
Des. Codes Cryptogr. (2018) 86:1793–1805
https://doi.org/10.1007/s10623-017-0424-7

On the (in)efficiency of non-interactive secure multiparty
computation

Maki Yoshida1 · Satoshi Obana2

Received: 13 May 2016 / Revised: 22 May 2017 / Accepted: 3 October 2017 /
Published online: 26 March 2018
© The Author(s) 2018

Abstract Secure multi-party computation (MPC) enables multiple players to coopera-
tively evaluate various functions in the presence of adversaries. In this paper, we consider
non-interactive MPC (NIMPC) against honest-but-curious adversaries in the information-
theoretic setting, which was introduced by Beimel et al. at CRYPTO 2014. Their main focus
is to realize stronger security while completely avoiding interaction, and succeeded to show
that every function admits a fully robust NIMPC protocol. In this paper, we further develop
the study of NIMPC. We first present a simple lower bound on the communication complex-
ity derived from the correctness requirement of NIMPC. Secondly, we present an efficient
NIMPC protocol for indicator functions, which is an important building block of NIMPC
protocols. An NIMPC protocol for arbitrary functions is also constructed from the proposed
NIMPC for indicator functions by using the generic compiler introduced by Beimel et al.
in CRYPTO 2014. The communication complexities of NIMPC protocols presented in this
paper are much more efficient than the previous ones. In fact, the gap between the lower
and upper bounds of the communication complexity is reduced from exponential in the input
length to quadratic. Finally, we show some improvements on the efficiency in the so-called
offline-online model. Specifically, for some sets of functions, the exponential amount of
offline communication reduces the online communication to almost optimum amount in the
standard model.
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1 Introduction

Secure multi-party computation (MPC) aims to enable multiple players to cooperatively
compute various functions in the presence of adversaries. MPC was first introduced by
Yao [15] and because of its importance in cryptography, there have been presented many
variants so far [6–8,10–14]. At CRYPTO 2014 [2] (and its full version [3]), Beimel et al. have
introduced a novel type of MPC, called non-interactiveMPC (NIMPC), against honest-but-
curious adversaries in the information theoretical setting,which completely avoids interaction
while realizing as strong security as possible:

an NIMPC protocol for a function f (x1, . . . , xn) is defined by a joint probability
distribution R = (R1, . . . , Rn) and local encoding functions ENCi (xi , Ri ), where
1 ≤ i ≤ n; for a set T ⊆ [n] = {1, . . . , n}, the protocol is said to be T -it robust
(with respect to f ) if revealing the messages (ENCi (xi , Ri ))i /∈T together with the ran-
domness (Ri )i∈T , where (R1, . . . , Rn) is sampled from R, gives the same information
about (xi )i /∈T as an oracle access to the function f restricted to these input values;
for 0 ≤ t ≤ n, the protocol is said to be t-robust if it is T -robust for every T of size at
most t, and it is said to be fully robust if it is n-robust.

In [2,3], Beimel et al. have succeeded to obtain unconditional positive results for some
special cases of interest. In particular, they have presented fully robust NIMPC protocols for
various classes of functions including the class of arbitrary functions. However, except for
special functions like the summation in an abelian group, the communication complexity is
not less than polynomial in the size of the input domain (i.e., exponential in the input length).

The questionwe ask is whether there is a room to reduce the communication complexity of
NIMPC.Unfortunately, a few results has been known about limitations on the communication
complexity of MPC. Recently, the research to tackle the difficult problem of lower bounds
for communication in MPC becomes active like Data et al. in CRYPTO 2014 [9]. They have
developed novel information-theoretic tools to prove lower bounds on the communication
complexity in the traditional (i.e., interactive) model involving three parties.

In this paper, we study the communication complexity of NIMPC defined in [2,3]. As a
result, we show that the inefficiency of NIMPC is essentially unavoidable except for special
classes of functions. The contributions of this paper are as follows.

Communication complexity of NIMPC for the set of arbitrary functions: We derive the first
lower bound on the communication complexity of NIMPC for any set of functions. The
derived lower bound is the logarithm of the size of the function set. In particular, for the set
of arbitrary functions f : X → {0, 1}m where X is the input domain and m is the output
length, the lower bound is |X | · m, i.e., exponential in the input length.

Communication complexity for the set of indicator functions: On the other hand, for the set
of indicator functions, where the number of functions is linear in the input and output length,
we have a significantly small lower bound. However, the communication complexity of the
previous fully robust NIMPC protocol for indicator functions in [2,3] is exponential in the
input length. NIMPC for indicator functions is used as the main building block of NIMPC for
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On the (in)efficiency of NIMPC 1795

Table 1 The communication complexity of n-player NIMPC protocols for a family of functions h : X →
{0, 1}m where X = X1 × · · · × Xn and d ′ ≤ |Xi | ≤ d for all 1 ≤ i ≤ n

Arbitrary functions Indicator functions (m = 1)

Previous protocols in [2,3] |X | · m · d2 · n d2 · n
Lower bound (Sect. 3) |X | · m log2 |X |(≥ log2 d

′ · n)

Our protocols (Sect. 4) |X | · m · �log2 d	2 · n �log2 d	2 · n

arbitrary functions in [2,3]. Thus, for the previous fully robust NIMPC protocol for arbitrary
functions in [2,3], there is also an exponential gap between the lower and upper bounds.

