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INTRODUCTION

If A 1s an associative algebra, any representation
of A by matrices can be decomposed into a direct sum of in-
decomposable representations and such a decomposition is
unique up to similarity of the direct summands. (Krull-
Schmidt Theorem)

If the algebra A is semisimple, the indecomposable
representations are actually 1rreducible. Counting similar
representations as equal, A has only a finite number of
such irreducible representations. Thus, every representa-
tion of a semisimple algebra can be formed by adding to-
gether a direct sum of representations taken from this
finite set.

For nonsemisimple algebras this is no longer true.
There are algebras with radical which have an infinite
number of inequivalent indecomposable representations of
the same degree for each of an infinite number of degrees.
Such algebras are said to be of strongly unbounded repre-
sentation type. The object of this paper is to classify
and study algebras with unity over an algebraically closed
field according to the number of inequivalent indecom-
sable representations they have. 1In Chapters III, IV, and
V, four independent conditions are given which imply that
an algebra over an algebralically closed field be of strong-

ly unbounded representation type.
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Although some of the results obtained can be ex-~
tended to the case where the field 1s not algebraically
closed, the assumption of algebraic closure greatly sim-
plifies the proofs of the main theorems and gives a
clearer statement of the structure of the algebras in-
volved.

Chapter I contains a precise definition of the
classes of algebras to be considered. Also included in
Chapter I are several conjectures concerning these classes
and a brief history of the work of others on this problem.
The theorems stated in Chapter I are not proved there, be-
cause they are implied by theorems appearing later in the
paper.

Chapter II is concerned with establishing funda-
mental concepts used in later chapters. Basic algebras
are introduced and the one to one correspondence between
representation theory for algebras and representation theory
for their basic algebras is set forth. The assumption of
algebraic closure of the field is needed for the introduc-
tion of basic algebras. A lattice isomorphism between the
two-sided ideal lattice of an algebra and that of 1ts basic
algebra is established. Also 1n Chapter II, a method of
building representations 1s given which 1is used extenslvely
in later chapters. The only new result in Chapter II 1is
Lemma 2.5.A which gives a criterion for a representation
to contain an indecomposable direct summand of at least a
certain degree.

In Chapter III the structure of the lattice Lp of
two-slded ideals is investigated. It is shown that finite-
ness and distributivity of L, are equivalent and imply that

every two-sided 1deal 1s princlpal. The main result of
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Chapter III, Theorem 3.2.A, states that 1f Lp is infinite
then the algebra A is of strongly unbounded representation
type. 1In Theorem 3.3%.B it is shown that, for a commutative
algebra, finiteness of the two-slded ideal lattice Lp implies
that the algebra has only a finite number of inequivalent in-
decomposable representatlions. Such algebras are shown to be
a direct sum of polynomial algebras in Corollary 3.3.C. Fi-
nally, two lemmas on basic algebras show that if the basic
algebra has a finite two-sided ideal lattice 1t 1s generated
in the subalgebra sense by two elements. All the results in
Chapter III are new.

The two-slded 1deal lattice is assumed to be finite
and distributive 1n Chapters IV and V and the algebras under
conslderation are assumed to be basic algebras. In Chapter
IV a second conditlion for an algebra to be of strongly un-
bounded type is given. The lattice Ly of two-sided ideals
contained in the radical N of A 1s mapped lattice homo-
morphically into the left and right ideal lattices in the
radical. TIf the image of Ly has a sublattice that is a
Boolean algebra with more than 2° elements then A 1s of
strongly unbounded representation type.

In Chapter V a graph is associated with each two-
sided ideal contained in the radical. Theorems 5.2.4,
5.4.4, and 5.3.A state that if any such graph has a cycle,

a vertex of order four, or a chaln which branches at each
end then the algebra 1s of strongly unbounded representa-
tion type. The results in Chapter IV and V are extensions

of previous results.



CHAPTER T

1. Initial‘Definitions

A precise definition of the classes of algebras
under consideration is given in terms of the following
function:

Definition 1.1.A: If A is an algebra and d 1s a positive

integer, let gA(d) be the number of inequivalent indecom-
posable representations of A of degree 4. gA(d) 1s integer
valued or infinite.

Definition 1.1.B: A 1s said to be of be of bounded repre-

sentation type 1f there exists an integer dp such that

gA(d) = 0 for all d » dg. If not of bounded type A is said

to be of unbounded representation type.

Definition 1.1.C: A 1is sald to be of finite representation

o0
type if 5 gup(d) is finite.
d=1

Clearly, 1f A 1s semisimple, it is of finite repre-
sentation type.

The class of algebras of unbounded representation
type can be further divided into subclasses according to
the number of integers d for which gp(d) =ee. Of particu-
lar interest in this paper 1s the subclass defined as fol-

lows.

Definition 1.1.D: A is sald to be of strongly unbounded

representation type if gA(d) =00 for an infinite number

of integers 4.
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The main theorems proved in this paper are concerned
with showing that algebras over an algebralcally closed
field are of this type.

Henceforth, where it is clear that it 1s the rep-
resentation type that is being referred to, the terms defined
above are shortened to bounded type, unbounded type, etc.

It is possible to define two additional subclasses of
the class of algebras of unbounded type. One 1s the subclass
of algebras of unbounded type for which gA(d) is finite for
all integers d, and the other, the subeclass for which gA(d)zoo
for a finite number of integers 4. R. Brauer and R. M.
Thrall have conjectured that the latter subclass 1s empty,
and that the former 1s also empty provided that the underly-
ing field is infinite.

Concerning the classes of algebras of bounded type
and finite type, Brauer and Thrall conjectured that these two

classes are identical.

2. History

It was first noted by Nakayama {5] that some non-
semisimple algebras could have 1ndecomposable representatlons
of arbitrarily high degree. He remarks that if N is the
radical, e a primitive idempotent and,Ni“le/Nie, considered
as a left A space, contains the direct sum of two 1so-
morphic subspaces, then A 1s of unbounded type.

In the subsequent development of the theory, con-
siderable attentilon has been given to stating sufficilent
conditions that an algebra be of strongly unbounded type.
(The methods of showing that an algebra over an infinite
field has unbounded type also show it has strongly un-

bounded type. Thls gives support to the above mentioned



6
conjectures of Brauer and Thrall that over infinite fields
algebras of unbounded type are also of strongly unbounded
type.)
In a paper, as yet unpublished, R. Brauer [3] stated
Nakayama's condition and the following two sufficlent condi-

tions that an algebra be of strongly unbounded type.

Theorem 1.2.A: If N 'is the radical, e a primitive ldem-

potent and_Ne/N?e considered as a left A space is the direct

sum of more than three subspaces then A 1s of strongly un-

bounded type.

The condition in the hypothesis of Theorem 1.2.A
1s generalized in Chapter IV and the proof of this theorem
is implied by the proof of Theorem 4.1,.C. in the case the
underlying field is algebraically closed. The second condi-

tion given by Brauer is contained in the following theorem.

Theorem 1.2.B: If A has irreducible representations

Fqgoononn ' distinct,‘and Fi%...Fp* distinct and representa—

_ for 1 =j=1 ... h and
Wiy = |Piy Qij -

i for 1 AL =1 ... h,Fo* = Fp*
Yij Sij Fj‘ﬁ s

where Fj is the top Loewy constituent Fi* is the bottom

Loewy congtituent and VEN is completely independent of Pgt

and S, then A is strongly unbounded type.

pr

(For a discussion of Loewy series and constituents,
see Artin, Nesbitt and Thrall [1].) 1In Chapter V a condi-
tion on the algebra is introduced, which implies the hy-

potheses of Theorem 1.2.B. The proof of Theorem 5.2.A is



7
similar to the proof of Theorem 1.2.B, so the proof of the

latter 1s omltted here.

R. M. Thrall in an unpublished paper [7] generalized
Nakayama's conditlon that an algebra be of strongly un-
bounded type. A statement of the condition requlres the fol-
lowing concepts concerning representation theory for algebras.

The left ideal Ae, where A is the algebra and e 1s
a primitive 1dempotent, is a vector space over the field k.
Multiplication on the left of Ae by o in A is defined by
multiplication in the algebra A. In this way Ae can be con-
sidered as the space of a representation W(« ) of A. Ae is
then sald to induce the representation W(et ).

Let a representation W(e') of A be divided into
submatrices

W(et ) = (Wij(d))

The submatrix Wij(o() is said to have power s if
Wij(a() = 0 for all « in N®, but there exists « in
NSl such that Wy j(e¢o) # O.

Thrall's generalization of Nakayama's condition is

now given in the following theorem.

Theorem 1.2.6: If e is a primitive idempotent, if Ae is

the left ideal i1t generates, if

Fi
P

W = N 1s a top constituent
Y, S; F '

J
Y- Sz O Fj
of the representation indu¢ed by the left 1deal Ae, where

Y, has power s, and where Y, has power S,, S 2 S; and

where no Fsy appears in the top 8, - 8, constituents of the
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upper Loewy series for Q,‘then A 1s of strongly unbounded

type.

