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Abstract—In this paper, we analyze the effects of uncertainty in
the phase of speech signals on the word recognition error rate of
human listeners. The motivating goal is to get a quantitative mea-
sure on the importance of phase in automatic speech recognition by
studying the effects of phase uncertainty on human perception. Lis-
tening tests were conducted for 18 listeners under different phase
uncertainty and signal-to-noise ratio (SNR) conditions. These re-
sults indicate that a small amount of phase error or uncertainty
does not affect the recognition rate, but a large amount of phase
uncertainty significantly affects the recognition rate. The degree
of the importance of phase also seems to be an SNR-dependent
one, such that at lower SNRs the effects of phase uncertainty are
more pronounced than at higher SNRs. For example, at an SNR
of —10 dB, having random phases at all frequencies results in a
word error rate (WER) of 63% compared to 24 % if the phase was
unaltered. In comparison, at 0 dB, random phase results in a 25%
WER as compared to 11% for the unaltered phase case. Listening
tests were also conducted for the case of reconstructed phase based
on the least square error estimation approach [11]. The results in-
dicate that the recognition rate for the reconstructed phase case is
very close to that of the perfect phase case (a WER difference of
4% on average).

Index Terms—Phase analysis, phase effect, phase reconstruction,
speech recognition.

1. INTRODUCTION

URRENT state-of-the-art speech recognition system can
C achieve high recognition accuracy rates (>90%) in noise
free environments [1]. However, their performance significantly
degrades in adverse situations when noise and/or reverberation
are present [2]. Since most environments do contain noise and
reverberation, a solution must be found to enable robust and ac-
curate speech recognition in all practical situations. This solu-
tion can fall under any of the following two categories.

The first method to solve this problem is to enhance speech
by removing noise prior to recognition. There have been nu-
merous algorithms [1], [3], commonly employing multiple mi-
crophones, which have reported significant gains in recognition
accuracy rate.

Another strategy in improving speech recognition systems is
to use a more complicated recognition model; one which takes
in and processes more information. Most state-of-the-art speech
recognition systems only utilize the magnitude of the Fourier
transform of the time-domain speech segments [2]. This means
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that the corresponding Fourier transform phases are discarded.
Several studies have indicated that it may be a fruitful effort
to directly model and incorporate the phase into the recogni-
tion process [4], [5], [12], [13]. Furthermore, several studies
have shown the perceptual importance of phase in speech coding
[71-191.

In this paper, we will attempt to answer a simple question:
how much does phase really matter in the recognition process?
We will answer this question experimentally by performing
human speech recognition experiments with different amounts
of uncertainty in the phase and with different SNR conditions.

II. PROBLEM STATEMENT AND PRIOR WORK

In general, the signal received by a human ear or by a micro-
phone can be expressed as [6]

2(t) = h(t) * (1) + n(t) )

where s(t) is the speech signal of interest, h(t) is the impulse
response associated with the source and receiver, and n(t) is the
noise signal. In the frequency domain, this is represented as

X(w) = Hw)S(w) + N(w) @

where the capital letters are all Fourier transforms of their lower-
cased time domain representations.

In practice, we can only obtain a sampled finite-duration seg-
ment of z(t), which leads to a discrete frequency representation
[through the discrete Fourier transform (DFT)]. In other words,
the function X (w) is only known at a discrete set of values from
w= —7Fs;tow = 7Fs in 20 F, /N steps. Clearly, X(w) is a
complex number with a magnitude and a phase (i.e., X (w) =
| X (w)]ed £ X (). With a few exceptions, current state-of-the-art
speech recognition systems only utilize | X (w)| and ignore the
phase [2]. The phase Z X (w), however, does have potential uses
and as a result has gained greater focus from the research com-
munity [3]-[5]. In [3], for example, the difference in phase for
a pair of microphones was used to attenuate noise, yielding a
substantially higher (about 20%) speech recognition accuracy
rate. Two questions clearly arise at this point: how much does
phase matter in the recognition of speech, and what is the op-
timal method for incorporating phase into the speech recogni-
tion process? In this paper, we will focus on the former question.

