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Abstract

The unrestricted estimator of the information matrix is shown to be inconsistent for
an autoregressive process with a root lying in a neighbourhood of unity with radial
length proportional or smaller than n�1, i.e. a root that takes the form � = 1+ c=n�;
� � 1. In this case the information evaluated at �̂n converges to a non-degenerate
random variable and contributes to the asymptotic distribution of a Wald test for
the null hypothesis of a random walk versus a stable AR(1) alternative. With this
newly derived asymptotic distribution the above Wald test is found to improve its
performance. A non local criterion of asymptotic relative e¢ ciency based on Bahadur
slopes has been employed for the �rst time to the problem of unit root testing. The
Wald test derived in the paper is found to be as e¢ cient as the Dickey Fuller t
ratio test and to outperform the non studentised Dickey Fuller test and a Lagrange
Multiplier test.

Some keywords: Unit root distribution; Neighbourhoods of unity; Information matrix;
Inconsistency; Wald test; Bahadur slopes.



1. Introduction

The derivation of statistical procedures for detecting the presence of a unit root
in autoregressive processes has attracted a lot of attention among econometricians
over the last two decades. Early contributions such as Dickey and Fuller (1979) and
Evans and Savin (1981) derived tests for random walks against dynamically stable
autoregressions. A Gaussian structure was imposed on the innovation errors in order
to consider the problem in a likelihood inference framework. In this context, we review
a Wald-type test based on the Fisher information In(�) (see (4) below) suggested by
Evans and Savin (1981) and discussed further in Abadir (1993b). A basic assumption
in Evans and Savin (1981), followed later by Abadir (1993b), is that the unrestricted
estimator of the information matrix, In(�̂n) de�ned in (5), is consistent for In(�) even
when the autoregressive parameter � lies in a viccinity of unity. It is one of the main
purposes of this paper to show that this is not the case and discuss the consequences
for the resulting Wald test.
The inconsistency of In(�̂n) is established in Theorem 2.3. It is shown that,

after appropriate normalization, In(�̂n) has a non-degenerate asymptotic distribution
when the autoregressive root lies in a neighbourhood of unity with radial length
proportional or smaller than n�1, i.e. a root that takes the form � = 1+ c=n�; � � 1;
c 2 R. This limiting distribution can be expressed as a deterministic function of the
familiar random variables

Z1 :=
W 2(1)� 1R 1
0
W (s)2ds

(1)

in the unit root case (c = 0 or � > 1) and

Z2 :=

R 1
0
Jc(s)dW (s)R 1
0
Jc(s)2ds

(2)

in the local to unity case (� = 1), whereW (�) is standard Brownian motion on D[0; 1]
and Jc is an Ornstein-Uhlenbeck process de�ned as Jc(t) =

R t
0
ec(t�s)dW (s).

In Section 3, the inconsistency result of Theorem 2.3 is applied to unit root testing.
In the fashion of Evans and Savin (1981) and Abadir (1993b), we consider a Wald
type test for the null hypothesis of a random walk versus the alternative of a stable
root AR(1) process. A new expression for the asymptotic distribution under the
null hypothesis is derived leading to a re-evaluation of the asymptotic properties of
the test. To this end, we �nd the order of magnitude of the tails of the limiting
distribution function by applying the transformation theorem and Abadir�s (1993a)
formula for the p.d.f. of Z1. Use of the transformation theorem requires a non-trivial
inversion carried out with the help of a special function known as the Lambert W
function, a short account of which is provided in Appendix A.
Sections 4 and 5 deal with the issue of asymptotic e¢ ciency of the Wald type

test derived in Section 3 compared to other well known unit root tests. In Section
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4, two direct methods have been used for power comparisons: the asymptotic power
function and the rate of decay of the asymptotic size when power is kept �xed.
In Section 5 a formal criterion of asymptotic relative e¢ ciency due to Bahadur is
introduced. To our knowledge, this is the �rst application of a non local measure of
asymptotic relative e¢ ciency to unit root testing. The conclusions of these relative
e¢ ciency considerations give some practical signi�cance to the theory developed in
the previous sections. With the null asymptotic distribution derived in Section 3, the
Wald test based on the information matrix performs better than what is currently
believed: it has the same approximate Bahadur slope as the Dickey Fuller t ratio, and
outperforms commonly used tests, such as the Dickey Fuller test and the Lagrange
Multiplier test de�ned in Solo (1984). Interestingly, these results are in con�ict with
some simulation studies (e.g. Dickey and Fuller, 1979), where the non studentised
Dickey Fuller test is found to have better power properties than the t ratio test.
This may be explained by the fact that, to a certain extent, Bahadur�s approach to
asymptotic relative e¢ ciency places greater importance to minimal size rather than
maximal power. All proofs are collected in Appendix B.

