊆
K ∩ τ such that µ(Ki) = Ω(µ(K ∩ τ)).

The third tool we will need is an isoperimetric inequality
proved by Chazelle [8] that bounds the probability that a
“random” slab encloses a given convex body. For any real
α > 0 and any hyperplane H in R

d+1, let Sα(H) denote the
slab consisting of points in R

d+1 whose distance from H is
at most α. Let O denote the origin of a coordinate frame
of reference that we associate with R

d+1. For any point
q ∈ R

d+1 \ {O}, let Hq denote the hyperplane that passes
through q and is orthogonal to the segment Oq. Define the
measure λ of any set X of hyperplanes as follows:

λ(X) =

∫
X

dH =

∫
Hq∈X

dx1 ∧ . . . ∧ dxd+1

‖q‖d
,

where q = (x1, . . . , xd+1). The choice of this measure is gov-
erned by the fact that it is invariant under rigid motions [8].

Lemma 5. (Chazelle [8]) Given any compact convex body
K ⊆ U

d, we have µ(K) · ∫
Sα(H)⊇K

dH = O(αd+2).

We are now ready to prove Theorem 2(i). Let ε denote
the approximation error. Throughout we assume that ε is a
sufficiently small real number between 0 and 1. Let Q denote
the set of all Euclidean balls. Let n be the number of points
in the data set. (We assume that n is sufficiently large). Let
m ≥ n denote the number of generators, and let t = t(n, m)
denote the worst-case query time in the arithmetic model
over all the ranges in Q.

We construct a set P of n data points for which we will
argue that the query time must be sufficiently large for some
range in Q. As mentioned above in the overview of the proof,
we will assume that P is composed of a collection of identical
subsets, called replicants. Towards this end, let

n′ =
t

ε
log

t

ε
.

For simplicity we will assume that n is a multiple of n′.
Consider any collection U of n/n′ interior-disjoint unit hy-
percubes. Our set P consists of a scattered set of n′ points
placed in each of these hypercubes.

Let G denote any set of m generators for P . For each
hypercube in U , consider the subset of generators that con-
tains no point outside this hypercube. Let U ′ denote the
hypercube that has the smallest such subset of generators.
Let G′ denote this subset of generators. Clearly |G′| ≤ m′,
where m′ = mn′/n. Let us restrict ourselves henceforth to
the subset of n′ points P ′ = P ∩ U ′. Without loss of gen-
erality, we may take U ′ to be the unit hypercube U

d. The
remainder of the proof consists of placing a lower bound on
the number of generators needed to cover some ball of Q
that is contained within U

d, as a function of n′, m′, and ε.
This will provide the desired lower bound. To complete the
proof, this bound will then be cast in terms of our original
parameters n and m.

Let Q′ denote the set of balls b of radius between 1/4 and
1/2 such that the corresponding ε-expanded ball, b+, lies
entirely within U

d. Let H denote the set of all hyperplanes
in d+1 dimensions obtained by applying the map h to each of
the balls in Q′. To simplify the notation, for any hyperplane
H ∈ H, we let OH denote the corresponding ball h−1(H).

For any H ∈ H, let AH ⊆ G denote the smallest set of
generators that provides a valid answer for the query OH ,
that is,

P ∩ OH ⊆
⋃

G∈AH

G ⊆ P ∩ O+
H . (1)

Clearly t ≥ |AH |. Since the hypercubes of U have disjoint
interiors and O+

H ⊆ U
d, it follows that the above inequality

holds if P is replaced with P ′ and AH is restricted to a
subset of G′.

So far, we have limited consideration to a subset of gen-
erators G′ of size at most m′ that lie entirely within the
unit hypercube U

d, and to the subset of points P ′ of size
n′ that lie within U

d and a subset of ball ranges Q′ whose
ε-expansions lie within U

d. In the first part of the proof, we
will consider the problem only within this limited context.