Much of the work on human perception of phase is done
in speech coding [7], [9]. One primary requirement in speech
coding is to use the minimal amount of data to represent the
original signal while keeping the coding distortions below the
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threshold of human perception. Traditionally, only the magni-
tude information is coded. An example of this is sinusoidal
coding, where phase is estimated at the decoder based on a min-
imum-phase assumption [7]. However, losing the phase infor-
mation usually results in the degradation of the reconstructed
speech (i.e., it sounds less natural) [9].

In the past, a number of studies were conducted on the im-
portance of phase in human perception [8]-[10], [13]. In [9],
the characteristics of human phase perception were analyzed
in terms of just noticeable difference (JND) of phase. The re-
sults indicated that human perception of phase varies with fre-
quency, especially for low pitched speakers. This dependence
is particularly strong in the midfrequency range (1-3 KHz). In
[10], the role of phase on the human perception of intervocalic
stop consonants was investigated. It was shown that the phase
spectra play an important role in specifying a stop consonant.
In [13], experiments were conducted to investigate the useful-
ness of phase spectrum in human speech recognition. The re-
sults showed that phase spectrum can significantly contribute to
speech intelligibility.

Some interesting results have also been obtained by using
phase features for speech recognition. In [4], time-domain based
phase features were extracted and employed as discriminative
features. In [12], frequency related features extracted from the
phase of speech were used for recognition of vowels. In [5], the
short term Fourier phase-spectrum was used for phase feature
extraction. The extracted features were then used together with
the Mel frequency cepstral coefficients (MFCC) for improved
digit recognition.

In this paper, we will consider the most successful speech
recognition system that currently exists, namely, the human
speech recognition system. We shall then observe the relative
speech recognition rates for humans when the phase of the
speech signal is altered, compared to the unaltered phase case.

III. SPEECH RECOGNITION EXPERIMENT

To evaluate the role of phase in the recognition of speech by
humans, an experiment was conducted with 18 listeners and six
speakers (three male speakers and three female speakers). The
audio signals for the speakers were obtained from the Audio-Vi-
sual Data Corpus from Carnegie Mellon University. This data-
base consists of 78 preselected words recorded in a soundproof
studio environment with a sampling frequency of 44.1 Khz for
each speaker.

For the purposes of the phase importance experiment, the
recorded sound files were segmented such that each segment
contained a single word. Gaussian noise, at levels of 20 dB, 0
dB, —5 dB, or —10 dB was added to each segment. At each
SNR, the phase of the original speech signal was modified for
all frequencies using the following formula:

(X(w)=(1—a)/X(w)+ ad 3)
where ¢ is a randomly generated phase, uniformly distributed
between — to 7, and « is the phase noise factor ranging from 0
(perfect phase) to 1 (completely random phase). As a result, the
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Fig. 1. Word recognition error rate versus phase noise factor at different SNRs.
altered signal would have the following relation to the original
signal:

X(w) = [X (w)]ed (17 £Xred), )
This modification was performed on the DFT of half overlapped
Hanning-windowed 512-sample segments. This was done to re-
flect the processing that is performed in current speech recog-
nition systems. After the modifications, X (w) for each segment
was transformed (using the Inverse DFT) back into the time-do-
main, half overlapped, and added to form the phase-disrupted
signal.

The listening experiments were carried out at each value of
« and at each SNR for each of the 18 listeners. Each listening
trial consisted of 20 randomly selected words. Before the ac-
tual test, the volume of the speaker was adjusted to a comfort-
able level for each listener. Hence, with 20 words per trial, three
different SNR conditions, and six different values of « (i.e.,
a =0,0.2,...,1.0), a total of 360 words were tested for recog-
nition by each listener. Half of the listeners were presented with
the order of 0, —5, and —10 dB. The other half of the listeners
were presented with the exactly opposite order. For the phase
noise factor, all listeners were first presented with the « = 0
(no phase noise) case, and then a was increased gradually to 1
with a step size of 0.2.

Fig. 1 shows the average word recognition error rates over
all listeners with different phase noise factors and with four dif-
ferent SNRs (—10, —5, 0, and 20 dB). As shown in this figure,
phase noise can change the recognition rate by as much as 39%
when the input SNR is —10 dB. This difference becomes smaller
(about 15%) when the input SNR is 0 dB. At 20 dB, the influ-
ence of phase on speech recognition rate is small despite the fact
that one can still perceive the existence of phase noise. Clearly,
the question of the importance of phase seems to be an SNR-de-
pendent one.