2. Inconsistency and asymptotic distribution of In(�̂n)
Consider the family of processes given by

yt = �yt�1 + "t; t = 2; :::; n; � = 1 +
c

n�
; � � 0; c 2 R (3)

where y1 is a constant and "t are i.i.d. N(0; �2) random variables. The parametrisa-
tion of the autoregressive root in (3) de�nes a family of processes that includes various
types of �rst order autoregression with di¤erent asymptotic behaviour. When c = 0,
yt is a unit root process. When � = 0, yt is a stable root process for c 2 (�2; 0)
and an explosive process for c 2 (�1;�2) [ (0;1). When c 6= 0 and � > 0 the
autoregressive root lies in a neighbourhood of unity. In this case, � = 1 gives rise to
the local to unity processes of Phillips (1987b) and Chan and Wei (1987), whereas
� > 1 implies that yt behaves asymptotically as a unit root process even for c 6= 0.
Finally, when � 2 (0; 1) the autoregressive root lies in neighbourhoods of unity with
radial length larger that n�1. Processes with such �moderate deviations from unity�
roots were discussed in recent work by Phillips and Magdalinos (2006) and Giraitis
and Phillips (2006).
The log likelihood for a sample (yt)2�t�n from (3) can be written as

`(�; �2) = �n� 1
2

log 2� � n� 1
2

log �2 � 1

2�2

nX
t=2

(yt � �yt�1)2 ;

giving rise to the maximum likelihood estimators

�̂n =

Pn
t=2 ytyt�1Pn
t=2 y

2
t�1

and �̂2n =
1

n� 1

nX
t=2

(yt � �̂nyt�1)
2 .
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Assuming correct speci�cation of the model, the top left element of the information
matrix is given by

In(�) = �E(
@2`

@�2
) =

(
�2n�2�1
�2�1

y21
�2
+ �2n�2�1

(�2�1)2 �
n�1
�2�1 , � 6= 1

(n� 1) y
2
1

�2
+ (n�1)(n�2)

2
, � = 1:

(4)

Thus, the unrestricted estimator of the information is given by

In(�̂n) =
�̂2n�2n � 1
�̂2n � 1

y21
�̂2n
+
�̂2n�2n � 1
(�̂2n � 1)2

� n� 1
�̂2n � 1

. (5)

In order to obtain the asymptotic distributions of �̂nn and In(�̂n) we need a mod-
i�cation of the continuous mapping theorem which deals with weak convergence of
sequences of functions of a stochastic process. Let Xn, X be random variables on
possibly di¤erent probability spaces for n 2 N. Denote by B the Borel �-algebra over
R and by PX := PX�1 the distribution of X on B. The following result is usually
attributed to H. Rubin; see Kallenberg (2002, Theorem 4.27) for a proof.

2.1 Lemma. Let hn;h : R! R be Borel functions and de�ne the Borel set

E = fx 2 R j 9(xn)n2N such that xn ! x and hn(xn)9 h(x)g .
If Xn ) X and PX(E) = 0, then hn(Xn)) h(X).

Lemma 2.1 is very useful in determining the asymptotic behaviour of �̂nn and hence
that of In(�̂n). When the root of (3) lies in a neighbourhood of unity with � � 1,
�̂nn can be written as �̂

n
n =

�
1 + Xn

n

�n
, where (Xn)n2N is a process that converges in

distribution to the random variables 1
2
Z1 in the unit root case and Z2+ c in the local

to unity case. Hence, in each of these cases Lemma 2.1 implies that �̂nn converges
in distribution to the exponential of the weak limit of Xn. This gives rise to a non
degenerate limit distribution for n�2In(�̂n) when the autoregressive root is one, or
lies in a viccinity of unity with radial parameter � � 1. On the other hand, when
� 2 [0; 1) and c 6= 0 both �̂nn and In(�̂n) have, after suitable normalization, a constant
probability limit as n!1.

2.2 Lemma. For the family of autoregressions de�ned by (3) with � = 1+ c=n� we
have, as n!1
(a) �̂nn ) exp(1

2
Z1), when c = 0 or � > 1.

For c 2 R n f0g, we have
(b) �̂nn ) exp(Z2 + c), when � = 1

(c) �̂nn !P 0, when � 2 (0; 1) and c < 0, or � = 0 and c 2 (�2; 0)

(d) ��n�̂nn !P 1, when � 2 (0; 1) and c > 0, or � = 0 and c 2 (�1;�2) [ (0;1)
where Z1 and Z2 are the random variables de�ned in (1) and (2).
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2.3 Theorem. For the family of autoregressions de�ned by (3) with � = 1 + c=n�,
the asymptotic behaviour of In(�̂n) as n!1 is given by the following.

(a) When c = 0 or � > 1,

n�2In(�̂n))
exp(Z1)� 1

Z21
� 1

Z1
.

For c 2 R n f0g, we have:

(b) When � = 1,

n�2In(�̂n))
exp f2 (Z2 + c)g � 1

4 (Z2 + c)
2 � 1

2 (Z2 + c)
.

(c) When � 2 (0; 1) and c < 0, n�(1+�)In(�̂n)!P (�2c)�1.

(d) When � 2 (0; 1) and c > 0, n�2���2nIn(�̂n)!P (4c
2)
�1.

(e) When � = 0 and c 2 (�2; 0) ; n�1In(�̂n)!P (1� �2)�1.

(f) When � = 0 and c 2 (�1;�2) [ (0;1) ;

��2nIn(�̂n)!P
1

�2 (�2 � 1)
y21
�2
+

1

�2 (�2 � 1)2
.