Since it is shown in Lemma 3.4.C that the hypotheses of
Theorem 1.2.C 1mply that the algebra has an infinite number
of two-sided ideals, the proof of 1.2.C 1s contalned in the
proof of Theorem 3.2.A (in the case the underlying field is
algebraically closed).

In the same paper {7], Thrall also introduced a
method for illustrating graphically the sufficlient condi-
tions that an algebra be of strongly unbounded type in the
case where the square of the radical is zero.

In this paper a graph will mean a set Py, ..., Py
of vertices and a binary relation £ on some pairs of
vertices, PsLPj. P1 £ Pj means that the vertices Py and
Pj are connected by an (oriented) edge. A vertex Pig is

said to have right order r (left order r) if there exist

distinct vertices P1 ,...,P1, such that Py £ Py (Py L Py )

for ¥ =1,...,r. The order of a vertex is the largest of
these two orders.

A chain C is a set vertices and edges (Pi,,
P, & Pi,)s Pins Pig&Pigs--osPi, g5 Pi, & Pi.s P

(p SPs , P31 ) such that successive edges are distinct.
lre1 i r+l

The parentheses indicate that the first and last edges of a
chain may have either orientation. Note that going from
one vertex to the next in a chain, the orientation of suc-
cessive edges alternates.

A chain Cp extends a chain C; at the right end (or
C, extends Cp, at the left end) if the first vertex of C»
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is the same as the last vertex of C; and identifyling these
vertices makes C; followed by Cz a chain. The chain C, 1is

sald to be a cycle if it extends itself.

A chain branches at one end if 1t can be extended
by at least two distinct edges at that end.

Let A = A' 4+ N be a decomposition of A into the
vector space direct sum of its radical and a semisimple sub-

m
algebra A'. Let A' = Z Ay be the ring direct sum of simple
i=1

two-sided ideals A4, each with a unity element € ;. Let
Pi,-..,Py be vertices and let Py Py if £;N €45 # 0. N° is
assumed to be zero here.

Let M be the relation matrix of‘éﬁ . It should be
noted here that if I is the identity matrix of degree n
then T + M is a matrix with a non zero entry only in posi-
tions where C, the Cartan Matrix, of A has a non zero entry.
For the definition and properties of the Cartan Matrix of an
algebra see [1].

In the case that the radical squared is zero, suf-
ficient conditions that an algebra be of strongly unbounded
type can now be described in terms of the graph defined
above.

If there exists a vertex of order 4 or more then
the algebra satlsfies the hypothesis of Theorem 1.2.A. If
the graph has a cycle then the algebra satisfies the hy-
pothesls of Theorem 1.2.B. The fourth sufficient condition
that an algebra be strongly unbounded type 1s given by
Thrall in [7] in terms of the graph. That conditlon ap-

pears in the following theorem.
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Theorem 1.2.D: If the graph G as defined above has a chain

which branches at each end then A is Qf_strongly unbounded

type.

In Chapter V, the definition and use of the graph
is extended to the case where N2 isvnot necessarily zero.
Theorem 5.3.A then lmplies the proof of Theorem 1.2.D.

Hence, the proof of Theorem 1.2.D 1s omitted here.

3. Necessary and Sufficient Conditions for Strongly Un-

bounded Type

If certain other conditions are imposed on an al-
gebra, necessary and sufficient conditions that 1t be of
strongly unbounded type can be given. If the underlylng
field is infinite in each such case, the algebra 1s either
of strongly unbounded type or finite type.

D. G. Hlgman [4] has shown, using only group repre-
sentation theory, that the group algebra over a field of
characteristic p 1s of unbounded type if and only 1if 1t
has a noncyclic Sylow p-subgroup.

R. M. Thrall [7] has shown that the four conditions
of Nakayama, Brauer and Thrall are necessary and sufficient
conditions that an algebra be of strongly unbounded type if
fhe underlylng field 1s algebraically closed and the square
of the radical is zero.

In Theorem %.3.B the author shows that if the al-
gebra 1s commutative, the necessary and sufficlent condi-
tion that it be of strongly unbounded type 1s that its two-
sided ideal lattice be infinite. If a commutative algebra

is not of strongly unbounded type 1t 1s of finite type.
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The underlying field here 1s assumed to be algebraically

closed.



CHAPTER II

It is necessary, before attempting the proofs of the
main results, to consider certaln preliminary concepts. Use
is made here of the assumption that the underlying field is
algebraically closed to investigate the properties of basic
algebras and thelr representations. Theorem 2.4.B exhibits
the relationship between the two-sided ideal structures of
an algebra and 1ts basic algebra.

In this chapter a fundamental tool, Lemma 2.5.A, 1s
provided which is used for showing the existence of inde-
composable representations of large degree. In Lemma 2.5.C
a method for constructing representations of large‘degree

is given.

1. Structure Theory

Considering the Wedderburn Structure Theory for al-
gebras as glven in Artin, Nesbitt and Thrall [1] an algebra
A with unity element, over k, an algebraically closed field,
can be decomposed into the vector space direct sum,

(2.1) A= A' 4N,
where A' is a semlsimple subalgebra and N is the radical of

A. A' can be further decomposed into the ring direct sum,

n
(2.2) AY = 4+ J Ay,

i=1
where each Ay 1s a simple 1deal of A'. Since the underlying

12
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field k is algebralcally closed, each Ay is a total matrix
algebra over k. A basis of matrix units Ci”v MV=1...f(i)
can be chosen for each Aj. The set (4 nw i=1...n y7RY)
=1 ... f(1), where f(1) i1s the degree of the matrix set for
Ay, forms a basis for A'. Since {2.2) is a direct sum in
the ring sense and the Cipmp multiply like matrix entries,

they have the following multiplication formula.

(2.3) CiAVCJf?’ = Jﬁj Skfciﬁz' : (513 the Kronecker
delta symbol)
Also, the unity element of A is written

n (1)

(2.4) 1 Clpm

H

i=1 m=l1
Now let T be defined as

n
(2.5) 1=2 Cs 21-

i=1

2. Basic Algebras

A

Definition 1.2.A: The set 1 A 1 = A is called the basic

.algebra of A.

Clearly, R is a subalgebra of A. Basic algebras
were first introduced by Nesbitt and Scott [6] and were
also treated by Wall [9]. It is shown by Wall that, al-
though the basic algebra & depends on the choice of a
semisimple subalgebra A' and on the choice of matrix units,
a different choiée vields an 1isomorphic basic algebra.

The unity element of £ is obviously T. The radical
of £ 1s T N 1 = N. Thus, the decomposition (2.1) implies a

decomposition of A.
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n
(2.6) B = 3 ko, + R
i=1

The Cyi1 I1n & will be labeled ej. They are ors
thogonal idempotents by (2.3). The semisimple subalgebra
B' of B corresponding to A!' in (2.1) is the ring direct
sum of the one dimensional two-sided ideals k ej of A'.
Since irreducible representations of & have maximal
kernels in £/R, it is clear that irreducible representa-
tions of A are one dimensional over k.

Using the unity element I of & a decomposition of

the radical R is possible.

n
(2.7) 8=+ z: eiNej.
1,34=1
Since the idempotents are orthogonal, (2.7) is a
vectorspace direct sum. (2.6) and (2.7) imply that any

element & in £ can be written,

n
(2.8) of = Zn: x1( ey + 2= e1 34 €3>
1=1 i,j=1
where x1(¢() 1s in k and e; ey is in eiﬁej.
Now let ¥ be a representation space for R and
choose in ¥ a composition series ¥ =V, 2 {,2...2%,= 0
of A subspaces of ¥. Each V;/0;1,1 1s irreducible and hence
one dimensional. Pick vi in ¥4 but not in ¥y47. Let T act
like the identity on ¥, then Ivjy= vi. There must exist
ej(1) such that ej(1)v is not in ¥41,1, because if all ejvy

were 1n ¥14,1, X ejvi = vi would be there too. Let
J=1

vyl o= ej(1)vi- Clearly vy! liél . é} is a basis for V.
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Note that orthogonality of the idempotents ei implies
epvy' = O unless p = J(1), and then ey(1)vi' = vi'. Let o

be an element of R. Using expression (2.8),

(2.9) & Vi = Xj(i)(°()vi' + 22& ep 7ﬂej(i)vi':
p=

where each ep 1) ej(1)vi' 1s in ¥3,1. With respect to this

basis {Yii} » the representation of R has the matrix form

x5(1) ()

1]
*

(2.10) R(e)

It is evident that 1f VY 1s an element in the radi-
cal each xi(a)) = 0, s0 R(7 ) has zeros on and above the
diagonal. Also by the choice of the basis, 1if ep is one of
the previously defined 1ldempotents, R(ep) has zeros off the
diagonal and Spj(i) in the 10D diagonal position. Let v

be an element of epﬁer, then

(2.11) R(ep)R(V)R(er) = R( V).

By the description of R(ep) and R(eyp) given above, it fol-
lows that R(y) can be non~zero only in entries directly
below x3(1i) where j(i) = r and directly to the left of X3 (1)
where j(i) = p. When considering the matrix form of a rep-
resentation of R, 1t will always be assumed to be in the

form (2.10) and the above mentioned facts will hold for it.