Recall that we have a hyperplane H ∈ H and its associ-
ated ball OH . We define a region of interest for H as follows.
Let c1 be a positive constant, whose value will be set later,
and let α = c1ε. Let OH(α) denote the ball concentric with

OH whose radius is smaller than that of OH by α. The
region of interest for H , denoted RH , is defined to be

RH = OH \ OH (α).

Later in the proof, we will also make use of the following
outer region, which will be convenient to define now. Let

R≥
H = OH(α) (2)

Clearly RH ⊂ R≥
H .

As observed in BCP, the complexity of (exact) halfspace
range searching arises from the difficulty of covering points
inside the range that lie close to its boundary. This factor
is also responsible for the complexity of approximate range
searching. In order to make this more precise, we intro-
duce a quantity, which corresponds roughly to the number
of points lying within the region of interest for an average
query. Consider the quantity

Φ =

∫
H
|P ′ ∩ RH | dH, (3)

where dH is the differential element defined earlier for hy-
perplanes. We will compute lower and upper bounds on Φ,
which together will provide the desired lower bound on the
worst-case query time t. The intuition behind our proof is
that if a generator covers a large number of points in RH ,
then it cannot be useful in this manner for many queries.

For all sufficiently small ε, one can easily verify that for
any H ∈ H, the volume of the region of interest satisfies

µ(RH) ≥ c2α,

where c2 is some suitable constant. Now, by setting c1 =
8a/c2, we have

µ(RH) ≥ 8aε.

It is easy to verify that this exceeds (a log n′)/n′, and so,
by Property 2 of scattered point sets, it follows that the
number of points of P ′ in RH is at least 8t log(t/ε). Clearly
the measure of H is at least some constant, and so we have
the following lower bound on Φ.

Φ = Ω

(
t log

t

ε

)
. (4)

Next we compute an upper bound on Φ. Towards this
end, it is helpful to concentrate on those generators that are
most efficient in covering the region of interest RH . We say
that a generator G ∈ G′ is absolutely fat with respect to a
hyperplane H ∈ H if |G ∩ RH | > 4 log(t/ε) and G ⊆ O+

H .
We have the following lemma. The proof of the lemma is
similar to that of Lemma 1, and is omitted.

Lemma 6. For any hyperplane H ∈ H, a constant frac-
tion of the points of P ′ lying within RH are covered by gen-
erators in G′ that are absolutely fat with respect to H.

Recalling that RH ⊂ R≥
H , the above lemma implies that

a constant fraction of the points of P ′ in RH are covered
by generators G ∈ G′ that satisfy |G∩R≥

H | > 4 log(t/ε) and
G ⊆ O+

H . Thus, it follows from the definition of Φ in Eq. (3)
that, up to constant factors,

Φ ≤
∑

G∈G′

∫
∆G

|G ∩ RH | dH, (5)

where

∆G =

{
H ∈ H : |G ∩ R≥

H | > 4 log
t

ε
and G ⊆ O+

H

}
.

We will refer to the quantity
∫
∆G

|G∩RH | dH as the useful-

ness of generator G, denoted u(G). Our goal is to compute
an upper bound on the maximum possible usefulness of any
generator G ∈ G′, which in turn will help us derive a lower
bound on t.

Since RH ⊂ R≥
H we have

u(G) ≤
∫

∆G

|G ∩ R≥
H | dH.

Let H be a hyperplane in ∆G. Because generator G con-
tributes a sufficiently large number of points within R≥

H ,
we may apply Property 3 of scattered points to bound the
volume of the convex set conv(conv(G)↑) ∩ h+(OH(α)) as
follows. Since G ⊆ P ′ ∩ conv(G), we have

|G ∩ R≥
H | ≤ |P ′ ∩ conv(G) ∩ R≥

H |. (6)

By definition of ∆G, |G ∩ R≥
H | > 4 log t

ε
, and so |P ′ ∩

conv(G)∩R≥
H | > 4 log t

ε
≥ log n′ (recall that we are dealing

with a single replicant). By applying Property 3 (where the
convex body is conv(G) and the ball is OH(α)) we have

|P ′ ∩ conv(G) ∩ R≥
H | ≤ a n′

(
n′

log n′

) 2
d

µ(L′(G, H))