2.4 Remarks.

(i) Parts (a) and (b) imply that In(�̂n) is inconsistent for the true information
In(�) since, as n!1, n�2 [In(�̂n)� In(�)]9 0 in probability. Taking limits
in (4) yields limn!1 n

�2In(�) = 1=2 in the unit root case and

lim
n!1

1

n2
In(�) =

e2c � 1
4c2

� 1

2c

in the local to unity case, which clearly do not agree with the weak limits for
n�2In(�̂n) given by parts (a) and (b) of Theorem 2.3. On the other hand, for the
stationary and moderately stationary cases, limn!1 n

�1In(�) = (1� �2)�1 and
limn!1 n

�(1��)In(�) = (�2c)�1, which coincide with parts (e) and (c) respec-
tively. Similarly, for the explosive and moderately explosive cases, ��2nIn(�)
and ��2nn�2�In(�) converge to the constant probability limits of parts (f) and
(d) respectively. Consequently, for the family of autoregressive processes con-
sidered in (3), a necessary and su¢ cient condition for consistent estimation of
the information In(�) by In(�̂n) is c 6= 0 and � 2 [0; 1).

(ii) The normalization of In(�̂n) varies continuously with the radial parameter �
and covers the interval

�
(1 + c)�2n ; n�1

�
, with c 2 (�1;�2)[(0;1), providing

a smooth transition from explosive to unit root and stationary asymptotics.
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3. Wald test

We now concentrate on autoregressive processes with a �xed root � = 1 + c that
does not depend on the sample size, i.e. processes de�ned by (3) with � = 0. Given
this statistical model, with � and �2 being unknown parameters, unit root tests are
concerned with testing the hypothesis

H0 : � = 1 versus H1 : j�j < 1. (6)

There is of course a wide range of tests for the unit root hypothesis (6) and we review
some of the most commonly used in Sections 4 and 5. In this section, we discuss
the following (signed square root) Wald test statistic proposed by Evans and Savin
(1981) and Abadir (1993b):

Tn(�̂n) = (�̂n � 1) In(�̂n)1=2; (7)

where In(�̂n) is given by (5). The asymptotic distribution of Tn(�̂n) is an easy corol-
lary of part (a) of Theorem 2.3 and the fact that n (�̂n � 1)) 1

2
Z1.

3.1 Theorem. As n!1, Tn(�̂n)) U := 1
2
[exp(Z1)� Z1 � 1]

1
2 :

By deriving the asymptotic distribution of the Wald-type statistic (7), Theorem
3.1 yields in e¤ect a new test for the unit root hypothesis (6). It is important, there-
fore, to investigate its performance in terms of asymptotic power and size compared
to other tests available in the literature. A direct way of conducting asymptotic power
and size comparisons is to �nd the order of magnitude of the tails of the limiting dis-
tribution function. This approach has been followed by Abadir (1993b) and is based
on his earlier result on the density and distribution functions of the Dickey Fuller
distribution (cf. Abadir, 1993a). We derive similar results for U .
By equation (3.2) in Abadir (1993a) we know that the asymptotic behaviour of

the density function of Z1 is given by

fZ1(z) �
1p
2

e
z
8

p
�3�z

as z ! �1, (8)

where the asymptotic equivalence f(x) � g(x) means f(x)=g(x)! 1. In order to �nd
the rate of decay of the density function of U , we need to consider the transformation
u = 1

2
(ex � x� 1)

1
2 . Inverting this transformation gives

ex � x� 1 = 4u2 or x = �(1 + 4u2)�W
�
�e�(1+4u2)

�
; (9)

where W(�) is the Lambert W function (cf. Appendix A) and the last equality is
obtained as a consequence of equation (20). Using (19) of Appendix A, we obtain

dx

du
= �8u+

8uW
�
�e�(1+4u2)

�
1 +W (�e�(1+4u2)) = �

8u

1 +W (�e�(1+4u2)) .
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We can therefore use the transformation theorem to write the p.d.f. of U in terms of
the p.d.f. of Z1. For each u 2 R we obtain

fU(u) =
8 juj

j1 +W (�e�(1+4u2))jfZ1
h
�(1 + 4u2)�W

�
�e�(1+4u2)

�i
. (10)

We are interested in the behaviour of fU(u) as juj ! 1. By (18) of Appendix A,W(�)
is analytic on a neighbourhood around 0, so limjuj!1W

�
�e�(1+4u2)

�
= W(0) = 0.

Therefore, since �(1 + 4u2)! �1 as juj ! 1, (10) and (8) imply that

fU(u) � 8 juj fZ1
�
�(1 + 4u2)

�
� k�(u) as juj ! 1; (11)

where k := 4e�
1
8=
p
3 = 2:038 and � (�) is the standard normal density. Note that

the tails of the p.d.f. of U are roughly twice the size of those of the standard normal
density. Having established (11), it is straightforward to derive an analogous result
for the distribution function of U .

3.2 Theorem. The tail asymptotic behaviour of the distribution function of the
random variable U is given by

FU(x) � (1� k)1R+(x) + k�(x) as jxj ! 1;
where �(�) denotes the standard normal distribution function.

