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Abstract The present work provides a brief overview on

structural and functional fatigue in shape memory alloys

(SMAs). Both degenerative processes are of utmost tech-

nological importance because they limit service lives of

shape memory components. While our fundamental

understanding of these two phenomena has improved

during the last two decades, there are still fields which

require scientific attention. NiTi SMAs are prone to the

formation of small cracks, which nucleate and grow in the

early stages of structural fatigue. It is important to find out

how these micro-cracks evolve into engineering macro-

cracks, which can be accounted for by conventional crack

growth laws. The present work provides examples for the

complexity of short crack growth in pseudoelastic SMAs.

The importance of functional fatigue has also been high-

lighted. Functional fatigue is related to the degeneration of

specific functional characteristics, such as actuator stroke,

recoverable strain, plateau stresses, hysteresis width, or

transformation temperatures. It is caused by the accumu-

lation of transformation-induced defects in the

microstructure. The functional stability of SMAs can be

improved by (1) making phase transformations processes

smoother and (2) by improving the material’s resistance to

irreversible processes like dislocation plasticity. Areas in

need of further research are discussed.
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Introduction

Shape memory technology has evolved into mature mate-

rials engineering field [1]. Two types of shape memory

effects (SMEs), a thermal memory (one/two-way effect,

1/2 WE) and mechanical memory (pseudoelasticity, PE),

are exploited for advanced applications in aerospace,

automotive, construction and environmental engineering,

and in the field of medical technology, e.g., [1–6]. Both

types of SMEs rely on the martensitic transformation, a

solid-state transformation where a high-temperature phase

austenite transforms into a low-temperature phase

martensite on cooling/mechanical loading [7, 8]. The

reverse transformation occurs upon heating/unloading.

Many fundamental aspects of the martensitic transforma-

tion are well understood, e.g., [7, 9–12]. For the field of

shape memory technology, it is important that the forma-

tion of martensite is strongly governed by the chemical

composition and the microstructure of an alloy [13–18].

This allows to control and to optimize properties and per-

formance of shape memory alloys (SMAs) for specific

applications. During the last decades, the evolution of

shape memory technology has significantly benefitted from

fundamental and application-related research [19, 20]. The

main trends in SMA research were driven by the need for

new alloys with high transformation temperatures [21–24]

and good fatigue resistance [25–30]. Today, a better under-

standing of mechanical, functional, and microstructural
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aspects [16–18, 31–36], the possibility of 3D printing

[37–40], the medical application of SMAs [41–43], and their

use in niche applications such as solid-state refrigeration

[44–48], advance the field. However, there are specific issues

which still hamper the breakthrough of SMA technology.

The two probably most important generic issues are struc-

tural and functional fatigue. They both limit the performance

and the exploitable service lives of shape memory

components.

In 2003, Eggeler et al. [49] highlighted the overriding

importance of both, structural and functional fatigue of

SMAs, and this is today well appreciated [30, 50–52].

Structural fatigue refers to the nucleation and growth of

cracks during cyclic loading, which leads to fatigue failure.

In contrast, functional fatigue is related to the degeneration

of specific functional characteristics, such as actuator

stroke, recoverable strain, plateau stresses, hysteresis

width, or transformation temperatures. Functional fatigue

is caused by irreversible microstructural changes. In the

present work, a short overview on the importance of these

two types of degenerative processes is provided and fields

in need of further work are identified.

Structural Fatigue

Research on structural fatigue in SMAs has often been

motivated by the requirement for medical implants to

withstand a high number of loading/unloading cycles

[27, 53, 54]. For example, stents which are implanted in

blood vessels in the human body are exposed to pulsatile

fatigue. A stent is expected to maintain its integrity for at

least 10 years, which, at an average pulse of 70 min-1,

corresponds to 3.7 9 108 load cycles. Stents, therefore,

have to withstand high-cycle fatigue conditions, with cycle

numbers in excess of 108. Today, a good understanding of

factors and processes affecting fatigue lives has been

established, e.g., [25–30, 49, 55, 56]. Depending on loading

conditions, one can differentiate between high-cycle and

low-cycle fatigue regimes (HCF and LCF), e.g., [25–30].