≤ a n′
(

t

ε

) 2
d

µ(L′(G, H)), (7)

where L′(G, H) = L(conv(G), OH(α)) = conv(conv(G)↑) ∩
h+(OH(α)). Thus, by combining Eqs. (6) and (7) we obtain,
up to constant factors,

u(G) ≤ n′
(

t

ε

) 2
d
∫

∆G

µ(L′(G, H)) dH. (8)

In order to bound this integral, first observe that for all
G, in the integration domain, by Eq. (7) we have

µ(L′(G, H)) ≥ 1

an′

(ε

t

) 2
d |P ′ ∩ conv(G) ∩ R≥

H |. (9)

Recalling that |P ′ ∩ conv(G) ∩ R≥
H | ≥ 4 log(t/ε), and sub-

stituting the definition of n′ for a single replicant, it fol-
lows that µ(L′(G, H)) is at least (4/a)(ε/t)1+2/d. Since
conv(G) ⊆ U

d and, by definition of the lifting transforma-
tion, the (d+1)-th coordinate after lifting of any point in U

d

is at most d, it follows that µ(conv(conv(G)↑)) is at most d.
Therefore,

µ(L′(G, H))

µ(conv(conv(G)↑))
≥ 4

ad

(ε

t

)1+ 2
d

.

Now, by setting β equal to the right hand side of the above
equation, we may apply Lemma 4 to obtain a collection

of O
(
(1/β)1−2/(d+2)

)
convex bodies K1, K2, . . ., each con-

tained within conv(conv(G)↑), such that for some Kj

(i) Kj ⊆ L′(G, H), and

(ii) µ(Kj) = Ω(µ(L′(G, H))).

For some constant c, we assert that condition (i) implies
that Kj is contained within the slab Scε(H). To see this,

recall that G ⊆ O+
H . It follows that conv(conv(G)↑) lies en-

tirely below the hyperplane h(O+
H). Therefore L′(G, H) =

conv(conv(G)↑) ∩ h+(OH(α)) lies between the hyperplanes
h(OH (α)) and h(O+

H). Since α = Θ(ε), by basic proper-
ties of the lifting transformation, it follows that L′(G, H) ⊆
Scε(H), for a suitable constant c. The desired assertion now
follows from condition (i).

Thus, up to constant factors,∫
∆G

µ(L′(G, H)) dH ≤
∑

j

µ(Kj)

∫
∆′

Kj

dH,

where

∆′
Kj

= {H ∈ H : Scε(H) ⊇ Kj} .

By the isoperimetric inequality given in Lemma 5, we obtain

µ(Kj)

∫
∆′

Kj

dH = O(εd+2).

Thus, ∫
∆G

µ(L′(G, H)) dH =
∑

j

O(εd+2).

From our bound on the number of convex bodies Kj and by
the definition of β we have∫

∆G

µ(L′(G, H)) dH = O

((
1

β

)1− 2
d+2

εd+2

)

= O

((
t

ε

)(1+ 2
d)(1− 2

d+2)
εd+2

)

= O
(
tεd+1

)
.

Substituting this into Eq. (8), we obtain

u(G) = O
(
n′ t1+

2
d εd+1− 2

d

)
.

Recalling that |G′| ≤ m′, we obtain the following upper
bound on Φ.

Φ = O
(
n′ m′ t1+

2
d εd+1− 2

d

)
.

Now, by combining this with the lower bound on Φ given in
Eq. (4) we obtain the following

n′ m′ t1+
2
d εd+1− 2

d = Ω

(
t log

t

ε

)
. (10)

We are now able to incorporate the above single-replicant
results into the overall analysis. Recall that m′ = mn′/n
and n′ = (t/ε) log(t/ε). Note that we may assume that

t < 1/εd/2−1, since otherwise Theorem 2(i) holds trivially.
It follows that log t = O(log(1/ε)). Substituting these val-
ues of m′ and n′ into Eq. (10) and then simplifying yields
Theorem 2(i).