Efficient fully robust NIMPC protocol for indicator functions: We then reduce the exponen-
tial gap between the lower and upper bounds on the communication complexity to quadratic
by constructing a much more efficient fully robust NIMPC protocol for indicator functions.
Specifically, we present a construction of fully robust NIMPC protocols for indicator func-
tions whose communication complexity is quadratic in the input length (Table 1).

Some improvements in the offline-online model: In [2] and the above, it is assumed that all
communication happens after the inputs are known. It is mentioned in [3] (Remark 2.6) that
it is sometimes useful to separate between offline communication, that can take place after
the function is known but before the inputs are known, and online communication that takes
place once the inputs are known. For this offline-online model for NIMPC, one desirable
feature is low online complexity [3]. For the proper set of indicator functions, we show that
the exponential amount of offline communication reduces the online communication to the
optimum amount in the standard model. This result is useful for any set H of functions that
have the same output frequency, that is, |{x ∈ X | h(x) = y}| = |{x ∈ X | h′(x) = y}|
holds for any h, h′ ∈ H and for any y ∈ {0, 1}m .

Our technique for deriving the lower bounds is quite simple and useful for approximating
the amount of communication. We use the fact that the NIMPC model considered in [2,3]
requires that the computed function itself is “private” and, in particular, not known in advance
while the target class of functions is public. For the target class of functions, we first assume
the existence of a correct NIMPC protocol with some communication complexity and show
a method for a server to send data to a client by encoding data into a function and evaluating
the function with the use of the NIMPC protocol. Thus, the communication complexity is
bounded by the size of target class. If the assumed communication complexity is smaller
than the logarithm of the size of the target class, the contradiction is implied. Thus, the
communication complexity is lower bounded by the logarithm of the size of the target class.
A similar technique is used in [1] for proving impossibility of multiplicative secret sharing
rather than derivation of lower bounds. We note that we only use the correctness requirement
for deriving the lower bound. Thus, the lower bound in this paper is applicable not only to
NIMPC against any collusion including constant-size ones considered in [4,5] but also to
other security models including computational and statistical ones. In addition, our lower
bound techniques work for suchMPCmodels that the function itself is private rather than for
the standard one where the function is assumed to be known (and the protocol may depend
on it).
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1796 M. Yoshida, S. Obana

2 Preliminaries

We recall the notations and definitions of NIMPC introduced in [2]. For an integer n, let [n]
be the set {1, 2, . . . , n}. For a setX = X1×· · ·×Xn and T ⊆ [n],we denoteXT 
=

∏
i∈T Xi .

For x ∈ X , we denote by xT the restriction of x to XT , and for a function h : X → Ω, a
subset T ⊆ [n], and xT ∈ XT , we denote by h|T , xT

: X → Ω the function h where the
inputs in XT are fixed to xT . For a set S, let |S| denote its size (i.e., cardinality of S).

An NIMPC protocol for a family of functions H is defined by three algorithms: (1) a
randomness generation function GEN, which given a description of a function h ∈ H
generates n correlated random inputs R1, . . . , Rn, (2) a local encoding function ENCi (1 ≤
i ≤ n), which takes an input xi and a random input Ri and outputs a message, and (3) a
decoding algorithm DEC that reconstructs h(x1, . . . , xn) from the n messages. The formal
definition is given as follows:

Definition 1 (NIMPC: syntaxandcorrectness)LetX1, . . . ,Xn, R1, . . . ,Rn, M1, . . . ,Mn

andΩ be finite domains. LetX 
= X1×· · ·×Xn and letH be a family of functions h : X → Ω.

Anon-interactive secureMPC (NIMPC) protocol forH is a tripletΠ = (GEN, ENC, DEC)

where

– GEN : H → R1 × · · · × Rn is a randomized function,
– ENC is an n-tuple of deterministic functions (ENC1, . . . ,ENCn), where ENCi : Xi ×

Ri → Mi ,

– DEC : M1 × · · · × Mn → Ω is a deterministic function satisfying the following
correctness requirement: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr
[
R = (R1, . . . , Rn) ← GEN(h) : DEC(ENC(x, R)) = h(x)

] = 1, (1)

where ENC(x, R) 
= (ENC1(x1, R1), . . . ,ENCn(xn, Rn)).