In the HCF regime, fatigue behavior is governed by

microstructural processes which lead to the nucleation and

growth of cracks. In contrast, cracks quickly form in the

LCF regime, and therefore fatigue lives are controlled by

crack propagation. For the nucleation of cracks, the surface

quality is of utmost importance. Small surface defects like

scratches, pores, notches, wire drawing die marks, etc., act

as local stress raisers and thus promote the formation of

fatigue cracks. Attempts are made to improve surface

quality, for example, by electropolishing [57, 58], or to

introduce compressive stresses in surface regions [53, 59].

In the absence of surface defects, the formation of fatigue

cracks mainly occurs at small oxide and carbide inclusions

[25] which are related to small amounts of impurities, as

documented in [14, 60–62]. The propagation of cracks in

SMAs differs from what is known for conventional struc-

tural engineering materials. Due to high local stresses in

front of crack tips, a stress-induced transformation of

martensite occurs [29, 63, 64], such that cracks in SMAs

grow into martensitic regions.

In general, structural fatigue follows three different

stages: (1) crack nucleation, (2) short crack growth, and (3)

macroscopic growth of engineering cracks [65, 66]. While

crack formation, macroscopic crack growth, and fatigue

lives were addressed in numerous studies, e.g., [25, 27, 67],

the behavior of short cracks in SMAs has not received

sufficient attention so far. This stage is significantly

important. It has been documented in the literature [25] that

NiTi SMAs are prone to the formation of micro-cracks.

Rahim et al. [25] have demonstrated that close to 300

micro-cracks per square millimeter surface area form dur-

ing cyclic loading at a strain amplitude of only 1.9% within

& 2000 fatigue cycles [25]. It is, therefore, important to

understand how short cracks in NiTi SMAs evolve into

larger cracks which grow at material-specific rates [68].

In the following, the results of a study [69] are reviewed,

where the growth of short cracks in pseudoelastic NiTi

wires was investigated using interrupted bending rotation

fatigue (BRF) experiments. Details on alloy preparation/

processing and fatigue experiments are documented else-

where [14, 25, 57, 69, 70]. The NiTi wire was characterized

by a slightly increased oxygen concentration (500 ppm),

which allowed to investigate the effects of oxygen-rich

inclusions on fatigue. Detailed information on the forma-

tion of these inclusions, their crystallographic nature,

effects on transformation behavior, etc., are available in the

literature, e.g., [14, 60–62]. The wire was subjected to

interrupted BRF testing at human body temperature, which

results in specific stress/strain states [71, 72]. The nominal

imposed surface strain was 1.9%. After specific numbers of

mechanical cycles, the surface of the wire was iteratively

investigated by scanning electron microscopy (SEM) to

detect and to evaluate the formation and growth of micro-

cracks. A special SEM holder, Fig. 1, was used to monitor

a specific surface region of the NiTi wire after increasing

load cycles. This allows to follow the growth of one crack

during different stages of BRF testing. The SEM holder is

presented in Fig. 1a, and the region of interest on the wire

sample is shown in Fig. 1b.

Figure 2 shows parts of the wire surface after 0 (Fig. 2a,

initial state), 400 (Fig. 2b), and after 2100 BRF cycles

(Fig. 2c). The dark particles represent oxides [14, 25]. The

black dot on the left side of the images serves as a refer-

ence point. The loading direction is from the left to the

right. Cracks which have formed during BRF testing are

indicated by arrows, it is difficult to identify them in the
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overview SEM micrographs of Fig. 2. After 400 cycles, 4

micro-cracks were observed (Fig. 2b). The number of

cracks increased to 9 within 2100 cycles (Fig. 2c).