Next we consider the proof of Theorem 2(ii) (for integral
semigroups). The general structure of the proof is the same
as that of part (i) for arbitrary semigroups. However, when
selecting the subset of generators to be used in the analysis,
we apply a similar criterion as the one introduced in Sec-
tion 3. In particular, we require that the generators used
in the analysis are both absolutely and relatively fat. As
in Section 3 it can be shown that, by this new criterion, a
large generator has smaller usefulness than it would possess

by virtue of the criterion used in the proof of part (i). This
leads to a significantly better lower bound.

As in part (i), we begin by decomposing the point set P
into replicants, and then analyzing each replicant separately.
The decomposition and the analysis of the single replicant
until Lemma 6 is carried out in exactly the same way as in
part (i). We next show that, by exploiting the fact that the
generators used to answer a query must be disjoint, we can
significantly strengthen Lemma 6. Towards this end, let us
say that a generator G ∈ G′ is relatively fat with respect to
a hyperplane H ∈ H if |G ∩ RH | > ε|G| and G ⊆ O+

H . We
have the following lemma analogous to Lemma 2. The proof
of the lemma is straightforward and is omitted due to lack
of space.

Lemma 7. For any hyperplane H ∈ H, a constant frac-
tion of the points of P ′ lying within RH are covered by gen-
erators in G′ that are both absolutely and relatively fat with
respect to H.

Arguing exactly as in part (i), but using Lemma 7 instead
of Lemma 6, it is straightforward to show that Eqs. (5)–(9)
all hold, with ∆G redefined as:{

H ∈ H : |G ∩ R≥
H | > max

(
4 log

t

ε
, ε|G|

)
and G ⊆ O+

H

}
.

(11)
This new definition of ∆G will enable us to obtain a much
better upper bound on u(G) and hence on Φ. In partic-

ular, it will allow us to decompose conv(conv(G)↑) using
Lemma 4 into a much fewer number of Macbeath regions
which, in turn, leads to a better upper bound on u(G). We
now present the details of this calculation.

By Eqs. (6) and (11), |P ′ ∩ conv(G) ∩ R≥
H | ≥ |G ∩ R≥

H | >
ε|G|. Substituting this bound in Eq. (9), we obtain

µ(L′(G, H)) ≥ 1

an′

(ε

t

) 2
d

ε|G|. (12)

Next we compute an upper bound on µ(conv(conv(G)↑)).
First, observe that µ(conv(conv(G)↑)) ≤ dµ(conv(G)). This

follows from the fact that conv(conv(G)↑) is contained in-
side a prism whose base is conv(G) and (d + 1)-th coor-
dinate spans the interval [0, d]. (Because conv(G) ⊆ U

d,
and by definition of the lifting transformation, the (d + 1)-
th coordinate after lifting of any point in U

d is at most d.)
In order to bound µ(conv(G)), recall that |P ′ ∩ conv(G) ∩
R≥

H | ≥ log n′ (which we showed just after Eq. (6)). There-
fore |P ′ ∩ conv(G)| ≥ |P ′ ∩ conv(G) ∩ R≥

H | ≥ log n′, so
we can apply Property 1 of scattered point sets to obtain
µ(conv(G)) ≤ (a/n′)|P ′ ∩ conv(G)|. By the assumption of
convex generators, G = P ′ ∩ conv(G), and so µ(conv(G)) ≤
(a/n′)|G|. Therefore

µ(conv(conv(G)↑)) ≤ ad

n′ |G|. (13)

Combining Eqs. (12) and (13), we obtain

µ(L′(G, H))

µ(conv(conv(G)↑))
≥ 1

a2d

(ε

t

) 2
d

ε. (14)

Now, by setting β equal to the right hand side of the
above equation, we may apply Lemma 4 to obtain a col-

lection of O
(
(1/β)1−2/(d+2)

)
convex bodies K1, K2, . . . ⊆

conv(conv(G)↑) such that some Kj satisfies the conditions

(i) and (ii) that were described earlier in part (i). The cru-
cial observation is that the value of β in the integral case is
larger than the value of β in part (i) by a factor of t (ignor-
ing constant factors). The rest of the analysis is identical to
part (i) and is therefore omitted. We finally obtain

t ≥
(

1

ε

) d−1− 2
d

1+ 2
d

+ 2
d+2

(
n

m log(1/ε)

) 1
1+ 2

d
+ 2

d+2 , (15)

which can be easily simplified to yield Theorem 2(ii).