3. Rgpresentations of Algebras and Basic Algebras

The reason for consildering representations of basic
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algebras is seen in the followlng development. Let V be a
representation space for the algebra A.
Define
(2.12) Tv=_"9.

Since elements of R are of the form T« T, 1t is clear
that ¥ is an & space. If T Vv = 0, then 0 = C4;, V = Ci1pu V.
It follows that Cip1CiapV = cip%cv = 0 implying 1V = 0. Hence
if 1 acts like the identity on V, ¥ is not zero and I acts
like the identity on ¥. Also if V = V, + Vo (A direct) then
¢ =2V, +v2) = 9, + 02 (& direct). Thus, if V is decom-
posable so is V.

An important fact concerning this process of going
from A spaces to R spaces 1s that it has an inverse. Let ¢
be an & space, let {vi{} be a basis chosen so that the
matrix form of the representation of £ is as (2.10). Recall
that ej(i)vi' = vy' = Cy(1)11vi', where Cj(i)ll is equal to
ej(1)- Now adjoin to ¥ the additional basis vectors
Cj(i)/‘lvi'; M= 2, ... f(j(i)) . Call the new space V‘and

define a representation of A on V in the following manner

for the given basis of V. ILet &« be in A

n f(t)
(2.13) «(Cy,,v1') = 5_:1 le Ctpp& Cjp1Vs’
;%E £(t)
- Ctp 1(Ct1pXCyp1Vi')-
) fzi_ fLVELIpA w1l

The element Ct1f0<cjﬁbl is in &, so the expression
in parentheses is a linear combination of basis vectors in
. When this 1s multiplied on the left by Cty 15 the re-
sulting element is well defined in v. If ¥ is an & direct
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sum, V is an A direct sum. Clearly, these two processes are
the inverses of each other. Wall [9] has proved the follow-
ing theorem highlighting the value of the preceding develop-

ment.

Theorem 2.3.A: If V and V' are A-spaces, ¥ and ¥' their

corresponding A-spaces, then V is A-isomorphic to vt 1f and

only if V is A-isomorphic to V.

With the exception of Theorem 2.3.A all the above re-
sults are in Nesbitt and Scott [6]; they are presented here
in condensed form. In addition, Nesbitt and Scott showed
that the composition length of V as an A space 1is the same
as the composition length of 6 as an ﬁ space.

Thus, 1n studylng algebras over an algebralcally
closed fileld with respecﬁ to thelr representation theory, it
is sufficient merely to study representations of basic al-
gebras. Every indecomposable representation of A leads to
a corresponding indecomposable representation of ﬁ and con-
versely. Since the factor space of two successive steps 1in
a composition series is irreducible, its dimension 1s equal
to the degree of that irreducible representation. There are
only a finite number of such irreducible representations for
any given algebra. Hence, there exist an infinite number of
inequivalent indecomposable representations of a certain de-
gree of A 1f and only 1if there exist an infinite number of
inequivalent indecomposable representations of A of some
smaller degree. The following theorem sums up the above

results.
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Theorem 2.3.B: If A is an algebra over k, an algebralcally

closed fileld, and A is its baslc algebra, then A is of

strongly unbounded, bounded or finite type 1f and only if

K is of the same type.

Y. Two-Sided Ideals in A and A

In addition to using the correspondence between the
representation theory for A and for K, use will be made of
the structures of thelr two-sided ideals. Let Lp be the lat-
tice of two-sided ideals in A and let Ly be the lattice of
two-sided ideals in K. (For a discussion of the lattice con-
cepts used here see Birkhoff [2].) ILet Ay be a two-sided
ideal in A. Define the function @ from Lp to Lf,

(2.14) g: Ly —> L& by @) = 1a01.

Lemma 2.4.A: & is a lattice homomorphism of Ly into Lf.

Proof: Since Ag 1s a two-sided ideal 1a.T e Aon A.

>

Also 1 is the unity element in ﬁ, SO Ao{)E'E iAoi. There-
fore iAoi = Ao} A.

Then form @(A;) + F(Ap) = 1a;1 + 1A»1. Distribu-
tivity of multiplication implies this equals i(Al + Ag)i'=
g(Ay + Az).

Let G(A:)N F(A2) = (A0 A) N (ApNA). But this is
Ay N AxNA because set ‘intersection 1s assoclative, commuta-
tive, and ANA = K, Therefore @(A1) N @F(Az) = F(Ar1NAz).
This completes the proof of the lemma.

Let»Ko be a two-sided ideal in A and define the

function ¥ from Lj to La,

(2.15) Wi If —» Ly by ¢ (Ao) = {KO}A,
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where {Eé}A is the two-slded ideal in'A generated by elements

in ﬁo. The following theorem gives the desired relation be-

tween Lp and Lj.

Theorem 2.4.B: Both ¢ and ¢@ are identity functions and L

and Ly are lattice isomorphic under @ and ¥ .

Proof: Since f(Ao) S Ao, #H(Ao)S Ao by the definition
of . Let o/ be in Ag. Ap 1s a two-sided ideal so that Ci,uy”(ijzv
is also in Ay and CilﬁXijl is in @(Ao) because 1 leaves it
invariant on both sides. It follows that CiylcildeJflCiq
is in YJ(Ay). But then « is in %¥(Ao) because of= 1K1 =

2. CipdCyp . Hence {4 is identity.
15%3,¢

A

Certainly, @¥(Ao) = Ao because Ao € (Ao)a and 14,1 =1As.
Let @ be in g¥( (Ro), then @ = 1€01 where QO ;érézy 63’ and the

%??" l@.l are in Ap. Then 8= ; 1@51 @?‘.P 1%, is in R,

because Ao 1s a two-sided ideal in A. Therefore ¢¢ = iden-
tity. @ is one to one, onto, and a lattice homomorphism,

hence @ is a lattice isomorphism and ¥ is its inverse.

Corollary 2.4.C: If a two-sided ideal in ﬁ is principal,

then its image under ¢ is principal in A.

Proof: 1If Ko = {B(é} then, by the definition of &,
Y(Ag) = {}lé}Ais the two-sided ideal generated by o, in A

and 1s therefore principal.

5. Representation of Large Degree

In the proofs of the main theorems in Chapters III,
IV, and V, certain algebras are shown to have indecomposable

representations of arbitrarily high degree. Those proofs
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depend heavily on the following lemma, which can be used to
show the exlstence of indecomposable representations of a
certain degree without actually exhibiting the representa-

tions themselves.

Lemma 2.5.A: If A 1s an algebra over an algebraically

closed field, V is a representation space for A, L is the

commutator algebra of the representation (the set of all

A~homomorphisms of V into 1tself), and if every B in L has

more than d equal eilgenvalues, then V has an indecomposa-

ble direct summand Vo of dimension greater than 4.

Proof: Suppose the contrary. Let V be decomposed
into V= V, + ... + V¢ (A direct sum) where each Vi has
dimension dy < d. Let y; ... ¥yt be distinct elements in
the fleld k. Let B be the homomorphism of V into V which
maps vectors vi in V4 onto yivy. On each direct summand
Vi, B acts like y; times the identity matrix. This com-
mutes wlth every homomorphism of V4 into Vi, including
those caused by elements in A. Thus B 1s in L. But this
contradlcts the hypotheses of the lemma, because the eigen-
values of B are the yq, each appearing as often as the di-
mension dy of Vi and dy £ d. This contradiction establishes
the proof of Lemma 2.5.A.

A result on commuting matrices which is used ex-
tensively in Chapters III, IV, and V is given in the fol-

lowing development. Let
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-0
= 0
[

(2.16) P

be a square matrix with a single elgenvalue ¢ and 1's Jjust

below the dlagonal. P, 1s called a primary matrix. Let V

be the space on which P, acts. Since V 1s generated by
powers of P, acting on a single vector, V 1s indecomposable.
In [1] it is shown that V is indecomposable if and only 1f
the commutator algebra of V is completely primary. If the
underlylng field 1s algebraically closed, the following

lemma is a corollary to that result.

Lemma 2.5.B: If B 1s a matrix which commutes with P¢,

PeB = BPe, then B has exactly one eigenvalue.

In the proofs of the main results, 1t 1s necessary
to construct representations of large degree. One method
is to form direct sums of representations. Another method
used by Thrall in [7] 1s given in the following.

Let R(o¢) be a representation of A by matrices. Let
(2.17) R(of) = (C1j() )

be the matrix cut into submatrices Cij(a(), so that the
Ci1(e¢) are all square and Cij(°() has the same number of
rows as Cii(ed) and the same number of columns as Cjj{o¢)-

Then
t

(2.18) R(e¢)R(@) = R(«¢@) implies Zoi.,,(d)cpj(@): C13eB)
y=1
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Let D = (D1j) also be a matrix whose coefficients are
matrices such that (Dij) has the same number of rows and col-
umns as (Cyj(e¢ })) and the diagonal blocks Dij are square. Let
Dij X Cij(ef) be the Kronecker product of the two matrices
Di 3 and Cij(p()- (For the definition and properties of the

Kronecker product of two matrices see van der Waerden [8].)

Lemma 2.5.C: If Dy 4Dk = Dix holds for the positions where
C13(e), Cjk(a(), Cix(ef ) are not identically zero then
Qo) = (D13 X Cij(o{)) 1s a representation of A. Further

Di1 = identity implies Q(1) = identity.