The individual communication complexity of Π is the maximum of log |R1|, . . . , log |Rn |,
log |M1|, . . . , log |Mn |. The total communication complexity ofΠ is max{∑i∈[n] log |Ri |,∑

i∈[n] log |Mi |}.
We next show the definition of robustness for NIMPC, which states that a coalition can

only learn the information they should. In the above setting, a coalition T can repeatedly
encode any inputs for T and decode h with the new encoded inputs and the original encoded
inputs of T . Thus, the following robustness requires that they learn no other information than
the information obtained from oracle access to h|T , xT

.

Definition 2 (NIMPC: robustness) For a subset T ⊆ [n], we say that an NIMPC protocol
Π for H is T -robust if there exists a randomized function SimT (a “simulator”) such that,
for every h ∈ H and xT ∈ XT , we have SimT (h|T , xT

) ≡ (MT , RT ), where R and M are

the joint randomness and messages defined by R ← GEN(h) and Mi ← ENCi (xi , Ri ).

For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is T -robust for every T ⊆ [n]
of size |T | ≤ t. We say that Π is fully robust (or simply refer to Π as an NIMPC for H) if
Π is n-robust. Finally, given a concrete function h : X → Ω, we say that Π is a (t-robust)
NIMPC protocol for h if it is a (t-robust) NIMPC for H = {h}.
As the same simulator SimT is used for every h ∈ H and the simulator has only access to
h|T ,xT

, NIMPC hides both h and the inputs of T . An NIMPC protocol is 0-robust if it is
∅-robust. In this case, the only requirement is that the messages (M1, . . . , Mn) reveal h(x)
and nothing else.
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On the (in)efficiency of NIMPC 1797

An NIMPC protocol is also described in the language of protocols in [2]. Such a protocol
involves n players P1, . . . , Pn, each holding an input xi ∈ Xi , and an external “output server,”
a player P0 with no input. The protocol may have an additional input, a function h ∈ H.

Definition 3 (NIMPC: protocol description) For an NIMPC protocol Π for H, let P(Π)

denote the protocol that may have an additional input, a function h ∈ H, and proceeds as
follows.

Protocol P(Π)(h)

– Offline preprocessing: Each player Pi , 1 ≤ i ≤ n, receives the random input
Ri 
= GEN(h)i ∈ Ri .

– Online messages: On input Ri , each player Pi , 1 ≤ i ≤ n, sends the message
Mi 
= ENCi (xi , Ri ) ∈ Mi to P0.

– Output: P0 computes and outputs DEC(M1, . . . , Mn).

Informally, the relevant properties of protocol P(Π) are given as follows:

– For any h ∈ H and x ∈ X , the output server P0 outputs, with probability 1, the value
h(x1, . . . , xn).

– Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set of players {Pi }i∈T ∪ {P0} can
simulate their view of the protocol (i.e., the random inputs {Ri }i∈T and the messages
{Mi }i∈T ) given oracle access to the function h restricted by the other inputs (i.e., h|T ,xT

).
– Π is 0-robust if and only if in P(Π) the output server P0 learns nothing but h(x1, . . . , xn).

We show a claim in [2] stating that for functions outputting more than one bit, we can
compute each output bit separately. Based on this fact, in [2], a fully robust NIMPC protocol
for the set of indicator functions was first constructed, and then NIMPC protocols for the set
of arbitrary functions are constructed based on it.

Proposition 1 (Claim 7 in [2]) Let X 
= X1 × · · · × Xn, where X1, . . . ,Xn are some finite
domains. Fix an integer m > 1. SupposeH is a family of boolean functions h : X → {0, 1}
admitting anNIMPCprotocol with communication complexity δ.Then, the family of functions
Hm = {h : X → {0, 1}m |h = h1 ◦ · · · ◦ hm, hi ∈ H} admits an NIMPC protocol with
communication complexity δ · m.

Definition 4 (Indicator functions) Let X be a finite domain. For n-tuple a = (a1, . . . , an) ∈
X , let ha : X → {0, 1} be the function defined by ha(a) = 1, and ha(x) = 0 for all
a �= x ∈ X . Let h0 : X → {0, 1} be the function that is identically zero on X . Let
Hind 
= {ha}a∈X ∪ {h0} be the set of all indicator functions together with h0.

Note that every function h : X → {0, 1} can be expressed as the sum of indicator functions,
namely, h = ∑

a∈X ,h(a)=1 ha .
Wereview theprevious results onupper boundson the individual communication complex-

ity of NIMPC. As described above, the fully robust NIMPC protocols in [2] are constructed
from fully robust NIMPC for Hind. Thus, the previous upper bounds depend on the upper
bound forHind. This means we have a better upper bound if we obtain a more efficient fully
robust NIMPC protocol for Hind.

Proposition 2 (Arbitrary functions Hall, Proof of Theorem 10 in [2]) Fix finite domains
X1, . . . ,Xn such that |Xi | ≤ d for all 1 ≤ i ≤ n and let X 
= X1 × · · · × Xn . Let Hall be
the set of all functions h : X → {0, 1}m . If there exists an NIMPC protocol for Hind with
individual communication complexity δ, then there exists an NIMPC protocol for H with
individual (resp. total) communication complexity |X | · m · δ (resp. |X | · m · δ · n).