Micro-crack nucleation and growth are presented in

Fig. 3 at a higher magnification. Figure 3 shows two oxide

particles which are associated with small voids. These

types of defects were referred to as particle/void assemblies

(PVAs) in the literature [25]. Voids form when larger

inclusions fracture during thermo-mechanical processing

[73], e.g., during wire drawing. These PVAs represent

dominant crack initiation sites for electropolished NiTi

SMAs, where no more severe surface defects are present

[25]. Figure 3 shows that cracks form from interface

regions between oxide particles, adjacent voids, and the

SMA matrix. Figure 3a–c document how the two cracks

shown in Fig. 3 grow during the different stages of the

fatigue experiment, i.e., during 2100 cycles. As a striking

result, it was found, that only one crack, which emanated

from the right particle, underwent significant growth. In

contrast, the left crack in Fig. 3 showed no increase in

length. This is probably due to a stress-shielding effect,

caused by the propagation of the larger micro-crack. The

observed behavior is not uncommon. In general, the growth

of micro-cracks cannot be rationalized by macroscopic

growth models [74–76]. Their behavior is mainly governed

by local stresses in different microstructural regions. Fur-

thermore, shielding effects, as exemplarily shown in Fig. 3,

play important roles. Not all micro-cracks are able to

evolve into macroscopic cracks [74–76].

Figure 4 presents information on how the lengths of

different short surface cracks in the NiTi wire evolve

during BRF testing. The data sets in Fig. 4 rely on the

evaluation of surface crack lengths by quantitative image

analysis of 69 cracks during interrupted BRF experiments.

The data in Fig. 4 suggest that only a small number of

micro-cracks exhibits a significant growth. Fifty cracks did

not reach lengths exceeding 25 lm. Only one single crack

Fig. 1 SEM surface characterization of an electropolished NiTi wire

during interrupted BRF experiments. a SEM chamber with sample

holder which enables to monitor the same region during fatigue

testing. b SEM image of region of interest (red rectangle)

Fig. 2 Formation and growth of short cracks emanating from oxide

inclusions during BRF testing. a Initial state. b After 400 cycles.

c After 2100 cycles. The black dot indicates the same reference point

in all three images
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managed to grow by more than 100 lm (Fig. 4). In fact,

the long crack highlighted in Fig. 4 by an arrow finally

caused the fatigue failure of the wire specimen. The

behavior presented in Figs. 2, 3, and 4 merits further

analysis. It is interesting to clarify which processes govern

the growth of short cracks with sizes which match typical

length scales involved in the formation of martensitic

microstructures.

Functional Fatigue

In most SMAs, functional fatigue is directly caused by the

accumulation of transformation-induced defects in the

microstructure. Only a few exceptions exist, for example in

b-Ti alloys, where x-phase and a-Ti, which form during

aging at elevated temperatures, affect martensitic trans-

formations, e.g., [77–80]. In general, transformation-in-

duced degradations can occur during (1) thermal cycling

[81, 82], (2) thermal cycling under stresses [83–85], and (3)

during mechanical (e.g., pull–pull) cycling of pseudoelastic

Fig. 3 Examples from short crack growth in pseudoelastic NiTi. Two cracks grow from particle void assemblies (PVAs). a 200 cycles. b 1000

cycles. c 1800 cycles. d 2100 cycles

Fig. 4 Evolution of micro-crack lengths during structural fatigue

testing of a pseudoelastic NiTi wire. For details see text
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SMAs [86, 87]. In the early 1970s, Perkins [88] provided

microstructural evidence for irreversible transformation-

related microstructural changes, which result in functional

degeneration. Using transmission electron microscopy, it

could be demonstrated that dislocations accumulate during

thermal cycling in NiTi SMAs. It was suggested that these

dislocations may provide back-stresses which support

shape recovery processes. While this can be true for situ-

ations where a two-way effect is exploited after a thermo-

mechanical training, a different view has been established

today. In general, dislocations form during martensitic

transformations to compensate for the crystallographic

misfit between austenite and martensite [81, 82, 84, 85, 89].