5. EUCLIDEAN BALLS: UPPER BOUND
(IDEMPOTENT CASE)

In this section we present our data structures for answer-
ing ε-approximate range queries over an idempotent semi-
group. (Analogous results for arbitrary, and hence integral,
semigroups were already presented in [4].) Our main result
is summarized below.

Theorem 3. Let P be a set of n points in R
d. Let 0 <

ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε be two real parameters. Then we
can construct a data structure of O(nγd/ε) space that an-
swers ε-approximate spherical range queries over any idem-
potent semigroup in time O(log n+(1/(εγ))(d−1)/2 log(1/ε)).

It takes O(n(γ/ε)(d+1)/2 log(n/ε)) time to construct the data
structure.

By defining the space expansion factor to be ρ = γd/ε we
have the following equivalent space-time tradeoff, ignoring
logarithmic factors.

Corollary 3.1. Given the setup of the Theorem 3, ε-
approximate spherical range queries can be answered in time

O∗
((

1
ε

) d
2 − 1

2d

/
ρ

1
2− 1

2d

)
, where ρ is at least Ω(1/ε).

The algorithm employs an adaptation of the AVD (or
approximate Voronoi diagram) structure, as was presented
in [4] for the case of general semigroups. This is a quadtree-
like structure, in which space is subdivided hierarchically
into cells until its leaf cells satisfy certain separation prop-
erties with respect to the surrounding points. Each node of
the tree (both internal nodes and leaves) is responsible for
handling queries whose center lies within the corresponding
cell and whose radius is proportional to the size of the cell
(depending on the degree of separation). Each node is as-
sociated with a set of generators. Because the semigroup
is idempotent, the generators used to answer a query are
allowed to overlap. This allows us to choose generators in
the most economical way, as subsets of points lying within a
judiciously chosen discrete set of Euclidean balls. We show
that if the nodes of the decomposition satisfy certain sep-
aration properties, then it is possible to cover any range
approximately with a small set of generators. Space-time
tradeoffs are handled by altering the degree of separation.
As the separation increases (controlled by a parameter γ),
the number of nodes increases, but the number of generators
needed to answer each query decreases.

We refer the reader to [4] for standard definitions of the
box-decomposition of space into cells. The size of a cell is
defined to be the size of its outer box. Throughout, for a
cell u, we will use su to denote its size and bu to denote the
ball of radius sud/2 whose center coincides with the center
of u’s outer box. (Note that u ⊆ bu.) Finally, for any ball

b and any positive real γ, we use γb to denote the ball with
the same center as b and whose radius is γ times the radius
of b.

Let P be a set of n points in R
d. Let 0 < ε ≤ 1/2 and

16 ≤ γ ≤ 1/ε be two real parameters. The parameter γ
is used to control the space/time tradeoff. Without loss of
generality, we may assume that the set of points P has been
scaled and translated to lie within a ball of radius ε/4 placed
at the center of the unit hypercube U

d. We will assume that
the query ball is contained within U

d since the other case
can be handled easily.

The starting point for our construction is a data struc-
ture similar to that used previously for answering approxi-
mate nearest neighbor [2,3] and approximate spherical range
counting queries [4]. In Lemma 8, we abstract the main fea-
tures of this data structure. The structure is parameterized
by two real numbers 0 < f ≤ 1 and γ ≥ 16, and for our pur-
poses it can be viewed as a collection of three types of cells
(which may overlap), as described below. Cells of type 2 and
type 3 satisfy certain separation properties (depending on f
and γ) with respect to the points of P lying outside the cell,
while cells of type 1 do not. Letting u denote the cell under
consideration, u has the following properties depending on
its type.