Since the effect of phase on recognition accuracy is small at
high SNRs (as shown by the 20 dB case), we will focus on the
low SNR regions. Fig. 1 also shows that the recognition error
rate curves for the three low SNR values (—10, —5, and 0 dB) are
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Fig. 2. Error bar plot of word error rate for the —10 dB and 0 dB cases.

fairly consistent. The results for these three cases indicate that
small phase noise factors (v < 0.4) do not significantly affect
the recognition rate. However, for phase noise factors greater
than 0.6, there is a consistent and significant increase of error
rate. Furthermore, there is a jump in error rate when the phase
noise factor changes from 0.4 to 0.6.

Fig. 2 shows the error bar plot for the —10 and 0 dB cases. The
height of each bar represents one standard deviation above and
one standard deviation below the mean. It is clear that there is
a variation in the perception of phase among different listeners.
This is representative of the different listening capability, com-
mand of English, focus of the different listeners, and etc. To
minimize the effects due to factors other than phase noise, we
will only consider the averaged results over multiple speakers.
Despite of the variation among different listeners, the general
trend which was observed in the means remains the same: a
phase noise factor beyond 0.5 significantly affects the recogni-
tion process, especially at lower SNRs.

IV. MODELING THE EFFECT OF PHASE

In the previous section, we have observed that the effect of
phase is SNR dependent. Furthermore, the phase effect is fairly
consistent at low SNRs: There is a sigmoidal jump of error rate
between o = 0.4 and a = 0.6. Otherwise, the error rate curves
are approximately linear. To facilitate further analysis on the
effect of phase, we propose to use the expression below to model
the experimental results we obtained at low SNRs (shown in
Fig. 1).

0.13¢~1/35
1 + e—30(a—0.5)

&)

,l/}(R’ a) — e—(R+24.5)/10 + ae—(R+18)/5 n

where « is the phase noise factor and R is the SNR in dB. This
model is obtained through curve fitting of the results obtained
at 0, —5, and —10 dB shown in Fig. 1. There are three terms in
this equation. The first two terms are used to model the linear
relation between the phase noise factor and the recognition error
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Fig. 4. Average recognition errors in the case of male speakers.

rate. The third term is used to model the sigmoidal jump of the
error rate curves. The numerator of the third term controls the
amount of the jump. The model in (5) is not meant to be a general
model. It is only a rough model that we will use to conduct
further analysis. Fig. 3 compares the result of this approximation
with the test result. Clearly, at the experimented SNRs (—10,
—5, 0 dB), the proposed model matches the results well.

Of the 18 randomly selected experiments, 7 had male
speakers and 11 had female speakers. Figs. 4 and 5 show the
average recognition errors for six different values of « for the
case of male speakers and female speakers, respectively.

The experimental results obtained above are summarized in
Fig. 6. This figure shows the recognition error rate as a func-
tion of SNR for the perfect phase case and for the completely
random phase case. We have also plotted the two data points at
20 dB to provide a more complete picture. This figure, which is
a culmination of the results so far, shows the worst-case increase
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Fig. 6. Average intervals of phase influence on speech recognition at different
SNRs: The modeling results are shown as dotted curves, and the 18-listener
experimental results are shown as discrete points. We have also plotted the two
data points at 20-dB SNR to provide a more complete picture.

in recognition error rate due to uncertainty in phase for the ul-
timate speech recognition system (i.e., that of humans). Hence,
as speech recognition systems improve to better match that of
humans, our results define an experimental upper bound on the
recognition accuracy rate gain that can be obtained by modeling
phase (versus not modeling the phase). Furthermore, we can ob-
serve that this gain is SNR dependent: it is much higher at lower
SNRs than at higher SNRs. In other words, phase matters much
more at lower SNRs than it does at higher SNRs.

Based on the proposed model, a contour plot was made re-
lating speech recognition error rate (¢) in humans to the phase
noise factor and the SNR (Fig. 7). This plot shows more clearly
than before that phase has almost a bimodal effect on the recog-
nition rate: it is either not very significant or very significant,
depending on whether the phase noise factor is greater than or
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less than 0.5. The SNR has a clear and direct effect on the recog-
nition rate, but this effect is more gradual which leads to higher
recognition error rates at lower SNRs.