123



1798 M. Yoshida, S. Obana

3 Lower bounds on the communication complexity

Wederive a lower boundon the total communication complexity for anyfinite set of functions,
and in particular Hall and Hind.

As described in the Sect. 1, the total communication complexity is bounded by the size of
target class. In other words, the total communication complexity cannot be smaller than the
logarithm of the size of the target class.

Theorem 1 (Lower bound for any finite set of functions) Fix finite domains X1, . . . ,Xn and
Ω. Let X 
= X1, . . . ,Xn andH a set of functions h : X → Ω. Then, any fully robust NIMPC
protocol Π for H satisfies

n∑

i=1

log |Ri | ≥ log |H|, (2)

n∑

i=1

log |Mi | ≥ log |Ω|. (3)

Proof We first prove Eq. (2). Let H = |H|. Let ϕ be a one-to-one mapping from H to
{0, 1, . . . , H−1}. (That is, all functions inH are numbered according to some rule.) Suppose
a server holding a random number a ∈ {0, . . . , H−1} aims to send a to a client. Suppose also
that there is an NIMPC protocol (GEN, ENC, DEC) for H that satisfies

∑n
i=1 log |Ri | <

log H.For the function h = ϕ(a), the server executes R ← GEN(h) and sends R to the client.
The client obtains a by executingENC andDEC for all possible inputs x ∈ X and identifying
the function h. We conclude that the server can communicate any a ∈ {0, . . . , H − 1} to the
client using R = (R1, . . . , Rn) of which domain size

∏n
i=1 |Ri | is smaller than H, that is

impossible. Thus, we have
∑n

i=1 log |Ri | ≥ log H.

In a similar way, we next prove Eq. (3). Suppose a server holding a random element b ∈ Ω

and aiming to send b to a client and that there is an NIMPC protocol (GEN, ENC, DEC)

for H that satisfies
∑n

i=1 log |Mi | < log |Ω|. For a function h ∈ H and an element a ∈ X
such that h(a) = b, the server executes R ← GEN(h) and M ← ENC(a, R), and sends
M to the client. The client obtains b by executing DEC. We conclude that the server can
communicate any b ∈ Ω to the client using M = (M1, . . . , Mn) of which domain size∏n

i=1 |Mi | is smaller than |Ω|, that is impossible. Thus, we have
∑n

i=1 log |Mi | ≥ log |Ω|.
��

The following corollary shows a lower bound on the total communication complexity of
NIMPC for the set of arbitrary functions. The lower bounds indicate the impossibility of
reducing the communication complexity to polynomial in the input length.

Corollary 1 (Lower bound for arbitrary functions) Fix finite domains X1, . . . ,Xn such that
|Xi | ≥ d ′ for all 1 ≤ i ≤ n. Let X 
= X1 × · · · × Xn and Hall the set of all functions
h : X → {0, 1}m . Any NIMPC protocol Π for Hall satisfies

n∑

i=1

log |Ri | ≥ m · |X | ≥ d ′n · m, (4)

n∑

i=1

log |Mi | ≥ m. (5)
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On the (in)efficiency of NIMPC 1799

Proof The proof is obvious from Theorem 1 by setting H = Hall. A function maps each
input value to some output value. Thus, |H| is given bymultiplying the number of all possible
input values by the number of all possible output values, i.e., 2m·|X |. Then,

∑n
i=1 log |Ri | ≥

log |H| = m · |X |. ��

The following corollary shows a lower bounds on the total communication complexity
of NIMPC for Hind. The gap between this lower bound (linear in the input length) and the
previous upper bound (exponential in the input length) is large. In the next section, we will
present an efficient NIMPC protocol for Hind with individual (resp. total) communication
complexity at most �log2 d	2 · n (resp. �log2 d	2 · n2).

Corollary 2 (Lower bound for indicator functions) Fix finite domains X1, . . . ,Xn such that
|Xi | ≥ d ′ for all 1 ≤ i ≤ n and let X 
= X1 × · · · ×Xn . Then, any NIMPC protocol Πind for
Hind satisfies

n∑

i=1

log |Ri | ≥ log |X | ≥ n · log d ′. (6)

Proof The proof is obvious from Theorem 1 by settingH = Hind. A function ha maps each
input value x to zero or one depending on whether x = a or not. Thus, |H| is given by the
number of all possible values of a, i.e., |X |. Then, ∑n

i=1 log |Ri | ≥ log |H| = log |X |. ��
Remark. We can give a more constructive proof, which need not to assume the existence of a
one-to-one mapping φ. Suppose a server holding a random vector a = (a1, . . . , an) ∈ X and
aiming to send a to a client. Suppose that there is an NIMPC protocol (GEN, ENC, DEC)

for Hind that satisfies
∑n

i=1 log |Ri | < log |X |. The server executes R ← GEN(ha) and
sends R to the client. The client obtains a by executing ENC andDEC for all possible inputs
a′ ∈ X and checking whether the output is 1 or not. The input a′ for which the output is 1 is
considered as a. We conclude that the server can communicate any a ∈ X to the client using
R = (R1, . . . , Rn) of which domain size

∏n
i=1 |Ri | is smaller than |X |, that is impossible.