Proof: The properties of Kronecker products that
are used here are A X (B+ C) = (A xB) + (A X ) and (A X B).
(CXD) = (A-C) X (B-D) if all products are defined.
Qla¢) +Q(Q) = (D1 X Cy3(e¢)) + (D1y x C15(Q)) =
(D1g X Cyj(et) +Dig x C13(Q)) = (Drywx [Cpyled) + cij(g)])
- (D1 x Crglel+8)) = Q(u+6).
t

Also Q(¢ )Q( @) = ( D1y X Cop (o)) - (Dyy % Cy3(8))

V=1

- (inl(Diy ' Dbj)x(ci.v(o() ' CVJ'(§)>)

t
) (V%Dij % (C1() - ij(ﬁ))) = (P13 x C13(x @) = ald@).

Then Q( ) 1s clearly a representation of A.



CHAPTER III

In this chapter it 1s shown that every algebra over
an algebraically closed field with an infinite two-sided
ideal lattice 1s of strongly unbounded type. Finlteness of
the two-sided ideal lattice is equivalent.to distributivity
of that lattice. - This is proved by Corollary 3.1.G. If
the algebra 1s commutative and has only a finite number of
two-sided ideals 1t 1s shown to be of finite representatlon
type. The proof of this fact also establishes Corollary
3.5.C which states that every commutative algebra wlth a
finite two-sided ideal lattice is the direct sum of poly-
nomial algebras over the field k. Before proving these re-
sults 1t 1s necessary to establish certain results about
lattices and in particular about the two-sided ideal lat-

tice of a basic algebra.

1. Two-Sided Ideal Lattices

The following facts concerning lattices will be used
in this and later chapters. A quular lattice 1s one which
has the property that D2 B implies DN(B=+C) = (DAB) +
(Dn.C). lattices generated by subspaces of a vector space,
where DN B means set intefsection.and D + B means the sub-
space generated by D and B, are modular lattices. Since
left, right, or two-sided ideals are subspaces of an alge-

bra and DNB, D + B are again left, right or two-sided ldeals

23
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if both D and B are, the lattice of left ideals, the lattice
of right ideals and the lattice of two-sided ideals are all
modular lattices. The dimension of a modular lattice is the
number of elements 1n a chain from the least element to the
greatest. Modularity of the lattice is needed to show that

the dimension 1s independent of the cholce of the chaln.

A lattice is distributive if DN (B + C) = (DaB) +
(DnC) always holds. Clearly, a distributive lattice is

modular. Proofs of the followlng two lemmas can be found in
[2].

Lemma 3.1.A: A finite dimensional distributive lattice 1s

necegsarily finite.

Lemma 3.1.B: A modular lattice 1s distributive if and only
if 1t fails to contain a sublattice of the form ¢<$>>

The sublattlce appearing in the previous lemma 1s

called a projective root. A lattice homomorphism of a

projectlve root either maps it onto a single element or maps
i1t isomorphically.
If U 1s the greatest element 1in a lattice and O the

smallest, an element D is said to have a complement D' if

D+D'=U and DND' = 0. If every element is comple-

mented, the lattice is called a complemented lattice. A

complemented distributive lattice is called a Boolean alge-

bra. An element D covers B if D> B and D> C 2 B implies
C = B. The followlng lemma gives a fact that will be used
in Chapter V.
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Lemma 3.1.C: In a distributlive lattice, the covers of a

single element generate a Boolean algebra.

Now let A be an algebra over an algebralcally closed
field k and consider Lp, its lattice of two-sided ideals. By
the lattlce lsomorphism of Theorem 2.4.B it is sufficilent to
consider only basic algebras. Throughout the remainder of
this section A will represent a basic algebra.

Using the theory develdped in Chapter II for basic

algebras, the algebra A can be written

n
Z eiAeJ‘ ’
i)j=1

o=
i

where eiAej is an additive subspace of A. The e4 are the n
orthogonal idempotents, forming a basis for the semisimple

subalgebra A' of A.

Definition 3.1.D: Let @13 be a function from L, to sub-

spaces of ejhej defined by ﬁiJ(Ao) = Ao N ejhey = eihoey-

Lemma 3.1.E: For each pair 1,J, #1j is a lattice homo-

morphism.

Proof: @1j(A1 + Az) = e1(A; + Az)ey = eih e + ejhqey
= f13(A1) + @1 3(A2) because of the distributive law for mul-
tiplication in A. Secondly, f13j(A1nAgz) = AiNAzNejhey =
(A1 ejhey) N (Azneihey) = P15(A2) N P1y(R2). Thus, iy 1s
a lattice homomorphism.

Distributivity of the two-sided ideal lattice Lp can

now be described in terms of these n® lattice homomorphisms

P13
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Lemma 3.1.F: f;4(Lp) is a chain for each pair 1,J if and

only i1f Lp is distributive.

Proof: Suppose Lp is not distributive, then, since
Lp 1s a modular lattice Lp contains a projective root R which
1s either collapsed entirely or mapped isomorphically by a

lattice homomorphism. Let

(3.1) R = .@ Ay
Ap

But there exlsts a pair 1,J such that @1 j(A1) # P14(A2)-

For if @#13(Ay) = f13(A2) for all 1,J, then summing over all
1,J, AL = Ap. Hence for that pair 1,J f13(Lp) contains an
isomorphic image of the projective root and 1s therefore not
a chailn.

To prove the "1f" part, let @#i3(Lp) not be a chain.
Starting up from O in eiAej,.let ﬁij(Ao) be the smallest ele-
ment in @i 3(Ly) which has at least two covers in @13(Ly).

Let A4 be the sum of all two-slded ideals A, of Lp for which
gij(Aa() < ¢ij(Ad). Since @13 is a lattice homomorphism
P135(A8) = F135(ho)- Let #13(A1) and @1 3(Az) be two distinct
covers of @1 3(ho).

Choose an element oy in @1 3(A;) but not in @1 4(Ad)
or in @3 5(A2) and form its principal ideal (ofy) = AchiA.
Since o/, is chosen in eihey, et®; = 0 unless t = 1. For
the same reason, e ep = 0 unless r = j. Using expression

(2.6) for A it is clear that («.) can be written as
(3.2) (od1) = koly + o s1N + N3 + N3N,

The first % in the above expression is direct
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because the summands after that are in a power of the radi-
cal one higher than the power of the radical that o(llis in.
Clearly, the expression o ;N + No; + N&(;N 1s a two-sided
ideal because N is a two-sided ideal. By the choice of o(;

in eiAej it is clear that
(3:2) Pr3( N+ Nody + NeduN) & Fy3((1)) € F13(81),

where the first 1s properly contained in the last. By the
choice of A4, &N+ No&; + N&;N is contained in A4. There-
fore A¥ = ko, + A 1s a two-sided 1deal and the sum is di-
rect because &1 was chosen not in A4. Since of, was chosen
not in ﬂij(Ag), ﬁij(Ai) and ﬁij(Ag) are two distinct covers
of f13(A4) in ejhejy.

Running through an identical argument with the sub-
seript 2 replacing 1, A% = ks %=A5 is a two-sided i1deal,
and the sum is direct. Af and A%¥ both cover A4, for their

quotients are one dimensional. The sum A¥ + A% is
kel 1 + kol s + Ag.
Let ofg = of; + o5, then A% = kols + A is a third cover of

1]
A4 and LAY + A

(3.4) A¥ . A%

1s clearly a projective root. Hence Lp is not distributive.
This completes the proof of the lemma.

Note that the previous proof implies that
k(kiofy + keol2) + Ab is a different two-sided ideal for
every distinct ratio k;/ks. This leads directly to the fol-

lowlng corollary.
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Corollary 3.1.G: Lp is finite if and only If L, is

distributive.

Proof: If Lp 1s not distributlive the previous lemma
implies Qij(LA) 18 not a chain for some pair 1,J and there
exist two-sided 1deal AY and the elements o, , o 5 of the
previous lemma. By the comment above, k(kiel; + ko 5) + A
is a distinct two-sided ideal for each ratio ki/kz. Since
the fileld 1s infinite, the lattice of two-sided ideals 1s
necessarily infinite.

Conversely, a finite dimensional dlstributive lattice

is necessarily finite by Lemma 3.1.A.

2. The Two-Sided Ideal Lattice and Strongly Unbounded Type

It can now be shown that infiniteness of the two-
sided 1deal lattice implies that the algebra is of strongly
unbounded type.

There 1s a pattern that 1s repeated in the proofs of
each of the theorems in which an algebra is shown to be of
strongly unbounded type. This pattern is outlined in the
following.

In the first part of the proof, the hypotheses of
the theorem are used to show the existence of certain special
elements «,, ... , &, 1in the algebra and to construct a
representation Rcs: s an integer, c a parameter in k. Rig
has a degree which is a fixed integral multiple of s.

An element B in the commutator algebra of Ryg must
satisfy the commutator equation Reg(ef )B = BReg(e() for all
o/ In A. This equation is examlned for & equal to each of

the speclal elements. Among the conditions this imposes on
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B is that B have at least 8 equal elgenvalues. Lemma 2.5.A
then implies that R,g has an indecomposable direct summand Tgg
of degree at least s. At this point the conclusion can be
drawn that A 1s of unbounded type.