V. PHASE ESTIMATION FROM SPECTROGRAM

Having observed the effect of phase on human speech recog-
nition, we proceed to evaluate the effectiveness of phase restora-
tion techniques such as the one in [11].

In [11], Griffin proposed a least square error estimation
(LSEE) approach for signal estimation from the short time
Fourier transform (STFT) magnitude. Let 2(n) and Z(n) de-
note a speech segment and its estimate, then the algorithm in
[11] minimizes the following distance function:

(e} 1 - ) )
D:k;ooﬁ/_ﬂ (X (kLw)] = (X (kL)) dw ©)

A

where X (kL,w), X (kL,w) are the STFTs of z:(n), &(n) at fre-
quency w and for time segment k respectively, and L is the sam-
pling period of X (n,w) (or X (n,w)) in the variable n. The so-
lution to (6) yields an iterative procedure. Assume &;(n) is the
estimate of z(n) after the 4th iteration, then the estimate at the
next iteration is given by

oo

S (kL —n) [T___ X1 (kL,w)e’ dw

> h*(kL —n)
k=—o0
. . (N
where X, 1(kL,w) = |X(kL,w)|/X;(kL,w), h(n) is the
window used, and X;(kL,w) is the STFT of &;(n).

We used the LSEE algorithm above to preprocess the entire
database (one word at a time) at different SNR levels. Gaussian
noise was added to each word segment the same way as be-
fore. Then, each word segment was partitioned into half overlap-
ping 512-sample segments which were windowed by a Hanning
window. Each estimation process took 100 iterations.
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LSEE phase restoration algorithm.

To demonstrate the convergence behavior of the LSEE algo-
rithm, we have plotted a convergence curve of a randomly se-
lected word segment in Fig. 8. As shown in this figure, the dis-
tance measure (D) of (6) decreases rapidly in the first few iter-
ations. After that, D decreases more slowly. By listening to the
signals with reconstructed phase, good results can be obtained
when the number of iterations exceeds 30. This is supported by
the convergence curve in Fig. 8 since D does not change much
after iteration 30. We have set the number of iterations to 100 to
utilize the full capacity of the LSEE algorithm.

VI. PHASE RESTORATION EFFECTS ON SPEECH RECOGNITION

To investigate the corresponding phase noise factor for the
phase restored signals, a second set of experiments was con-
ducted with 18 listeners. The audio signals used were identical
to the ones used in the first set of experiments. Again Gaussian
noise at levels of 0, —5, and —10 dB was added to each segment.
This time for each SNR level, phase noise factors of « = 0 (cor-
responding to perfect phase) and = 1 (corresponding to com-
pletely random phase) were studied. By evaluating these two
extreme cases, we could test the model in (5). Also at each SNR
level, the recognition experiments were repeated for the recon-
structed speech signals from the method of [11].

Table I shows the average WERs over all 18 speakers for
the cases of perfect phase, reconstructed phase and complete
random phase at different values of SNR. Before analyzing the
effect of phase reconstruction, we first verify our model in (5)
using the new test results obtained from the two extreme cases
(perfect phase and completely random phase). The filled circles
in Fig. 9 show the corresponding recognition rates for each of
the SNR levels and for cases of @« = 0 and o = 1. Also shown in
the figure are the estimated curves using (5). We can see that the
estimated curves are able to estimate the new data points well
except for the case of —10 dB and o = 0. This is likely due
to anomaly generated from listeners in the second set of experi-
ments. Nevertheless, the test result for this particular case is still
within one standard deviation of the estimated value. Overall,
the general trend does hold.
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TABLE 1
WER COMPARISON OF PERFECT PHASE, RECONSTRUCTED
PHASE, AND RANDOM PHASE

Perfect | Reconstructed | Random
Phase Phase Phase
0dB 9.44% 13.06% 22.22%
-5dB 16.39% 20.56% 40.00%
-10dB | 33.61% 37.50% 64.72%
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Fig. 9. Approximation of the results obtained in the second set of experiments
using the model in (5). The curves show the estimated error rates using (5).
The solid dots show the new set of recognition rates found in the second set of
experiments for the two extreme cases (v = 0 and & = 1).