Thus, we have
∑n

i=1 log |Ri | ≥ log |X |.

4 Efficient constructions

We now present an efficient construction of fully robust NIMPC for Hind. In the previous
construction in [2], all the possible input values are encoded in a unary way, and thus the
communication complexity depends on the size of the input domain. Specifically, each pos-
sible input value is represented by a single vector over F2 so that the summation of vectors
corresponding to a = (a1, . . . , an) is equal to the zero vector while the other combination is
linearly independent to satisfy the robustness. Our idea to reduce the communication com-
plexity is to encode all the possible input values in a binary way. Specifically, for each bit in
the binary representation, a vector representing “1” is generated so that the summation of all
vectors of “1” over the binary representation of a is equal to zero. Since the proposed encod-
ing reduces the required dimension of vectors, the communication complexity of resulting
NIMPC is greatly reduced, too.

The detailed description of the protocol is as follows. For i ∈ [n], let di = |Xi | and φi be
a one-to-one mapping from Xi to [di ]. Let li = �log2 di	 and s = ∑n

i=1 li . Fix a function
h ∈ Hind that we want to compute.
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The proposed fully robust NIMPC P(Πind)(h)

– Offline preprocessing: If h = h0, then choose s linearly independent random vectors
{mi, j }i∈[n], j∈[li ] in F

s
2. If h = ha for some a = (a1, . . . , an) ∈ X , denote the binary

representation of φi (ai ) by bi = (bi,1, . . . , bi,li ) and define a set of indices Ii by Ii =
{ j ∈ [li ] | bi, j = 1}.Choose s random vectors {mi, j }i∈[n], j∈[li ] in Fs

2 under the constraint
that

∑n
i=1

∑
j∈I j mi, j = 0 and there are no other linear relations between them (that is,

choose all the vectors mi, j except mn,max In , as random linear independent vectors and
set mn,max In = −∑n−1

i=1
∑

j∈Ii mi, j − ∑
j∈In\{max In} mn, j ). Define GEN(h) = R =

(R1, . . . , Rn), where Ri = {mi, j } j∈[li ].
– Online messages: For an input xi , let b̂i = (b̂i,1, . . . , b̂i,li ) be the binary representation

of φi (xi ). Let Îi be the set of indices defined by Îi = { j ∈ [li ] | b̂i, j = 1}.ENC(x, R) �
(M1, . . . , Mn) where Mi = ∑

j∈ Îi mi, j .

– Output h(x1, . . . , xn): DEC(M1, . . . , Mn) = 1 if
∑n

i=1 Mi = 0.

Mapping fromXi to [di ],which does not contain zero, is an important point of the proposed
protocol. If an input xi were mapped to the zero vector, Mi would be always 0. This would
disclose extra information (that could not be simulated). That is, whether xi = 0 leaked.
Because every φi does not map no value of xi to the zero vector, no information on the inputs
xi is disclosed (robustness), and the summation of vectors becomes zero if and only if xi are
equal to ai (correctness).

Theorem 2 Fix finite domains X1, . . . ,Xn such that |Xi | ≤ d for all 1 ≤ i ≤ n and
let X 
= X1 × · · · × Xn . Then, there is a fully robust NIMPC protocol Πind for Hind with
individual (resp. total) communication complexity at most �log2 d	2 ·n (resp. �log2 d	2 ·n2).
Proof For the correctness, note that

∑n
i=1 Mi = ∑n

i=1
∑

j∈ Îi mi, j . If h = ha for a ∈ X ,

this sum equals 0 if and only if Ii = Îi for all i ∈ [n], i.e., a = x . If h = h0, this sum is
never zero, as all vectors were chosen to be linearly independent in this case.

To prove robustness, fix a subset T ⊆ [n] and xT ∈ XT .The encodingsMT of T consist of
the vectors {Mi }i∈T .The randomness RT consists of the vectors {mi, j }i∈[n], j∈[li ]. If h|T ,xT

≡
0, then these vectors are uniformly distributed in Fs

2 under the constraint that they are linearly
independent. If h|T ,xT

(xT ) = 1 for some xT ∈ XT , then
∑

i∈T Mi + ∑
i∈T

∑
j∈ Îi mi, j = 0

and there are no other linear relations between them. Formally, to prove the robustness, we
describe a simulator SimT : the simulator queries h|T ,xT

on all possible inputs in XT . If all
answers are zero, this simulator generates random independent vectors. Otherwise, there is
an xT ∈ XT such that h|T ,xT

(xT ) = 1, and the simulator outputs random vectors under
the constrains described above, that is, all vectors are independent with the exception that∑

i∈T Mi + ∑
i∈T

∑
j∈ Î j mi, j = 0.