In the second part of the proof, it is shown that for
distinct values of the parameter, c # d, Teg 1s not similar
to Tqg- Since the fleld 1s infinite there are an infinite
number of such lnequivalent indecompcsable Pepresentations

with degrees between the degree of R and s. So for some

cs
integer dg between, there must be an infinite number of ina
equlvalent indecomposable representations with degree dg.
Clearly the algebra A is of strongly unbounded type.

The method for showing that T,g and Tyg are not simi-

lar 1s to assume they are and show this produces a contra-
diction. If T.g and Tyqg were simllar there would exist an
intertwining matrix P satisfying PRos(«) = Rgs( ()P and P,
when cut down to the space Vp of Teg, would represent an
isomorphism. By letting of equal each of the special ele-
ments in the intertwinlng equation, certain conditlons are
Imposed in P. Among these condltions, is that P;3Pgg =
Po.gP11 where P;; is a certain block cut out of P and Pgg,
Pgg are primary matrices with elgenvalues ¢ and d respec-
tively. It is then seen that Pj;; represents P cut down to
a certain subspace Vo contalned in Vp. Then Py; represents
an isomorphism and has an inverse P;i. The above equation
is then impossible. This contradiction establishes that
Tes and Tgqg cannot be equivalent.

The maln theorem of this chapter is now proved ac-

cording to the above scheme.
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Theorem 5.2.A: If A is an algebra over an algebralcally

clogedlfieldvk,_and if Lp, its two-sided ideal lattice, is

infinite, then A 1is of strongly unbounded representation type.

Proof: It is sufficient to consider only basic alge-
bras, for an algebra has the above conditions if and only if
1ts basic algebra has them. -Hence let A be a basic algebra.

By 2.1.F and 3.1.G, infiniteness of the two-sided
ideal lattice is equivalént to the existance of a pair 1i,]
such that @1 4(L,) is not a chain.

If i ;é J then ejNej = ejhey. If 1 = j, then ejhey
is a subalgebra of A with a single idempotent ej. If Ap 1s
a two-sided ideal of A, @11(Ap) 1s a two-sided ideal of
ejhei. If @y1(Ao) contalns e1, 1t is all of ejhes; if not,
it is nilpotent and is contained in e;Nej the radical of
eiAey. Hence in the case 1 = J the part of ﬁii(LA) which is
not a chain must be contained in eiNej. Thus, 1n any case,
there exist two two-sided ideals A;, Az such that ﬁij(Al)
and @5 5(Az) are incomparable and both are contained in
eiNej . Hence there exist of,, &2 in ejNey such that oL
1s in A; and not in As, of2 18 in A, and not in A;. These
two ideals Al; Az and these two special elements are used in
proving A 1s of strongly unbounded’type°

Let Ry and Rp be representations of A with kernels
A, and Ay respectively. (There always exist such representa-
tions, for instance, let Rt be the regular representation of
A/At.) By the choice of the elements of; and o2 relative to
the kernels A, and As of R; and Ro,

(3:5) Rg(o(t) = 0 Re(e{p) #0  t,r=1,2.
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Assume R; and Rp are in the diagonal form (2.10).

ol 2 18 in N s0 Ry (X 2) 18 non zero only below the diagonal.
Since Ry ((2) # 0, there exists a top non zero row of R; (X2)
the rth, r> 2, and in that rth row, there exlsts a non zero
entry bpy, t € r, farthest to the right. Let R{ be the rep-
resentation induced by R; by taking the square diagonal block
of Ry having bpt in the lower left hand corner. Since R; 1s
in the diagonal form (2.10), R{ 1s the representation linduced
by Vi/Vpe in the composition series for Ry. Note that R} (o(1)
is 8tl1ll zero. 1Induce a representation Ri from Ry in an anal-
ogous manner.

R4( (1) and R{(oz) are non zero only in the lower
left corner. Now by multiplying o«/; and o> by appropriate
scalars, the non zero entries may be assumed to be 1 in k.
Both o/, and « » were chosen in esNej, so that by the develop-
ment of Chapter II, R{ and R} are assumed to be in the dlago-
nal form (2.10).

% 3(o¢) . Xj(oz)
(3.6) Ril) = [Pu(el) Q1 (e() s R(«) = |Pal) Qa(e) -
va{et) S1ll) x1 () vz () S2(«) xi()

By the choice of the representations R} and R4 and the
cholce of the special elements L., > the following relations
hold.

X1 (t), Xj@ft): Prlelt), Qpt), Spldy) are all zero,

(3.7) for r,t = 1 or 2; yp«t) = O when t = r, 1 when t £ r.

Using the two representations R{ and Ri, form their

direct sum R} + Ry = R'. Clearly,
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(5.8) x5 x5
J N
0 X.j 0 l XJ'
P, 0 Q Pl Py Qu
R' & = !
0 Pz 0 Qg 0 |P2 0 QE
vi 0 81 0 x4 yl:Y1 S1 0 x4
0 y2 0 S20 x4 01520 82 0 x1

~/

where = indicates similarity. Let R be the representation
induced below and to the right of the dotted lines.

Let s be an arbitrary positive integer, I the unit
matrix of degree s. Let Pgg be a primary matrix of degree

s with the single eigenvalue c¢c. Then

T
I 1

(3.9) Dog = I 01
I I 0 I
Pog O Peg O 1T

is seen to satisfy the hypotheses of Lemma 2.5.C, hence

X a

I X Xy
I X Py I%Q
(3.10) Rgg = I x P O I X Q2
I x y; IT XS, 0 I X x4

PogX Y2 O PegXSz 0 IXxy

1s a representation. bg 1s seen to be similar to
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I Xyl +PCS b4 NE- Ix Sl PCSX82 I XXi

— — —— — —— o o——- — - p——— —— amme] v e e wmem v

I)(XJ |

IXP,  IxQ, :

(3.11) R%q = Ix Py 0 I X Qo |
I

Let R.g be the representation induced above and to
the left of the dotted lines. R,g 1s now shown to contain
an indecomposable direct summand of degree at least 2s. Rig
1s first evaluated at the special elements &y and o, by

equations (3.7).

o O O

0 0O 0 O
(3'12) Rcs(’(l) = 0 0 4 RCS(°<2) - 0 0 0O
Peg O I 0 0
Let B be in the commuting algebra of Rogs B 1s broken
up into submatrices to correspond to the divisions of Reg

given by the solid lines in (3.11).

Bii Biz Bis

(3.13) B

B2y B2z Bos

Bay Baz Basa
B must satisfy the commutator equation,
(3.14) Reg( o )B = BRog(of ),

for all &« in A. 1In particular it must satisfy.(3.14) for
of = Kz and = ;. Combining (3.12) and (3.14), it fol-
lows that

(3.15) Bii = Baa; Big, Bra, Bas are all zero; B11Peg = RegBas.

By Lemma 2.5.B, matrices commuting with a primary



34
matrix Pcs have only one eigenvalue. Since By; = Basg,
Bi1Pog = PegBas Implies that B;; has only one eigenvalue.
Consldering (3.15) and the form (3.13) of B, it is clear
that B must have 2s equal eigenvalues. ILemma 2.5.A implies
Rog must have an indecomposable direct summand T,g of degree
at least 2s. Since s is an arbitrary integer, A is clearly
of unbounded type. This completes the first part of the
proof.

It is now shown that A is of strongly unbounded type.
For ¢ ¥ d let the two representations Reg and Rgg be as in
the flrst part of the proof. ILet T,g and Tyg be the two in-
decomposable direct summands of degree at least 2s shown
above to be in R,.g and Rgg respectively. It is shown that
Teg and Tqg cannot be similar.

Suppose they were similar. Let V be the space of Reg
and let Vp be the space for the summand Teg. If Teg and Tgg
were simllar, there would exist a matrix P intertwining Reg
and Rgg, which, when restricted to the space Vq, represents
an isomorphism. It is also an isomorphism when restricted to
any space contained in Vm.

A particular subspace Vg 1s shown to be contained in
Vp. Let Reg(e(2)V = Vo. Equations (3.12) imply that Vo has
for a basls the last s basis vectors of V, when Rpg is in
the form indicated by (3.11). Let Bp be the commuting matrix

of Rog which is identity on Vp and O on its complement in V.