Dislocations directly interact with austenite/martensite

transformation fronts [90] and affect phase transformation

behavior [81, 91, 92]. They even can stabilize martensite

[93, 94]. Recently, a symmetry-dictated non-phase-trans-

formation pathway during phase transformation cycling

was proposed, which also could play a role as a potential

mechanism leading to functional fatigue [30].

Figure 5 presents a few results on functional fatigue of

binary Ni50Ti50 and ternary Ni40Ti50Cu10 SMAs. Two

types of experiments were performed. First, both alloys

were subjected to stress-free thermal cycling using differ-

ential scanning calorimetry (DSC). Second, spring actua-

tors were prepared, and the functional performance of these

springs was evaluated using a special test rig. Details on

thermal cycling, alloy preparation/processing, and spring

actuator fatigue testing are documented in the literature

[70, 85, 95, 96]. Figure 5a, b present results from DSC

experiments where 20 heating/cooling cycles were

imposed. In the case of binary NiTi, the peaks associated

with the forward and reverse transformation shift towards

lower temperatures during cycling (Fig. 5a). The NiTiCu

SMA, Fig. 5b, shows two-step transformations, which are

related to the formation of B19 and B190 martensites on

cooling and to the reverse transformations on heating [97].

The data presented in Fig. 5a, b show that the NiTiCu

SMA exhibits a significantly better functional stability as

compared to binary NiTi, where transformation peaks shift

to lower temperatures during cycling. Similar trends were

Fig. 5 Functional fatigue of NiTi and NiTiCu SMAs. a, b Stress-free thermal cycling. c, d Thermo-mechanical cycling of spring actuators

(reprints from [85])
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found for the performance of NiTi and NiTiCu spring

actuators (Fig. 5c, d). Displacement/temperature hystereses

of NiTi and NiTiCu spring actuators are presented in

Fig. 5c, d [85], respectively. During heating, the actuators

contract, which translates into a decrease of the displace-

ment (x). A total number of 500 thermo-mechanical actu-

ation cycles (N) was performed for both actuators. The data

in Fig. 5c, d show that functional fatigue during cycling

results in a shift of the hysteresis curves to higher x values.

This means that the spring actuators permanently elongate

through functional fatigue. Furthermore, a decrease of the

hysteresis widths occurs during cycling. A detailed analysis

of this behavior is presented in [85]. Most importantly, the

functional stability of the NiTiCu actuator, Fig. 5d, is

significantly higher as that of binary NiTi (Fig. 5c). This is

in line with what was previously observed for stress-free

thermal cycling in the DSC (Fig. 5a, b).

The reason for the better functional stability of NiTiCu

alloys is that these SMAs exhibit a better compatibility

between the crystal lattices of austenite and martensite

[98–100]. Therefore, fewer defects accumulate in the

microstructure during phase transformation events. Gross-

mann et al. [85] were the first to document a direct evi-

dence for the correlation between crystallographic

compatibility and functional fatigue. This effect was later

on confirmed in other studies, e.g., [84, 101–103]. One has

to mention that crystallographic compatibility not only

plays a role for thermal cycling with/without stresses

(Fig. 5). Jaeger et al. [102] demonstrated that different

degrees of crystallographic compatibility, which can be

adjusted in binary NiTi by variations of the Ni concentra-

tion [14], lead to different mechanical stability during

pseudoelastic cycling. Early studies on the relation between

crystallographic compatibility and functional fatigue

invoked the k2-misfit-parameter, which was introduced in

[98, 99]. Since a few years, the effects of additional

parameters, referred to as cofactor conditions, receive

increasing scientific attention, e.g., [24, 104–110]. It has

been discussed by Song et al. [104] that these cofactor

conditions are highly relevant for functional fatigue. Shape

memory materials have been identified which closely sat-

isfy these supercompatibility conditions and which show a

good functional stability, e.g., Zn45Au30Cu25 and (Ti54-
Ni34Cu12)90Nb10 [104, 106–110]. The compatibility

between the lattices of austenite and martensite can be

improved by compositional variations.