In the proposed protocol, log2 |Ri | is larger than log2 |Mi | for every i ∈ [n]. Thus,
the individual communication complexity is given by the maximum length of correlated
randomness. The correlated randomness Ri is composed of li ≤ �log2 d	 binary vectors of
length s ≤ �log2 d	 · n and the encoding is the summation of some of them. Hence, the
individual communication complexity is at most �log2 d	2 · n. ��
Corollary 3 Fix finite domains X1, . . . ,Xn such that |Xi | ≤ d for all 1 ≤ i ≤ n and let
X 
= X1 × · · · × Xn . Then, there is a fully robust NIMPC protocol for Hall with individual
(resp. total) communication complexity at most |X | ·m ·�log2 d	2 ·n (resp. |X | ·m ·�log2 d	2 ·
n2).

Proof From Proposition2 and Theorem1, it is obvious. ��
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5 Some improvements in the offline-online model

The offline-online model is defined by modifying the output ofGEN to include an additional
entry R0, which represents the offline communication and is given as an additional input to
the decoder DEC [3]. The random variable RT is redefined to always include R0. That is,
the value of R0 should be correctly simulated by Sim. Let R0 be a finite domain of R0. We
refer to NIMPC protocols in the offline-online model as offline-online NIMPC protocols. To
distinguish the offline-online protocols, we refer to the NIMPC protocols considered in the
previous sections as standard NIMPC protocols.

The formal definition of offline-online NIMPC is given as follows [3]:

Definition 5 (Offline-onlineNIMPC: syntaxandcorrectness)LetX1, . . . ,Xn, R0, R1, . . . ,

Rn, M1, . . . ,Mn and Ω be finite domains. Let X 
= X1 × · · · × Xn and let H be a fam-
ily of functions h : X → Ω. An offline-online NIMPC protocol for H is a triplet
Π = (GEN, ENC, DEC) where

– GEN : H → R0 × R1 × · · · × Rn is a randomized function,
– ENC is an n-tuple of deterministic functions (ENC1, . . . ,ENCn), where ENCi : Xi ×

Ri → Mi ,

– DEC : R0 ×M1 × · · · ×Mn → Ω is a deterministic function satisfying the following
correctness requirement: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr
[
R = (R0, R1, . . . , Rn) ← GEN(h) : DEC (R0, ENC(x, R)) = h(x)

] = 1, (7)

where ENC(x, R) 
= (ENC1(x1, R1), . . . ,ENCn(xn, Rn)).

The (online) individual communication complexity of Π is the maximum of log |R1|, . . . ,
log |Rn |, log |M1|, . . . , log |Mn |.
Definition 6 (Offline-online NIMPC: robustness) For a subset T ⊆ [n], we say that an
offline-online NIMPC protocol Π for H is T -robust if there exists a randomized function
SimT (a “simulator”) such that, for every h ∈ H and xT ∈ XT , we have SimT (h|T ,xT

) ≡
(MT , RT∪{0}), where R and M are the joint randomness and messages defined by R ←
GEN(h) and Mi ← ENCi (xi , Ri ). The t-robustness and fully robustness are defined in a
similar way to the standard model.

Definition 7 (Offline-online NIMPC: protocol description) For an offline-online NIMPC
protocol Π forH, let P(Π) denote the protocol that may have an additional input, a function
h ∈ H, and proceeds as follows.

Protocol P(Π)(h)

– Offline preprocessing: Each player Pi , 1 ≤ i ≤ n, receives the random input
Ri 
= GEN(h)i ∈ Ri . P0 receives R0 
= GEN(h)0 ∈ R0.

– Online messages: On input Ri , each player Pi , 1 ≤ i ≤ n, sends the message
Mi 
= ENCi (xi , Ri ) ∈ Mi to P0.

– Output: P0 computes and outputs DEC(R0, M1, . . . , Mn).

It is obvious to construct an n-player offline-online protocol for a function h from an
n-player standard protocol for h by taking R0 to be empty (or some constant). However, in
this construction, the offline communication R0 cannot be used for reducing the individual
communication complexity of Pi with 1 ≤ i ≤ n.
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In the following, for any set of functions that have the same output frequency such as
H∗

ind = Hind \ {h0}, we show a fully robust offline-online protocol whose individual com-
munication complexity is smaller than that in Sect. 4.

We first consider the set H∗
ind, i.e., the functions that have just one “1” output. We use

a fully robust standard NIMPC protocol Πind = (GEN′, ENC′, DEC′) given in Sect. 4 as
a subroutine.1 Our idea to reduce the individual communication complexity is simple: use
(R′

1, . . . , R
′
n) ← GEN′(ha) as the offline communication R0 and specify the inputs xi by

using the online communication Mi while keeping a and xi secret. To hide a and xi , we shift
a = (a1, . . . , an) and x = (xi , . . . , xn) by random values s = (s1, . . . , sn).