4. Asymptotic properties of the Wald test

Application of the Wald statistic discussed in Section 3 requires �rst specifying appro-
priate critical regions. Since Tn diverges to �1 a:s: under H1 (see (24)), a consistent
test is obtained by considering critical regions of the form CRn(�) = fTn � cng, where
(cn)n2N is a sequence of constants. Denoting by an and �n the size and the power of
the test respectively, we can write

an(�) = PH0 fTn � cng = FU(cn) + o(1) as n!1 (12)

�n(�) = PH1 fTn � cng = �
�
cn +

p
n

r
1� �
1 + �

�
+ o(1) as n!1. (13)

In this section we derive expressions for the size and power of the Wald test of
Section 3 and compare the results with other tests in the literature, using Abadir�s
(1993b) survey as the main reference. Three tests have been chosen to be compete
against the test considered here. The �rst is based on the same statistic Tn but has
the null asymptotic distribution given in Evans and Savin (1981) and Abadir (1993b),
since In(�̂n) has been assumed consistent. This test is called in Abadir (1993b) �Exact
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Wald�and denoted here by T0n. The second test used for comparison is the Dickey
Fuller t ratio:

T1n := (�̂n � 1)
�Pn

t=2 y
2
t�1

�̂2n

� 1
2

.

The third test is a Lagrange Multiplier test de�ned in Solo (1984)

T2n := (�̂n � 1)
�Pn

t=2 y
2
t�1

~�2n

� 1
2

,

where ~�2n is the restricted maximum likelihood estimator ~�
2
n =

1
n�1

Pn
t=2 (yt � yt�1)

2.
T1n and T2n have the same asymptotic distribution under the null, but since ~�2n is not
consistent under H1 (see Proposition B1 (c)), they diverge at di¤erent rates under
the alternative hypothesis. In what follows, we will see that this has an impact in
terms of asymptotic relative e¢ ciency.
We start by the classical approach of �xing the size of the test to a satisfactory

level and then comparing powers. For �xed size a, (12) gives rise to the critical
region CRn(�; a) =

�
Tn � F�1U (a) + o(1)

	
. Therefore, using (13) the power function

becomes

�n(�; a) = �

�
F�1U (a) +

p
n

r
1� �
1 + �

�
+ o(1) as n!1,

by continuity of � (�). Therefore, (cf. Theorem 4.1 in Abadir (1993b)) the asymptotic
power function of the test derived here di¤ers from that of T0n, T1n and T2n only
through the quantile F�1U (a). Since a is constant, it is clear that F�1U (a) does not
appear in the leading term of �n(�; a), and all four tests are asymptotically equivalent.
Cochran (1952) has suggested an alternative approach for deciding between com-

peting test statistics by �xing the power and comparing the rate at which the size
converges to zero as n ! 1. It turns out that this comparison can distinguish be-
tween the leading terms of the competing test statistics considered above. The leading
terms of the asymptotic size functions of the test statistics T0n, T1n and T2n have been
obtained in Abadir (1993b, Theorem 4.3 (i)). We do the same for Tn.

For �xed power � 2 (0; 1), (13) implies that cn = ��1 (�) �
p
n
q

1��
1+�

+ o(1) as

n!1. Hence, (12) and Theorem 3.2 give

an(�;�) = FU

�
��1 (�)�

p
n

r
1� �
1 + �

�
+ o(1)

� k�

�
��1 (�)�

p
n

r
1� �
1 + �

�
as n!1.

Hence, the well-known asymptotic equivalence �(z) � ��(z)=z, as z ! �1, implies
that the leading term of the asymptotic size of Tn takes the form

an(�;�) �

s
k2(1 + �)

2�n(1� �) exp
�
�n 1� �
2(1 + �)

�
as n!1. (14)
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Comparing (14) with Theorem 4.3 (i) of Abadir (1993b) leads to di¤erent conclu-
sions on the issue of asymptotic e¢ ciency of the Wald test considered in this paper.
The asymptotic size function of T0n, the Wald test based on Tn when In(�̂n) is as-
sumed consistent, converges to zero only at rate n�

1
4 e�

p
n. Consequently, with the

null asymptotic distribution given in Theorem 3.1, the Wald test based on the infor-
mation matrix performs better than what is currently believed. In fact, in the size
ranking of Abadir (1993b) it moves from the last place to the �rst, together with the
Dickey Fuller t ratio T1n. Taking k ' 2, the leading term of the asymptotic size of
T1n is identical to the right hand side of (14). Finally, since under H1 the coe¢ cient
of the exponential term of T1n and Tn is greater in absolute value than that of T2n�

1��
2(1+�)

> 1��
4

�
, we expect that T1n and Tn will outperform T2n. This point will be

made formal in the next section.

5. Bahadur slopes

As demonstrated by Abadir (1993b) and Section 4 above, with the notable exception
of comparing asymptotic sizes, crude asymptotic power comparisons lead to asymp-
totically equivalent tests. Phillips (1987b) suggested a formal approach to power
comparisons of unit root tests by developing an asymptotic theory for the sequence
of local alternatives � = 1 + c=n, which is the basis for comparisons using Pitman�s
approach to asymptotic relative e¢ ciency. This method was followed up by Nabeya
and Tanaka (1990) and was successful in describing the limiting power properties of a
variety of unit root tests. As in any comparison based on Pitman drifts, the relative
performance of di¤erent tests is examined locally, i.e. only for alternatives that lie
on an appropriate boundary of the null parameter space. No information is available
on the performance of tests for the rest of H1.
In this section we apply another formal notion of asymptotic relative e¢ ciency,