Tuning the crystallographic compatibility is not the only

option available to reduce functional fatigue. The present

state of knowledge shows that two different strategies can

be applied: first, one can make phase transformation pro-

cesses smoother to reduce irreversibility effects. Second,

one can make the SMA stronger to increase fatigue resis-

tance. The first strategy addresses crystallographic effects

as has been discussed previously. The second strategy

involves different measures which increase the resistance

of the SMA with respect to plastic deformation. Grain size

refinement has been shown to significantly reduce dislo-

cation plasticity and thus to promote a stable functional

performance, e.g., [95, 111, 112]. A second option is par-

ticle strengthening. It has been demonstrated for both

binary and multi-component NiTi-based SMAs that pre-

cipitation hardening improves functional stability

[103, 113–115]. A third option exists which may reduce

functional fatigue: A few years ago, Firstov et al.

[116, 117] introduced high-entropy SMAs. These materials

receive increased scientific attention at present, e.g.,

[118–121]. Similar to conventional high-entropy alloys

(HEAs), e.g., [122, 123], these materials are characterized

by a large number of alloy components with equimolar

compositions. The chemical nature of these SMAs may

provide solid-solution-like strengthening effects. Further

work is required to clarify how chemical complexity

affects reversible and irreversible elemental processes of

martensitic transformations.

Coupling Between Structural and Functional

Fatigue

A strict differentiation between functional and structural

fatigue is not always possible. Bigeon and Morin [124]

studied the functional performance of NiTiCu and CuZnAl

SMAs during thermal cycling under constant load. As a

striking result, they observed that their samples broke after

a certain number of cycles. The number of cycles to failure

was depending on the loading stress, and increasing stress

levels resulted in shorter fatigue lives. Bigeon and Morin

[124] also showed that NiTiCu SMAs were less prone to

this coupled functional/structural fatigue (CFSF) than

CuZnAl alloys. Figure 6 presents SEM micrographs of

NiTi wires after CFSF testing. The sample was loaded at a

constant stress of 450 MPa and subjected to heating/cool-

ing cycles until fracture occurred after 10,328 cycles.

Details on experiments are given elsewhere [125]. The

fracture surface, Fig. 6a, shows that a large number of

small cracks (highlighted by arrows) have formed in sur-

face-near regions from where they grew inwards into the

wire prior to rupture. Figure 6b shows the skin surface of

the wire. A high density of short cracks is visible, which

grow perpendicular to the loading direction. The mecha-

nism for the formation and growth of these cracks are not

well understood at present. It has been suggested that

cycling results in an increase of the surface roughness

[126] which facilitates crack formation. Experimental

studies are scarce at present, [115, 127–131]. Further work

is required to analyze if and how incompatibilities between
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the lattices of martensite and austenite and related irre-

versible processes contribute to a coupling between func-

tional and structural fatigue.

Summary

The present work stresses the importance of structural and

functional fatigue in shape memory technology. Both limit

the exploitable service lives of shape memory components.

While a good state of knowledge has been established in

both fields during the last decades, there are still aspects

which require scientific attention. NiTi SMAs are prone to

the formation of small cracks. There is a need for a better

understanding of how micro-cracks can grow in a material

which undergoes a stress-induced martensitic transforma-

tion, which redistributes stresses in the microstructure. The

importance of functional fatigue has been highlighted. The

functional stability of SMAs can be improved by (1)

making phase transformations smoother and (2) by

improving material strength to increase fatigue resistance.

Further work is required to understand interactions between

functional and structural fatigue and to clarify potential

effects of solid-solution strengthening.
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