The detailed description of the proposed offline-online protocol Πproper = (GEN, ENC,

DEC) is as follows. For i ∈ [n], let di = |Xi | and ψi be a one-to-one mapping from Xi to
{0, 1, . . . , di − 1}. Fix a function ha ∈ H∗

ind that we want to compute.

The proposed offline-online NIMPC P(Πproper)(ha)
– Offline preprocessing: Randomly choose values si ∈ {0, . . . , di − 1} with i ∈ [n]. Let

σi : Xi → {0, . . . , di−1} be the one-to-onemapping such thatσi (x) = ψ−1
i ((ψi (x)+si )

mod di ), i.e., shifting the input x by si . Set b = (b1, . . . , bn) = (σ1(a1), . . . , σn(an)).
Define GEN(ha) = R = (R0, R1, . . . , Rn), where R0 = (R′

1, . . . , R
′
n) = GEN′(hb)

and Ri = si with i ∈ [n].
– Online messages: ENC(x, R) = (M1, . . . , Mn) where Mi = σi (xi ).
– Output ha(x1, . . . , xn): Let M ′

i = ENC′(R′
i , Mi ).DEC(R0, M1, . . . , Mn) =

DEC′(M ′
1, . . . , M

′
n).

Theorem 3 Fix finite domains X1, . . . ,Xn such that |Xi | ≤ d for all 1 ≤ i ≤ n and let
X 
= X1 × · · · × Xn . Then, there is a fully robust offline-online NIMPC protocol Πproper for
Hind \ {h0} with individual communication complexity at most �log2(d − 1)	.
Proof For the correctness, note that the output is that of hb for inputs σi (xi ). Thus, the output
is one if and only if (x1, . . . , xn) = a, as the tuple (M1, . . . , Mn) equals b if and only if
(x1, . . . , xn) = a.

To prove the robustness, fix a subset T ⊆ [n] and xT ∈ XT . Let σT (xT ) denote
(σ1(x1), . . . , σn(xn))T .

The encodings MT of T consists of |T | integers Mi ∈ {0, . . . , di − 1} with i ∈ T . The
randomness RT consists of the vectors {mi, j }i∈[n], j∈[li ] and T integers si ∈ {0, . . . , di − 1}
with i ∈ T . The vectors {mi, j }i∈[n], j∈[li ] are uniformly distributed under the constraint that
for some b ∈ X ,

∑n
i=1

∑
j∈Ii mi, j = 0 and there are no other linear relations between them.

If h|T ,xT
≡ 0, then bT �= MT . If h|T ,xT

(xT ) = 1 for some xT ∈ XT , then bT = σT (xT ) and
bT = MT .

We construct SimT for the protocol P(Πproper) on function ha . The simulator first
generates random vectors {mi, j }i∈[n], j∈[li ] under the constraint that for some b ∈
X ,

∑n
i=1

∑
j∈Ii mi, j = 0 and there are no other linear relations between them. The simu-

lator then queries h|T ,xT
on all possible inputs in XT . If all answers are zero, this simulator

generates random Mi ∈ {0, . . . , di − 1} with i ∈ T so that bT �= MT , and generates random
Ri ∈ {0, . . . , di − 1} with i ∈ T . Otherwise, there is an xT ∈ XT such that h|T ,xT

(xT ) = 1,
and the simulator sets Ri and Mi so that bT = σT (xT ) and bT = MT where σi is defined as
above with si = Ri .

1 We note that the communication complexity for H∗
ind is the same as that forHind.
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The correlated randomness Ri with i ∈ [n] and encoding Mi are integers of length
�log2(di−1)	.Hence, the (online) individual communication complexity is atmost �log2(d−
1)	. ��

We extend the above result to any set of functions that have the same output frequency.
In the fully robust standard NIMPC protocol for Hall in [2], h0 plays the role of hiding
information on how many 1’s the function h has. This is the motivation of including h0 in
Hind and a standard NIMPC protocol for Hind is used as a subroutine. Our target set of
functions has the same output frequency. Thus, we no longer need to hide this information
and thus the offline-online NIMPC protocol Πproper for Hind \ {h0} is enough for our target
sets.

Corollary 4 Fix finite domains X1, . . . ,Xn such that |Xi | ≤ d for all 1 ≤ i ≤ n and let
X 
= X1 × · · · ×Xn . Fix an integer m > 1. LetH be a set of functions h : X → {0, 1}m that
have the same output frequency, that is, |{x ∈ X | h(x) = y}| = |{x ∈ X | h′(x) = y}| holds
for any h, h′ ∈ H and for any y ∈ {0, 1}m . Then, there is a fully robust offline-online NIMPC
protocol for H with individual communication complexity at most |X | · m · �log2(d − 1)	.
Proof Fix a function h ∈ H. Assume for simplicity that m = 1. The offline-online protocol
Π for H, which uses Πproper = (GEN, ENC, DEC), is as follows.