�rst introduced by Bahadur (1960), to the problem of unit root testing. It turns
out that this approach yields simple analytical formulae that allow relative e¢ ciency
comparisons between di¤erent tests over the whole alternative parameter space. It
has the additional advantage that, unlike the method of Nabeya and Tanaka (1990),
it can deal with test statistics that are not the ratio of quadratic forms, such as the
Dickey Fuller t ratio. We begin by giving a summary of Bahadur�s approach, using
Bahadur (1960, 1967), Ser�ing (1980) and Nikitin (1995) as the main references.
Given a sample space 
 and a parameter space �, consider the problem of testing

a simple null hypothesis � = �0 against � 2 � n f�0g by using a statistic �n with
distribution function F�n(�; �) when � is the true value of the parameter. Suppose that
the null hypothesis is rejected for large values of �n. An indicator of the signi�cance
of the observed data against the null hypothesis is given by the level attained by the
test statistic. The (exact) level attained by �n is de�ned to be the random variable

Ln (!) = 1� F�n(�n (!) ; �0) = P�0 f!0 : �n (!0) > �n (!)g , (15)
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for !; !0 2 
. In other words, if after conducting a random experiment we observe
�n (!), Ln (!) represents the probability that a new random experiment will yield
a value of �n greater than �n (!) when the null hypothesis is true. Thus, the level
attained indicates the degree to which �n tends to reject the null hypothesis and
between competing tests we prefer the one with the smallest level.
It is clear from the de�nition in (15) that calculation of the exact level attained by

a test statistic �n requires determining the large deviation asymptotics of �n under
H0, i.e. the asymptotic behaviour as n ! 1 of P�0 f�n > xg. In many statistical
problems, including unit root testing, such large deviation results are not available.
As a substitute Bahadur (1960) suggested considering instead P f� > xg, where �
is the weak limit of �n under H0. This compromise gives rise to the concept of
approximate level and Bahadur slopes. As before, between competing tests we prefer
the one with the smallest approximate level and hence (see De�nition 5.1) the largest
approximate Bahadur slope.

5.1 De�nition. Suppose that �n ) � under H0. The approximate level attained
by �n is de�ned to be the random variable L�n (!) = 1�F� (�n (!)), where F� (�) is the
distribution function of � . A function c� (�) is called the approximate Bahadur slope
of �n if, as n!1,

1

n
logL�n !P� �

1

2
c�(�) for each � 2 � n f�0g .

After discussing Bahadur�s approach to asymptotic relative e¢ ciency, we proceed
to apply this method to the problem of testing for a unit root. The main result of this
section, Theorem 5.2 below, derives the approximate Bahadur slopes of the unit root
tests Tn, T1n and T2n de�ned in Section 4, as well as that of the Dickey Fuller test
statistic T3n := n(�̂n � 1). The null asymptotic distributions of these test statistics
can be expressed in terms of the random variables Z1, de�ned in (1), and

Z3 :=
1

2

W 2(1)� 1�R 1
0
W (s)2ds

�1=2 :
From Phillips (1987a) we know that T3n ) 1

2
Z1 and T1n; T2n ) Z3 under H0. Also,

by Theorem 3.1 Tn ) U under H0. In view of De�nition 5.1, determining the
approximate slopes of the test statistics considered above involves calculating the
order of magnitude of the tails of the distribution functions of the limiting random
variables Z1, Z3 and U . For U , this is done in Theorem 3.2. For 1

2
Z1 and Z3, Abadir

(1993a) and Abadir (1995) have established

F 1
2
Z1
(x) � 27=4e

x
4q

� 3�p
2
x
; FZ3 (x) �

2p
2�

e�
x2

2

�x as x! �1: (16)
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Given Theorem 3.2 and (16), we can calculate the approximate Bahadur slopes of the
test statistics Tn, T1n, T2n and T3n by examining their asymptotic behaviour under
the alternative hypothesis.

5.2 Theorem. The test statistics Tn and T1n have the same approximate Bahadur
slope c�1(�) =

1��
1+�
. The approximate Bahadur slope of the test statistics T2n and T3n

is given by c�2(�) =
1��
2
.

5.3 Remarks.

(i) Since c�1(�) > c�2(�) for all � 2 (�1; 1) the Dickey Fuller t ratio test T1n and
the Wald type test Tn derived in Section 3 are more e¢ cient, in the Bahadur
sense, than the non studentised Dickey Fuller test T3n and the Solo LM test
T2n. Note that Theorem 5.2 provides a comparison which is not limited to a
speci�c sequence of local alternatives but takes place over the whole alterna-
tive parameter space (�1; 1). As expected, both c�1(�) and c�2(�) assume larger
numerical values and thus lead to more e¢ cient tests for alternatives � that lie
far away from the null hypothesis � = 1.

(ii) As pointed out in Section 4, the Wald type test Tn is asymptotically more e¢ -
cient than previously reported in Evans and Savin (1981) and Abadir (1993b).
This is due to the null asymptotic distribution for Tn established in Section 3.