The phase noise factors of the reconstructed speech at the
three different SNRs can be estimated using their error rates ob-
tained in the second experiment and the model in (5). Based
on the model, word error rates of 37.50%, 20.56%, and 13.06%
correspond to phase noise factors of 0.47, 0.45, and 0.46, re-
spectively. That is, the phase noise factors for the reconstructed
speech are: 0.47 at —10 dB, 0.45 at —5 dB, and 0.46 at 0 dB.
We can verify the correctness of these results by substituting
them into (5). So on average the resulting phase noise factor
after phase reconstruction is 0.46.

VII. COMPARISON OF THE RESULTS FOR THE
THREE CASES OF PHASE NOISE

To further analyze the test results obtained in the second set
of experiments, we have calculated the average error rate dif-
ference (over all speakers) between the reconstructed phase and
the perfect phase as well as the average error rate difference be-
tween the random phase and the perfect phase. Fig. 10 shows the
results. As shown in this figure, the reconstructed phase case has
a WER that is higher than that of the perfect phase by around
3.6% to 4.2% depending on the value of SNR. In other words,
the reconstructed phase has a WER which is close to that of the
perfect phase case. Furthermore, this difference is almost SNR
independent. On the other hand, the WER difference between
the random phase and the perfect phase ranges from 12.8% to
31.1%, which is much larger than those obtained in the recon-
structed case. In this case, the value of the WER difference is
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very much dependent on the SNR and increases as the SNR de- To investigate this matter further, we have plotted the his-
creases. This shows that as the SNR decreases the importance tograms of the WER difference for the cases of reconstructed
of having a correct phase for recognition of speech increases. phase and random phase at 0, —5, and —10 dB in Figs. 11-13,
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respectively. In each figure, the plot on the left corresponds to
the WER difference between the reconstructed phase and the
perfect phase; the plot on the right corresponds to the WER dif-
ference between the random phase and the perfect phase. A neg-
ative WER difference indicates that the word error rate for the
case of the reconstructed phase or random phase is less than the
perfect phase. Once again, we can see from these plots that the
perception of phase varies among different listeners. For the re-
constructed phase cases, a small number of people have a nega-
tive WER difference. This could be attributed to the close perfor-
mance of the perfect phase and reconstructed phase or the lim-
ited range of the vocabulary used. For the random phase cases,
all listeners performed considerably better in the perfect phase
case when the SNR is —5 dB or —10 dB. When the SNR is 0
dB, about 10% of the listeners have a slightly negative WER
difference which again shows that at higher SNR values phase
is not as important for recognition of speech as it is at lower
SNR values. In all three figures, we observe that using the re-
constructed phase, the percent error difference has been shifted
toward 0. This shows that much of the phase information can be
recovered through the LSEE based phase reconstruction algo-
rithm.

VIII. CONCLUSION

In this paper, we have investigated the relation between un-
certainty in phase and recognition error rate of human listeners.
Experimental results on 18 listeners (each attempting to recog-
nize 360 words with different phase noise factors and SNRs)
show that the effect of phase varies with SNR. At high SNRs
(such as 20 dB) the effect of phase on the recognition error rate
is small despite the fact that one can still perceive the existence
of phase noise. At low SNRs (such as 0, —5, and —10 dB), the
effect of phase on the recognition error rate can be significant. In
such cases, the recognition error rate is more sensitive to phase
noise when the phase noise factor is between 0.4 and 0.6. When
the phase noise factor is less than 0.4, it has no significant effect
on recognition rate. On the other hand, when the phase noise
factor is greater than 0.6, there is a consistent and significant in-
crease of error rate. In general the recognition error rate seems to
be a sigmoidal function of the phase noise factor. We have also
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showed through experiments that LSEE based phase reconstruc-
tion can yield good results. The WER difference in recognition
rate between the reconstructed phase case and the perfect phase
case is about 4% on average.

There are a number of avenues for further exploration. In this
paper, we have only considered the effect of phase when speech
signals are corrupted by Gaussian noise. Further experiments on
other noise types such as speech noise from competing speakers
and reverberation could be useful. The experimental results in
this paper show that the effect of phase on recognition rate varies
among different listeners. Further experiments on variability
among different words for a single speaker is worth studying.
It should be mentioned that although phase information is not
utilized in most speech recognition systems, phase information
plays a crucial role in microphone array based applications such
as time delay estimation and speech enhancement.
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