γ

2bu

(ii)

u
v

vb

γ

γ

b’u

ub’

u

ub

(i)

Figure 1: The separation properties for (i) type-
2 cells satisfying property (a) and (ii) type-3 cells.
Pollutants are indicated with hollow circles and
points of the inner clusters are shown as black
squares.

Type-1: u is a quadtree box.

Type-2: u is either a quadtree box or the set theoretic dif-
ference of two quadtree boxes. There exists a ball b′u
such that |P ∩ (γbu \ b′u)| = O(1/f), and either (a) the
ball γb′u does not overlap u or (b) letting r1 and r2

denote the radii of balls bu and b′u, respectively, and
` denote the minimum distance of separation between
bu and b′u, ` ≥ max(r1, r2) and `/

√
r1r2 ≥ √

γ.

Type-3: u is a quadtree box. There is an associated box v
such that u ⊆ v and |P ∩ (γbv \ 2bu)| = O(1/f).

Intuitively, for a type-2 cell u, if there are many points
close to it, then all but O(1/f) points among them are suf-
ficiently well clustered relative to their distance to the cell.
For a type-3 cell u, if there are many points within a certain
defined neighborhood, then all but O(1/f) points among
them are close to u. (See Fig. 1.) The point subsets of
size O(1/f) that do not satisfy the separation properties are
called pollutants. These points are handled by simple brute
force during the query processing. The following lemma can
now be proved easily using ideas from Lemma 4 in [3] and
Section 3 in [4]. Details are omitted due to space limitations.

Lemma 8. (Separation Properties) Let P be a set of n
points in R

d, and let γ ≥ 16 and 0 < f ≤ 1 be two real
parameters. In O(nγd log(nγ)) time, it is possible to con-
struct a data structure with O(nfγd) cells of type-1, type-2,
and type-3, respectively, such that the following holds. For
any query ball η, in O(log(nγ)) time, we can find a cell u
such that the center of η lies in u and u satisfies one of the
following:

(i) u is of type-1 and (γ/2)bu ⊆ η+ ⊆ (3γ)bu.

(ii) u is of type-2 and η+ ⊆ γbu.

(iii) u is of type-3 and γbu ⊆ η+ ⊆ γbv. Here v denotes the
quadtree box associated with u.

We set f = (εγ)(d−1)/2 and construct the data structure
described in Lemma 8. During preprocessing, for each cell
in this data structure, we compute the weight of certain
generators and store them with the cell. To answer a query
η, we first apply the above data structure to find a cell u
satisfying one of the three properties (i)–(iii). We then use
the precomputed generators stored with u to answer the
query. Due to lack of space, we limit our discussion here to
the case of type-1 cells (i.e., property (i) holds). This case
helps to illustrate our main ideas. (The geometric technique
used in the case of type-2 cells is similar and the case of
type-3 cells is relatively easy.)

Recall that a cell of type 1 does not generally satisfy any
separation property. If such a cell had to handle arbitrarily
small or big query balls in its vicinity, it would be much too
hard to answer queries efficiently. But by property (i) note
that a type-1 cell only needs to handle query balls centered
in it whose radius is proportional to γ times its own size. We
will show that such queries can be handled efficiently using
only a small set of generators. Our choice of generators relies
crucially on the following geometric lemma.

Lemma 9. Let 16 ≤ γ ≤ 1/ε. Let u be any cell. It is

possible to find a set B of O((1/(εγ))(d−1)/2 · (1/ε)) balls
and store them in O(|B|) space, such that for any query
ball η that is centered in u and satisfies (γ/2)bu ⊆ η+ ⊆
(3γ)bu, the following property holds: In O((1/(εγ))(d−1)/2 ·
log(1/ε)) time, it is possible to find a subset Bη ⊆ B of

O((1/(εγ))(d−1)/2) balls such that their union,
⋃

b∈Bη
b, cov-

ers η and is contained within η+.