(iii) An interesting feature of Theorem 5.2 is that the Dickey Fuller t ratio test ap-
pears to be asymptotically more e¢ cient than the non studentised Dickey Fuller
test. This �nding is related to the Bahadur approach of comparing slopes: since
the slope of a test statistic is the probability limit of a monotonic function of the
level attained, Bahadur�s relative e¢ ciency can be interpreted as a stochastic
comparison between the levels attained by competing test statistics (cf. Ser-
�ing, 1980). Therefore, Bahadur�s criterion for asymptotic relative e¢ ciency
examines minimal size rather than maximal power.

(iv) Since only approximate slopes have been considered, the conclusions of Theorem
5.2 are valid irrespectively of the distribution of the innovation errors in (3).

6. Conclusion

One of the standard results in classical statistical inference states that the informa-
tion matrix In(�) can be estimated consistently by In(�̂n), where �̂n is the maximum
likelihood estimator of �. We have shown that this result does not apply to autore-
gressions that approach nonstationarity with rate n�1 or faster. In the unit root and
local to unity cases n�2In(b�n) is found to have a non degenerate weak limit, which
contributes to the null asymptotic distribution of a Wald type test for the unit root
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hypothesis. This new limit result improves the performance of the above Wald test
in terms of asymptotic e¢ ciency relative to other unit root tests.
It is worth noting that the assumption of i.i.d. Gaussian innovations "t in (3) is

not essential. Gaussianity has been assumed only in order to operate in a likelihood
inference framework. The limit theory derived in this paper is invariant to the distri-
bution of "t. Moreover, the main results of the paper are only slightly modi�ed if we
allow for correlated innovations. We can consider, for example, linear process errors
"t =

P1
j=0 cj�t�j, where �t is a sequence of i.i.d. (0; �

2) random variables and cj is
a sequence of constants satisfying

P1
j=1 j jcjj <1. In this case, the functional limit

theory of Phillips and Solo (1992) implies that Lemma 2.2 and Theorem 2.3 continue
to hold with the limiting random variables Z1 and Z2 replaced (respectively) by

Z 01 =
W 2(1)� 1 + 2�

!2R 1
0
W (s)2ds

and Z 02 =

R 1
0
Jc(s)dW (s) +

�
!2R 1

0
Jc(s)2ds

;

where !2 = �2
�P1

j=0 cj

�2
and � =

P1
j=1E ("j"0) = �

2
P1

j=1 cj
P1

k=j+1 ck. Inference
for the Wald test statistic can then be carried out after consistently estimating the
nuisance parameters !2 and �.

Appendix A. The Lambert W function

The Lambert W function (Corless et al., 1996) is de�ned to be the multivalued inverse
of the complex function w 7�! wew, i.e. it is the function W on C satisfying

W(z) exp fW(z)g = z. (17)

By using the Lagrange inversion formula (see e.g. De Bruijn, 1961), we can obtain the
following power series expansion for the principal branch of the Lambert W function:

W(z) =
1X
n=1

(�n)n
n!

zn jzj � 1

e
; (18)

where the radius of convergence may be obtained using the ratio test. This implies
that W is analytic around 0 and that W(0) = 0.
Taking logarithms in (17), we get W(z) + logW(z) = log z. Di¤erentiating the

last expression with respect to z gives

W0
(z) =

1

z

W(z)
1 +W(z)

. (19)

The Lambert W function has been used in Section 3 because it makes possible
the inversion of certain classes of functions. In particular, it provides an analytical
solution to the equation ax � x = b. From Corless et al. (1996),

ax � x = b() x = �b� W(�a
�b log a)

log a
: (20)
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Letting � = e and b = 1 + 4u2 in (20) yields (9).
It is of independent interest to note that the Lambert W function has a very

simple asymptotic expansion for large values of its argument. De Bruijn (1961) pp.
25-28 shows that for x real and positive,

W(x) = log x� log log x+O
�
log log x

log x

�
as x!1:

Appendix B. Proofs

We begin by including a proposition on strong consistency of various estimators in
the stable root case which facilitates the proof of Theorem 5.2.

Proposition B1. For (3) with �xed � 2 (�1; 1) the following hold as n!1 :

(a) 1
n

Pn
t=2 y

2
t�1 !a:s: �

2 (1� �2)�1

(b) �̂n !a:s: � and �̂2n !a:s: �
2

(c) ~�2n !a:s: 2 (1 + �)
�1 �2

(d) �̂nn !a:s: 0 and n�1In(�̂n)!a:s: (1� �2)�1.

Proof. Parts (a) and (b) are standard (see e.g. Brockwell and Davis, 1991). For
part (c), we �rst show that

1

n

nX
t=2

yt�1"t !a:s: 0: (21)

To see this, note that for any t � 2, Ey2t < K, whereK := y21+�
2��2 (1� �2)�1 <1.