– Offline preprocessing: Let I = h−1(1) ⊆ X , i.e., the set of ones of h. Let D = |I |,
i.e., the number of ones of h, and I = {a1, . . . , aD}. Choose a random permutation φ.

For each k ∈ [D], let R(k) = (R(k)
0 , R(k)

1 , . . . , R(k)
n ) ← GEN(hak ). Define a matrix

R, where Ri,k � R(φ(k))
i for 0 ≤ i ≤ n and k ∈ [D]. Send to Pi the random strings

(Ri,k)k∈[D], i.e., the i th row of R.

– Online messages: For every i ∈ [n] and k ∈ [D], let M (k)
i � ENCi (xi , Ri,k). Define

a matrix M, where Mi,k � M (k)
i for 0 ≤ i ≤ n and k ∈ [D]. Each Pi sends to P0 the

message Mi � (Mi,k)k∈[D].
– Output h(x1, . . . , xn):Theoutput is 1 if for some k∈[D], DEC(R0,k, M1,k, . . . , Mn,k) =

1. Otherwise, the output is zero.

First, we will show the correctness of the above protocol. Fix x = (x1, . . . , xn) ∈ X .

The output is 1 if and only if DEC(R0,k, M1,k, . . . , Mn,k) = 1 for some k ∈ [D], that is,
DEC(R(φ(k))

0 , ENC(x1, R(φ(k))
1 ), . . . ,ENC(xn, R(φ(k))

n )) = 1 for some k ∈ [D]. Since the
underlyingΠproper = (GEN, ENC, DEC) satisfies the correctness, this happens if and only
if hak (x) = 1 holds for some ak ∈ I.

Next, wewill show the robustness. The robustness is proven in a similar way to Theorem 3.
Fix T ⊆ [n] and xT ∈ XT . We construct a simulator for (MT , RT ) given h|T ,xT

. Each

row k is of the form (M (k)
T

, R(k)
T ) for k ∈ [D]. For each k ∈ [D], the encodings M (k)

T

of T consists of |T | integers M (k)
i ∈ {0, . . . , di − 1} with i ∈ T . The randomness R(k)

T

consists of the vectors {m(k)
i, j }i∈[n], j∈[li ] and T integers s(k)

i ∈ {0, . . . , di − 1} with i ∈ T .

The vectors {m(k)
i, j }i∈[n], j∈[li ] are uniformly distributed under the constraint that for some

b(k) ∈ X ,
∑n

i=1
∑

j∈Ii m
(k)
i, j = 0 and there are no other linear relations between them. If

h|T ,xT
≡ 0, then b(k)

T
�= MT . If h|T ,xT

(xT ) = 1 for some xT ∈ XT , then b(k)
T = σT (xT ) and

bT = M (k)
T

.

We construct SimT for the protocol P(Π) on function ha . For each k ∈ [D], the simulator
first generates random vectors {m(k)

i, j }i∈[n], j∈[li ] under the constraint that for some b(k) ∈
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X ,
∑n

i=1
∑

j∈Ii m
(k)
i, j = 0 and there are no other linear relations between them. The simulator

then queries h|T ,xT
on all possible inputs in XT .

Let I ′ ⊆ XT be the set of ones of h|T ,xT
. Let D′ = |I ′| and I ′ = {x (1)

T , . . . , x (D′)
T }. For

1 ≤ k ≤ D′, this simulator generates random M (k)
i ∈ {0, . . . , di − 1} with i ∈ T so that

b(k)
T �= M (k)

T , and generates random R(k)
i ∈ {0, . . . , di −1}with i ∈ T . For D′ < k ≤ D, the

simulator sets R(k)
i and M (k)

i so that b(k)
T = σ

(k)
T (x (k)

T ) and b(k)
T

= M (k)
T

where σ
(k)
i is defined

with si = Ri as in Theorem 3.
The correlated randomness R(k)

i with i ∈ [n] and encoding M (k)
i are integers of length

�log2(di −1)	. Hence, the (online) individual communication complexity is at most |X | ·m ·
�log2(d − 1)	. ��

6 Conclusion

We have presented the first lower bound on the communication complexity of n-player
NIMPC protocols for any set of functions including the set of arbitrary functions and the
set of indicator functions. We have constructed novel fully robust NIMPC protocols for
the set of arbitrary functions Hall and the set of indicator functions Hind. The proposed
protocols are much more efficient than the previous protocols. For example, for the set of
arbitrary functions, while the previous best known protocol in [2] requires |X | · m · d2 · n
communication complexity, the communication complexity of the proposed construction is
only |X | · m · �log2 d	2 · n, where X denote the (total) input domain, d is the maximum
domain size of a player, and m is the output length. By this result, the gap between the lower
and upper bounds on the communication complexity is significantly reduced from d2 · n to
�log2 d	2 · n, that is, from exponential in the input length to quadratic. In addition, we have
shown a possibility of reducing the individual communication complexity much more by
employing the offline-online model for some sets of functions (e.g., Hind \ {h0}).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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