The proof of this lemma has been omitted due to space
limitations. Let us see how it is applied. During prepro-
cessing, for each type-1 cell u we obtain the set B of balls
described in the lemma. For each ball b ∈ B, we compute
w(P ∩ b) and associate it with b. The space used for stor-
ing this information is on the order of the number of balls
in B, which is O((1/(εγ))(d−1)/2 · (1/ε)). Using these gen-
erators, we can determine the answer for any query ball η
satisfying property (i) by first finding the set Bη ⊆ B of
balls described in the statement of the lemma, and then
outputting

∑
b∈Bη

w(P ∩ b). The correctness of this method

follows from the fact that η ⊆ ⋃
b∈Bη

b ⊆ η+. Summing

the time it takes to find Bη with the O(log(nγ)) time it
takes to find cell u (by Lemma 8), the total query time is

O(log n + (1/(εγ))(d−1)/2 log(1/ε)).
In the full version, we show that the space and query

time bounds proved above for type-1 cells also hold for
type-2 and type-3 cells. Since the space used per cell is

O((1/(εγ))(d−1)/2 · (1/ε)), and the total number of cells is

O(nfγd) with f = (εγ)(d−1)/2, the total space used by the
data structure is O(nγd/ε). Borrowing ideas from [4], we
can construct a slightly modified version of this data struc-
ture in time O(n(γ/ε)(d+1)/2 log(n/ε)). Details are omitted
due to lack of space.

6. REFERENCES
[1] P. K. Agarwal and J. Erickson. Geometric range

searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in
Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 1–56. American
Mathematical Society, Providence, RI, 1999.

[2] S. Arya and T. Malamatos. Linear-size approximate
Voronoi diagrams. In Proc. 13th ACM-SIAM Sympos.
Discrete Algorithms, pages 147–155, 2002.

[3] S. Arya, T. Malamatos, and D. M. Mount.
Space-efficient approximate Voronoi diagrams. In
Proc. 34th Annual ACM Sympos. Theory Comput.,
pages 721–730, 2002.

[4] S. Arya, T. Malamatos, and D. M. Mount. Space-time
tradeoffs for approximate spherical range counting. In
Proc. 16th ACM-SIAM Sympos. Discrete Algorithms,
pages 535–544, 2005.

[5] S. Arya and D. M. Mount. Approximate range
searching. Computational Geometry: Theory and
Applications, 17:135–152, 2000.

[6] J.-D. Boissonnat and M. Yvinec. Algorithmic
Geometry. Cambridge University Press, UK, 1998.
Translated by H. Brönnimann.

[7] H. Brönnimann, B. Chazelle, and J. Pach. How hard
is halfspace range searching. Discrete Comput. Geom.,
10:143–155, 1993.

[8] B. Chazelle. Lower bounds on the complexity of
polytope range searching. J. Amer. Math. Soc.,
2:637–666, 1989.

[9] B. Chazelle, D. Liu, and A. Magen. Approximate
range searching in higher dimension. In Proc. 16th
Canad. Conf. Comput. Geom., 2004.

[10] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal
upper bounds for simplex range searching and new
zone theorems. Algorithmica, 8:407–429, 1992.

[11] J. Erickson. Space-time tradeoffs for emptiness
queries. SIAM J. Comput., 29:1968–1996, 2000.

[12] M. L. Fredman. Lower bounds on the complexity of
some optimal data structures. SIAM J. Comput.,
10:1–10, 1981.

[13] S. Har-Peled. A replacement for Voronoi diagrams of
near linear size. In Proc. 42nd Annu. IEEE Sympos.
Found. Comput. Sci., pages 94–103, 2001.

[14] J. Matoušek. Range searching with efficient
hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993.

[15] J. Matoušek. Geometric range searching. ACM
Comput. Surv., 26:421–461, 1994.

[16] A. C. Yao. On the complexity of maintaining partial
sums. SIAM J. Comput., 14:277–288, 1985.