Thus, monotone convergence yields

E
1X
t=2

t�2y2t�1 < K
1X
t=2

t�2 <1;

implying that
P1

t=2 t
�2y2t�1 <1 a:s:. Letting Ft = � ("2; :::; "t), we obtain
1X
t=2

E
�
y2t�1"

2
t

��Ft�1�
t2

= �2
1X
t=2

y2t�1
t2

<1 a:s:

so (21) follows by the SLLN for martingales (Hall and Heyde, 1980, Theorem 2.18).
Now ~�2n can be written as

~�2n =
1

n� 1

nX
t=2

(yt � yt�1)2 =
1

n� 1

nX
t=2

["t + (�� 1) yt�1]2

=
1

n� 1

nX
t=2

"2t +
(�� 1)2

n� 1

nX
t=2

y2t�1 + oa:s: (1) =
2

1 + �
�2 + oa:s: (1) ;

12



by (21), part (a) and the SLLN. For part (d), strong consistency of �̂n implies that
log j�̂nj !a:s: log j�j < 0, since j�j < 1. Thus,

j�̂nnj = exp fn log j�̂njg = exp fn log j�j [1 + oa:s: (1)]g = oa:s: (1) :

The a:s: limit of n�1In(�̂n) follows from part (b) and the fact that �̂nn = oa:s: (1). �

Proof of Lemma 2.2. For the unit root case c = 0, we can write

�̂nn =

�
1 +

n(�̂n � 1)
n

�n
=

�
1 +

Xn

n

�n
;

where, as n ! 1, Xn = n(�̂n � 1) ) 1
2
Z1. For a sequence (xn)n2N of real numbers,

we know that, for all x 2 R,

xn ! x implies
�
1 +

xn
n

�n
! ex. (22)

Hence, part (a) for c = 0 follows by Lemma 2.1 with hn(xn) =
�
1 + xn

n

�n
, h(x) = ex

and E = ;. When c 6= 0 and � � 1, we can write

�̂nn = (�+ �̂n � �)n =
�
1 +

cn1�� + n(�̂n � �)
n

�n
=

�
1 +

X 0
n

n

�n
where, by Phillips (1987b),

X 0
n =

�
n(�̂n � �) + oP (1)) 1

2
Z1, � > 1

c+ n(�̂n � �)) Z2 + c, � = 1:

Thus, (22) and Lemma 2.1 yield part (a) for � > 1 and part (b). For part (c), we
know by Theorem 3.2 of Phillips and Magdalinos (2006) that n

1+�
2 (�̂n� �) = OP (1).

Therefore, for � 2 (0; 1) we obtain, as n!1,

�̂nn =

"
1 +

c

n�
+
n
1+�
2 (�̂n � �)
n
1+�
2

#n
= exp

(
n log

"
1 +

c

n�
+
n
1+�
2 (�̂n � �)
n
1+�
2

#)

= exp

(
n

"
c

n�
+
n
1+�
2 (�̂n � �)
n
1+�
2

+OP

�
1

n2�

�#)

= exp

�
cn1��

�
1 +OP

�
1

n
1��
2
^�

���
= oP (1) :

When � = 0, the asymptotic expansion of the logarithm of the second line above
is not valid, however the required result is given by part (d) of Proposition B1.
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Finally, for part (d), Theorem 4.3 of Phillips and Magdalinos (2006) implies that
n��n(�̂n � �) = OP (1). Hence, proceeding as for part (c) we obtain

��n�̂nn =

�
1 +

n��n (�̂n � �)
n��n+1

�n
= exp

�
n log

�
1 +

n��n (�̂n � �)
n��n+1

��
= exp

�
OP

�
n1����n

�	
= 1 + oP (1) :

Note that the asymptotic expansion of the logarithm of the second line above is valid
for � = 0, so the above argument includes the pure explosive case. �

Proof of Theorem 2.3. Writing � = 1 + c
n�
we obtain

�̂2n � 1 = (�̂n � �)
2 + 2(�̂n � �) + �2 � 1

= 2(�̂n � �) + (�̂n � �)
2 +

2c

n�
+
c2

n2�
: (23)

Thus, when c = 0 or � > 1 (23) yields n
�
�̂2n � 1

�
) Z1 and

1

n2
In(�̂n) =

�̂2n�2n � 1
n2(�̂2n � 1)2

� n� 1
n2
�
�̂2n � 1

� + �̂2n�2n � 1
n2
�
�̂2n � 1

� y21
�̂2n

=
�̂2n�2n � 1�
n(�̂2n � 1)

�2 � n� 1n 1

n
�
�̂2n � 1

� +OP � 1
n

�
) exp(Z1)� 1

Z21
� 1

Z1
;

by Lemma 2.2. For part (b), taking � = 1 in (23) we obtain n
�
�̂2n � 1

�
) 2 (Z2 + c),

which together with Lemma 2.2 gives

1

n2
In(�̂n) =

�̂2n�2n � 1�
n(�̂2n � 1)

�2 � n� 1n 1

n
�
�̂2n � 1

� +OP � 1
n

�
) exp(f2 (Z2 + c)g � 1

4 (Z2 + c)
2 � 1

2 (Z2 + c)
;

thus showing part (b). For part (c), �̂n�� = OP
�
n�

1+�
2

�
by Phillips and Magdalinos

(2006), so (23) yields n�
�
�̂2n � 1

�
= 2c+ oP (1) and

1

n1+�
In(�̂n) = �

n� 1
n

1

n�
�
�̂2n � 1

� +OP � 1

n1��

�
=

1

�2c + oP (1) :

For part (d), (23) yields n�
�
�̂2n � 1

�
= 2c + OP (n

��), which together with Lemma
2.2 imply

��2n

n2�
In(�̂n) =

��2n
�
�̂2n�2n � 1

�
n2�(�̂2n � 1)2

+OP

�
1

n�

�
= [1 + oP (1)]