Bia
(3.16) Bp = Bzz

Bl 1

because B 1s a commuting matrix and must therefore satisfy
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equations (3.15). By the choice of Brp, Bi11 has unit elgen-

values and 1s non singular. Hence BpVg = Vo. Now apply the
commutator equation R,g(e(2)Bp = BpRyg(e(2) to the whole
space V. Clearly,

VTE— _RCS(°<2)VT = RCS(O(E)BTV = BTRCS(O(Q)V = BTVO = Vo

so that Vo 1s contained in Vq.
Let P be the intertwining matrix mentioned above, P

satisfies the equation

(3.17) PReg (o€ ) = Rggled )P+

Note that R,g(e(2) = Rggle2), 80 that for o = ol 2
(3.17) looks 1like the commutator}equation (3.14). Let P be
divided up as B 1s. Then P;; = Pas, and Pia, P¥2, Pa> are
all zero. Now let « = X& in (3.17), then using equations
(3.11), PaaPeg = PggP11 or P1aPeg = PggPa1 because Piy =
Pss. But P cut down to Vg 1s represented by P;; which must
be an isomorphism. So P;; is nonsingular. But then Py;P.gq
= PggPi1 is impossible because P.g and Pyg have unequal
elgenvalues ¢ and d respectively. Thils shows that for c # 4,
Teg and Tgg. cannot be similar. For every ¢ in the infinite
field k there is such an indeéomposable representation Ti.g
with degree between 2s and the degree of Rpg. Thus, there
exlsts an Integer dg between 2s and the degree of R,g such
that A has an infinite number of inequlvalent indecomposable
representatlions of degree dg. Hence A 1s of strongly un-
bounded type and, by Theorem 2.3.B, so 1s any algebra with A
for a basic algebra. Thils completes the proof of Theorem
3.2.A.

An interesting consequence of finiteness of the
two-sided ideal lattice is glven in the following theorem.
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Theorem %.2.B: If A is an algebra‘over an algebraically

closed field, and if L, its twofsidedﬁidea; 1attioe is

finite, then every two-sided 1deal 1s principal.

Proof: If every two-sided ideal in the basic algebra
1s principal, then every two-sided ideal in the algebra is
also principal. This follows from 2.4.C. It therefore is
sufficient to consider only baslc algebras.

If Ly is finite, 3.1.F and 3.1.G imply that @1 ;(Lp)
1s a chain for each of the n® lattice homomorphisms ﬁij,

Let Ao be a two-sided 1deal in A. Pick «£3ij in
¢1J(Ao). Let (a(ij) be the principal two-sided 1deal gen-
erated by o1j. Either fyj((«(1;)) = F1j(A0) or fF14((1y))
1s properly contained in ¢1J(Ao). If the latter, plck e 1j
in @1 3(Ao) Dbut not in ¢1J((czfj)). Since @3 4(Ly) is a chain
Prj(ho) 2 P13((acfy)) > F13((¢iy)). Since ejhey 1s finite
dimenslonal there exists . an element o(fj such that

(3.18) Pr3((f3)) = #14(80).

For each pair 1,j obtaln such an element and let oo
be the sum of all of these. Since each o(gj is in ﬁiJ(Ao)EAo,
the principal ideal (o) 18 contained in Ag. The n idem-
potents e4 are orthogonal and the elements o(SJ were plcked
in ejhey, so ejefoey = o(fj. Hence the principal ideal (e¢o)
contains each of the principal ideals (o(fj) and

(3.19) B13((el0)) 2 F15((etD3)) = F13(Ao)

by equation (3.18). Summing equation (3.19) for all i,
implies (ofo) 2 Ao. Hence Ao is the principal ideal gener-
ated by o«(o.
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The results of this section are referred to throughout
the rest of this paper. The purpose of this paper 1s to clas-
sify algebras with respect to the number of inequivalent inde-

composable representations; a part of that task is accomplilshed.

3. Commutative Algebras

The following lemma provides a tool used in the proof

of Theorem %.3%.B, the main result of this sectilon.

Lemma 3.3.A: If A is a basic algebra with a finite two-sided

ideal lattice Lp, then the subalgebra ejlei 1s the homo-

morphic image of a polynomial algebra over k.

Proof: ejAe; has eg; for 1ts unity and only ldem-

potent so it can be written
(3.20) ejAei = key + esNes.

By 3.1.F and . 3.1.G finiteness of the two-sided ideal
lattice is equivalent to ﬁij(LA) being a chain br every pair
1,J. By the proof of Theorem 3.2.B this implies that there
exists an element o4 in e;Nes such that the principal ideal
(1) = AeliA has the same image under @i3 as does N,
(3.21) eiNei = ejAesoljeqhey.

Use equation (3.20) in (3:21) to obtain (3.21!').

(3.21") eiNej = kofj + ejNej¥; + XjesNe;y + ejNejhjeiNey

il

ks + (eqNey )®
Now use (3.21') recursively,
(3.21'1) eiNej = ke + ko ® + (eiNej)®.

Continue in this manner until (eiNei)ti = 0. S8ince eiNes
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is the radical of ejAe; such a t1 exists. Then ejNes can be

written
g2
(3.21'1) eiNey = kay + k4% + o 4 kefy .
Clearly eiNes has a basis of powers of a single ele-

ment «’3. Equation (3.20) then becomes
ti—l
(3.20") ejhes = kei + kel + koG ® + **° + kofy .
eq1 1s the unity element of ejAes and powers of °<i
commute . Let]&Dﬂ be the polynomial algebra over k in an in-
determinant x. Let o(xt) = o(it, e(1l) = ey for 1 in k and ex-
tend linearly. © 1s a ring homomorphism of k[x] onto eiAei

with (Xti) for a kernel. This completes the proof of the

lemma .

The main theorem of this section can now be proved.

Theorem 3.25.B: If A 1s a commutative algebra, A is of

strongly unbounded type 1f and only 1f Lp 1s infinitea‘ It

Lp is finite A is of finite representation type.

Proof: Theorem 3.2.A establishes that if Lp is in-
finite then A 1s of strongly unbounded type.

If A is commutative, it 1s its own basic algebra,
for any subalgebra of A isomorphic to a total matrix alge-
bra must already be of degree one. Let e; and ej be dis-
tinct orthogonal idempotents, then eiAej-= eiejA = 0. Hence

A can be written
. n
(3.22) A= *-zzleiAei,
i=1

where the sum 1s direct in the ring sense, and the ejhey

are two-silded i1deals here. If R is an indecomposable
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representation of A, then the kernel of R contains all the
ejAey but one. For if not, R could be decomposed into a
direct sum.

Assume Lp is finite then by Lemma 3.35.A each ejhey
is the homomorphic image of a polynomial algebra and the in-
decomposable representation R can be considered as a repre-
sentation of k{x]. Such representations are studied in ele-
mentary matrix theory. R(x) has a characteristic function
f(x) which must equal m(x) the minimum function of the rep-
resentation of x if R 1s to be indecomposable. But
R(Xti)-= 0 8o m(x) must divide x1, and the degree of f£(x)
equals the degree of R, hence the degree of R<€ ty. A is
therefore bounded type.

Two such indecomposable representations of k[x] are
known to be similar if and only if fthey have the same mini-
mum function. But x°1 has only ty distinct nontrivial
divisors so ejAes has only ts distinct indecomposable rep-

n

resentations. Hence A had only J  ti non equivalent in-
i=1

decomposable representations. A 1s therefore of finite

representation type.
Contained in the above proof is the following struc-

ture theorem for commutative algebras.

Corollary 3.3.C: A commutative»algebra over an algebraically

closed fileld k is the direct sum of polynomial algebras over

k if and only if it has a finite two-sided ideal lattice.

Proof: If A has an infilnite two-sided 1deal lattice,
1t is of strongly unbounded type. But polynomial algebras

and direct sums of them are of finite type.
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4. Other Consequences of a Finite Two-Sided Ideal Lattlce

A fruitful approach to the representation theory
for algebras 1s to congider subalgebras generated by one or
a few elements. The commutator algebra of a representation
of the subalgebra is given by the set of matrices which com-
mute with each of the generators of the subalgebra. This is
because a matrix commuting with two matrices also commutes
with all linear combinations of products of the two, that 1is,
with the subalgebra they generate. In the previous section,
1t was the fact that ejNes was a subalgebra generated by a
single element that lead to the proof of Theorem 3:.3.B.

The following two lemmas show that finiteness of the
two-sided ideal lattice ailows the choice of a certain few
elements of the basic algebra A which generate A in the sub-
algebra sense. Then to find the commutator algebra of é
representation of A, it is necessary only to look at the

commutator algebra of the images of these few elements.

Lemma 3.%.A: If A is a basic algebra and if L, is finite

then there exists oo in N the radical of A such that the

subalgebra generated by the idempotents €1,--.6p and X q

is a1l of A.

Proof: Let «'y be chosen as in Lemma 3.3.A such
that powers of o(j generate eiNej. Since N is a two-sided
ideal in A, there exists o(jj in eiNey for which fy j((X1j))

equals eiNej. °(ij is chosen as in Theorem 3.2.B. Then

(3.23) eiNej = eiA_ei('a(ij)ejAej°

But by the cholce of the ofi, ejAe; has a basls consisting

of e3 and powers of eli, and similarly for ejAejo Then
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(3.23) can be written

(3‘25') eiNej = tZ kdito(ij 0<J.r, O(io = ei
,r

where the sum on the right is not necessarily direct.

n n
Let &4 = ZZ:‘Xij + 2 A, and let S be the subalgebra gen-

1] i=1
erated by &y and the n orthogonal idempotents ej. Ortho-
gonality of the idempotents implies efxoej = 0(13 if i+ j

or ejXpe; = 4. Hence 44 and &4 are in S. By the

1]
choice of o(4, ejAe; 1s in S and by (3.23') eyNe y which

equals eqAe, for 1 # j is also in S. But the sum of all

J
of these is A so S = A.
A further refinement of this 1is given in the follow-

ing lemma.