(��n�̂nn)
2�

n�(�̂2n � 1)
�2 !P

1

4c2
:

14



Part (e) follows from Proposition B1 (d). For part (f), Lemma 2.2 and consistency
of �̂n and �̂

2
n yield

��2nIn(�̂n) =
(��n�̂nn)

2
�̂�2n

�̂2n � 1
y21
�̂2n
+
(��n�̂nn)

2
�̂�2n

(�̂2n � 1)2
+OP

�
n��2n

�
=

1

�2 (�2 � 1)
y21
�2
+

1

�2(�2 � 1)2 + oP (1) :

This completes the proof of the theorem. �

Proof of Theorem 3.1. Theorem 2.3 (a) and the fact that n (�̂n � 1)) 1
2
Z1 give

Tn(�̂n) = n (�̂n � 1)
�
1

n2
In(�̂n)

�1=2
) 1

2
Z1

�
exp(Z1)� 1

Z21
� 1

Z1

�1=2
= U: �

Proof of Theorem 3.2. First, consider the case x!1. Letting k = 4e� 1
8=
p
3;

lim
x!1

1� FU(x)
1� �(x) = lim

x!1

R1
x
fU(u)duR1

x
�(u)du

= lim
x!1

fU(x)

�(x)
= k;

by (11). Thus, 1 � FU(x) � k [1� �(x)] or FU(x) � 1 � k + k�(x) (x!1). An
identical argument yields FU(x) � k�(x) as x! �1. �

Proof of Theorem 5.2. We begin by examining the asymptotic behaviour of the
various test statistics under H1 : � 2 (�1; 1). Tn can be written as

1p
n
Tn = � (1� �)

r
1

n
In(�̂n) + (�̂n � �)

r
1

n
In(�̂n)

= �
r
1� �
1 + �

+ oa:s:(1) as n!1, (24)

by parts (b) and (d) of Proposition B1. A similar calculation for the Dickey Fuller t
ratio T1n and Solo�s LM test T2n yields, for each �xed � 2 (�1; 1),

1p
n
T1n = (�� 1)

� 1
n

Pn
t=2 y

2
t�1

�̂2n

� 1
2

+ (�̂n � �)
� 1
n

Pn
t=2 y

2
t�1

�̂2n

� 1
2

= � (1� �)
�

1

1� �2

� 1
2

+ oa:s: (1) = �
r
1� �
1 + �

+ oa:s: (1) ; (25)

by parts (a) and (b) of Proposition B1, and

1p
n
T2n = (�� 1)

� 1
n

Pn
t=2 y

2
t�1

~�2n

� 1
2

+ oa:s: (1) = �
r
1� �
2

+ oa:s: (1) ; (26)
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by Proposition B1 (b) and (c). (24) (25) and (26) imply that Tn; T1n; T2n ! �1 a:s:
under H1. This means that H0 in (6) is rejected for small values of the test statistics,
so we need to replace �n and � in De�nition 5.1 with ��n and �� respectively. With
this modi�cation, the approximate level attained by T1n is given by

L�1n = 1� F�Z3(�T1n) = FZ3(T1n) �
2p
2�

exp
�
�1
2
T 21n
	

�T1n
a:s:

by (16), since T1n ! �1 a:s: as n!1. Thus, under H1, we obtain a:s: as n!1

1

n
logL�1n � �1

2

1

n
T 21n �

1

n
log (�T1n) +O

�
1

n

�
= �1

2

�
1p
n
T1n

�2
+O

�
log n

n

�
;

so (25) gives for each � 2 (�1; 1)
1

n
logL�1n !a:s: �

1

2

1� �
1 + �

as n!1.

Thus, the approximate Bahadur slope of T1n is given by c�1 (�) =
1��
1+�
. Since T2n has

the same null asymptotic distribution and rate of divergence under H1 as T1n, an

identical argument yields 1
n
logL�2n � �1

2

�
1p
n
T2n

�2
as n!1 a:s:, so (26) implies

1

n
logL�2n !a:s: �

1

2

1� �
2
; � 2 (�1; 1) .

This shows that the approximate Bahadur slope of T2n is given by c�2 (�) =
1��
2
.

For the Dickey Fuller test T3n = n(�̂n � 1) we obtain, for each � 2 (�1; 1),
1
n
T3n !a:s: � (1� �). The approximate level attained by T3n is given by

L�3n = 1� F� 1
2
Z1
(�T3n) = F 1

2
Z1
(T3n) �

27=4 exp
�
1
4
T3n
	q

� 3�p
2
T3n

as n!1 a:s:

by (16), since T3n ! �1 a:s:. Thus, we obtain, for any � 2 (�1; 1),

1

n
logL�3n �

1

4

1

n
T3n +O

�
log n

n

�
! �1

2

1� �
2

as n!1 a:s:

Finally, for the Wald type test statistic Tn, the approximate level attained is given
by

L�n = 1� F�U(�Tn) = FU(Tn) � k� (Tn) as n!1 a:s:

by Theorem 3.2. Thus, as in the case of T1n, the level attained is proportional to the
standard normal distribution function evaluated at the test statistic. Since T1n and
Tn have the same asymptotic behaviour under H1 (compare (25) and (24)) they have
the same approximate Bahadur slope. �
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