Lemma 3.4%.B: If Ly is finite then there exist two elements

<Ky, o1 such that the subalgebra generated by them is all

of A.

Proof: ILet <y be chosen as in the previous lemma.

Let ¢4, ... ,cn be distinct elements of the field k, and let
n

&1y = 2. cqeq. Let f(x) be a polynomial in an indeterminant
i=1

X with coefficients in the field k. Since the i1dempotents

are orthogonal

n
Then let fi(x) =TI
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It follows that f3(ely,) = e;. So the subalgebra generated
by o 1 contains each of the idempotents ej. Lemma 3.4.A
then gives the result.
This chapter ends with a lemma which indicates that
infiniteness of the two-sided ideal lattice 1s a generaliza-
tion, in the case the field is algebraically closed, of the

hypothesis of Theorem 1.2.C.

Lemma 3.4.C: If A has a representation R

Fj
P Q

Yy 51 Fy
Ys Sz O Fj

a_top constituent of a representation induced by a left

ideal Ae where e is a primitive idempotent and Y, has

power s, , Y, has power s,,s8:28, and Q has no F; appearing
o T oJ

in the top ss-8, Loewy constituents of the upper Loewy

series for Q, then A has an infinite two-sided ideal

lattice.

Proof: Starting with the primitive idempotent e
it is possible to pick a set of matrix units for a semi-
simple subalgebra A' of A such that Cj,, = e. Going over
to the basic algebra E of A, e = €3. The representation
of A induced by Ae goes over into a representation R' of

A induced by iAe The top consgtituent R' corresponding

J'o
fo R can be taken to be
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PI QE
(3.24) R!' = vl 8y x

Yé Sé 0 Xj

R has composition factors that induce irreducible
representations Fy, and R' has corresponding composition
factors x¢. That no Fj‘appear in the top sp-s; constltu-
ents of the upper Loewy series for @ means that no X3 ap-
pears 1n the top sz-s8; constituents of the corresponding

NSo=S1 41

series for Q'. Then ejﬁej,= ejN €5, for if

- S8o-81t11
ejNej/esN" 27" e

1s not zero there would exist an xj in the top sz-s, Loewy
blocks of Q'. By the definition of "power" Y! having power
s; means Y (e« ) = 0 for all &« in N°! but there exists L1
in eiﬁsflej such that Y{(e;) # 0. Since R' was induced by
Rey, the first column of R' is completely independent. That
is, «' 1 can be chosen so that Yi(ed1), P'(e«1), X3(el1) are
all zero. Similarly YY) has power ss s0 o2 can be chosen in
eiﬁsz—lej such that Yi(edz) # 0 but x3(e2), P'(ad2)s Yi(l2)
are all zero.

Define Ay = AoA, Ap = ke» + N°2. By the choice of
o(z,ﬁg is a two-sided ideal. Kl obviously is too. Vi) =0
for all of in Kg because Y{(«p) = 0 and Y{(e¢) = 0 for all

o/ in N°12 N°2, But ¥{(a(.) £ 0. Hence

(3.25) P15(R) 2 F13(R1),

for if'ﬁij(Az) contained ﬁij(ﬁl), Y{ (oK) would have to be

Zero.
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Form ﬁij(Al)'=~eiKeia(lejﬁej, By the remark above,
ejﬁej-= ke + ejﬁsz—sl+lej. Use this in the above equation

° ~ ~ ~8o-51+1
(3-26) ;Zf;-lg-(Al)f‘-* eqhey + eiAeixleJN 271 €.

A /\S.—
The right hand summand 1is in_NSz because o(; is in N ! l, S0

Yi(el) = 0 for o in the right hand summand.
/o
0

;

By looking at R' in (3.24%) it is clear that

H

(3.27) R'(oly)

-

*

(3.28) R' (o )R" (0d1) =

0o * . *

for all « in A. Therefore Yi(o/) = O for all elements of
in ejAely the left summand of (3.26). But then Yi(e¢) = O
for all &« in inj(ﬁl) and Yi(elz) # 0. Hence

(3.29) dy3(hy) 2 #13(R2),

for if'ﬁij(ﬁl) contained gij(Kz), Yi (el 2) would also be
zero. Expressions (3.25) and (3.29) imply that the image
of Ly under @43 is not a chain. Then 3.1.F and 3.1.G imply
that the basic algebra K has an infinite two-sided ideal
lattice L{. Theorem 2.4.B implies that A also has an in-

finite two-sided ideal lattice.



CHAPTER IV

1. Left and Right Ideals

Although infiniteness of the two-sided ideal lattice
is a sufficient condition for an algebra to be of strongly
unbounded type, it is not, in general, a necessary one. 1In
this chapter another condition is given which implies that
an algebra is of strongiy unbounded type. The condition
given in this chapter 1is a generalization of Brauer's second
condition stated in Chapter I. As before, the underlying
field k of the_algebra A 1s assumed to be algebraically closed.
It 1s then possible to center attention on basic algebras, and
the results in this chapter are stated in terms of basic al-
gebras.

In this and the following chapter, consideration is
restricfed to ideals in the radical N of A. Designate by Ly

the lattice of two-sided i1deals of A that are contained in N.

Definition 4.1.A: For a two-sided ideal Ay in the radical N

of a basic algebra A, let @4 (Ag) = Apey = Apn Nej. (Let
1%(Ao) = ejAo = AoN eiN.)

Lemma 4.1.B: @1 (3¢) is a lattice homomorphism of Ly into the
lattice of left (right) ideals in Nej (e4N).

Proof: (Ay + Ap)eq = Ajeq ¥ Apes and Ay N Ap A Ney =
(A1 Nej) n (A>NNey), so g1 preserves both + and V. (Simi-
larly for 14.)

k5



46

Theorem 4.1.C: If, for any 1 and any two-sided ideal Ap in N,

gi(Ao) [1P(A0)] has more than three covers in @ (Ly) [+#(Ix)]»
then,A is of strongly unbounded type.

Proof: The proof given here‘is in terms of the lattice
homomorphism @;. A similar proof holds for if.

Let #1(A) cover @1 (Ao) in Ney for t = 1,2,3,4. As-
sume Ly is distributive, for if not, A is already of strongly
unbounded type. The sublattice Lo of @;(Ly) generated by
these elements 1s complemented (evefy element in 1t is a unique

sum of covers of @i (Ag) ), so Lo is a Boolean algebra.

Let Ag!' = éz-Am; s (Ag') = 2{ @+ (Ay) 1s the complement
t7m t7m

of @1 (A¢) in Lo. Lebot be picked in @i (At) but not in @i (As).
N

If e:x{ 1s in @s(Ap) for all j then i = e™®! 1s there also.
Jot i t et Joe
J=

So there exists ej(t) such that ej(ypf =t is in @i (Ag) bub
not in @ (Ao). Also es(y Xy =Xy Dbecause ej() is an idem-
potent. By the choice ofcxt and ‘the definition of Ag', &tp 18
not in A¢', but ¢t is in Ay' for m 7 t.

Let Rt be a representation with kernel A¢'. By the
cholce of the special elements e(, with respect to the kernels
A{ 1t 1s clear that Ryldt) = 0 for t # m. Moreover, for each
t,Ry (&g ) # 0.

From Rt induce a representation Ry, where Re(xi) is
non-zero only in the lower 1eft hand corher. Since each <Xt
is in the radical this can always be done. Multiply i by a
suitable scalar in k to obfain !, so that the non-zero entry

in Rg(«f) 1s 1 in k.
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By the choice of <¥% in ei(t)Nei’ each Et is in the

form
X3 ()
(4.1) Relod) = |Pp(a) Qg ()
V() Sgla) () ()
The special eléments o h were selected in such a way
that
o) Pthé), Qt (ot ) » St(aEE, X1 (ody) s Xit(om) are all zero
for all m,t, but Ye(ofh) = Stp-

Now, form the representation R which is seen to be
4

similar to the direct sum + 3 Fy.
m=1

' Y4 84 Xi

Induce the representation R' below and to the right of
the dotted lines. ILet s be an integer, c be an element of k.

Let Iog be the unit matrix of degree 25, I be the unit matrix
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of degree s. Denote by P,g a primary matrix of degree s with
the single repeated elgenvalue c. Form from these matrices

the matrix Dqg-.

| Izs
/(I,O) I
(o,I) I
(I,I) I
Deg = (I5Pcs) 1
(1,0) T I
(0,1) I I
(I,I) T T
\(I:Pcs) I 1

This 1s seen to satisfy the hypotheslis of Lemma 2.5.C.

Then, using the construction given in that lemma, form
the representation R,5 from the representation R' and the

matrix D,gq

— — —— — — ] —— — — — —— —— — o — m— — i p—— m— — o— i —— o— —— —

(I 0 )"Pl IIle‘

(I,Pog )XYy XS, IxXs,

It is now shown that every commuting matrix B of Reg
has at least 6s equal eigenvalues. Let B be divided up as

follows.




Bii Biz : Bia . Biio
Bz Bz | Bzsa Bzio
Bay Baz @ Bas Baio

Bioi Bioz' Bioa - . - Bioio

B21 Baz
to (I,0)x Py etc., but below and to the .left of the dotted

where (Bll Blz) corresponds to IogXX3i, (Bay Bas ) corresponds

lines the B, correspond to the simllarly placed entries below
and to the left of the dotted lines in Rggq. If B 1s to be a

commuting matrix B must satisfy
(4.5) Reg(et)B = BReg(«)

for all o« in A. Consider equation (4.5) when o= o&{. Using
equations (4.1) and (%4.2) to evaluate (4.3) for ol= &« and
substituting in (4.5), it 1is shown that

(4.6) Bi1 = Br7 and By, By7 are zero for V# 1, /A% 7.

Now let o= &4 and again evaluate Ros(dé) by means
of relations (4.2). Equation (4.5) then implies

(4.7) B2o = Bge and Bay, Bus are zero for V7 2, /h# 5.

Let o= o4, evaluate (4.3) and substitute in (4.5). By equa-
tions (4.6) and (4.7) the only non-zero entries in the first

two rows of B are Byi and Bss. It then follows that

(4.8) Biy = Bggs Bop = Bgg and B/.;g are zero for /a,# 9.
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Finally let &= o/) and consider (4.5) again to obtain

(4-9) Bi1 = Bioio>s PCSB22 = BlOl.OPcs and :%Llo are zero

for % 10.

Consolidating equations (4.6) through (4.9), B must

have the form

Bi; O . . . 0
O By O . .. . 0
* * M
(4.10) B = 0
Byy O

0O O By, O
0O 0 0 B

and equation (4.9) also implies B;; has a single eigenvalue.
Thus B must have 6s equal elgenvalues and‘by Lemma 2.5.A, Rqg
must have a direct summand T,g of degree at least 6s. A is of
unbounded type and so is any algebra that has A for a basic
algebra.

Continuing with the proof according to the scheme
given in Chapter III, it is now shown that two such indecom-
posable direct summands T.g and Tgg cannot be equivalent for
d # c.

Let V be the space of Rpg and let Vp be the direct
summand corresponding to T,g. Let Rcs(ui)v be defined to be
Vo- From the form of Rog(e¢h), Vo 1s an A subspace of V, and
Vo has for a basis the last s basis vectors of V when R.gq is

in the form (4.3). It must be shown that Vo 1s a subspace of Vp.
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Let Bp be the matrix of the linear transformation of V
which is identity on Vi and zero on its complement in V,
BpV = Vp. Bp commutes with Rpg(€) for all <. Then By has the
form (4.10) and the part of By corresponding to By, in (4.10)
has unit elgenvalues. This means By cut down to Vo is an iso-
morphism of Vo onto itself, BqVpy = Vo. Now apply the commuta-
tor equation BpRog(®4) = Regld)Bp to V itself,

Vp2Rog () )V = Reg(Xd )BTV = BrReg@¢d )V = BypVe = Vo,

hence Vqp 2 Vq.

Using this subspace Vg, 1t 1s shown that T,g and Tyg
cannot be equivalent. Suppose Tog and Tgg were similar. . Then
there would exist a matrix P intertwining Rqg and Rgg which,
when cut down to Vg, is an isomorphism. P is also an isomor-
phism when cut down to the subspace Vo iIn Vp. P satisfies

the intertwining equation

(4.11) PRog () = Rqs(e)P

for all o in A. Using equations (4.1) and (4.2) in (4.3),
it is clear that Reglot) = Rgsl«t) for t = 1,2,3. Hence for
X =i, t = 1,2,3, equation (4.11) is identical with equa-
tion (4.5) where P replaces B. Let P be divided up according
to the same scheme as B. Then equations (4.6), (4.7), (4.8)

hold for P, replacing By,. From these it follows that
(4.12) P11 = P22 = P77 = Pgg = Pgs-

Finally, let of= of4 in (4.11) and using (4.1) and
(4.2) 1t is clear that Pyio are zero for A% 10 and

(4.13) P11 = Pioios P11 Peg = PggPra-



52
It follows that P has the form of B in (4.10). But P

cut down to Vg is

o)

which must be an isomorphism so P;; 1s non-
0

qu

singular. However, the equation Py; Pp.g = Pgg P11 1s seen to
be impossible, for Pqg and Pygg have distinct eigenvalues c
and d respectively. Hence for ¢ # d, Teg cannot be similar
to Tyg-

Since the fleld is infinlte there exlst an infinite
number of inequivalent indecomposable representations with
degrees between 6s and degree Reg- It follows that A is of
strongly unbounded type. By‘the development in ChaptervII,
any algebra which has A for a basic algebra is also of
strongly unbounded type.

‘The following is a corollary to Theorem 4.1.C.

Corollary 4.1.D: If fy(Ly) 1f(Ly) contains a sublattice

which is a Boolean algebra with more thanz3 elements, then

A is of strongly unbounded type.

Proof: The Stone Representation Theorem as given in
Birkhoff [2] implies that Boolean algebras are fields of sub-
sets of a certain set. Thus, the orders of finite Boolean
algebras are 2%, n an integer. If the hypothesis of this
corollary holds, then @i (Ly) +@(Ly) has a sublattice which

is a Boolean algebra with 2% elements. The smallest element
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in that sublattice has four covers in @i (Ly), so by Theorem
4b.1.¢c, A is of strongly unbounded bype and so is any algebra
which has A for a basic algebra.
Still another statement of this type of condition is

glven 1n terms of the graphs developed in Chapter V.



CHAPTER V

1. Graphs

In this chapter two additional sufficient conditions
are given which imply that an algebra A 1s of strongly un-
bounded type. These conditions are given in terms of a graph
which“is defined in the following development. Throughout
this chapter only basic algebras are considered, although
Lemma 5.1.A 1s true in general. ILet A be a basic algebra
and let A, and A, be two two-sided ideals of A. Let #4 5 and
Ly be defined as in Chapter III. |

Lemma 5:.1.A: If A, covers Ap, then NA) € Ap, AINE Ap.

Proof: NA, is a two-sided ideal contained in A,.

Then NA, +-A2‘E Ay . Suppose equality holds in the previous
expression. N(NA, + As) = NA; that is, N®A, + NA, + Ao = A,
so N®Ay + Ap = Ay. Continue in this manner, NFA; + Ap = A,
implies N2TA;, + A, = Ay. But for some integer ro, NFo = 0.
This would imply A, = A; contrary to the initial assumption.
Hence NA; + Ao € Ay, proper inclusion. Therefore, NA; € A
because Ay covers A,. The same argument with right multipli-

cation by N replacing left shows AN € As.

Lemma 5.1.B: If A, covers A, then there exists exactly one

pair i,J such that @;4(A;) covers ﬁﬁj(Ag).

Proof: There exlists at least one pailr i,j for which
@13(A1) properly contains @ j(A2). For if @;4(A,) equals

54
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gij(Ag) for all i,J, the sums over all i,j of these are also
equal, so A; = Ap.

Let o33 be chosen in ﬁij(Al) not in ﬁij(Az). Let
As be k"(ij + A>. Clearly efAs € Az and Asey € Az for all
idempotents et in A. By Lemma 5.1.A N33 < Ap and 13N € Ao
because o(ﬁ was chosen in A,, a cover of Ap. Hence Ag is a
two-sided ideal covering As and contalned in A;. The hypothe-
sis implies that Az = A;. Clearly ﬁij(Al) covers ¢ij(A2),
since their quotient is one dimensional. Also from the form
of Ag = Ay, it 1s clear that f,.(A1) = Fpp(Az) for all pairs
p,r not equal to i,j. This completes the proof of the lemma.

Throughout the remainder of this chapter, only basic
algebras with a finite two-sided ideal lattice I will be
considered. According to B.ILF and 3.1.G, Lp 1s distributive
and @13(Ly) is a chain for every pair 1i,J. Also by 3.2.B,
every two-sided ideal 1In A is principal.

Of primary importance in this chapter 1is the sub-
lattice LN of Lp consisting of two-sided 1deals of A which
are contained in the radical N. ¢ij(LN) is also a chain for
each pair 1,].

Let Ap be a two-sided ideal in Iy and let Ay,...Aqg
be all the covers of Ay in ILy. Corresponding to the two-slded
ideal Ag, construct the oriented graph G(Ag) as follows. ILet
P1, .;; »Pn be n vertices and let Eﬁ;ffj, a binary relation,
hold if for some cover Ay of Ag, #1j(Ap) covers ¢ij(Ao). Re-
call the definitions of the terms used in describing graphs in
Chapter I. Lemma 5.1.B insures that there exists exactly one

edge for each cover of Ag.
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For each edge in the graph G(Ap) a special element in
the algebra can be selected and a specilal representation con-

structed, the properties of which are described in the follow-

ing lemma.

Lemma 5.1.C: For the graph G(Ao),;there"eXist'speéial elements

®i, .. , e, in A, and representations Ry, ©.. ,Rq, of A, one

special element dnd one representation for each édge in the

graph such that:

a. 1t p;& Py represents the pth edge in G(Ag) then

3
RpGX) = |Py Qp is the representation Ry.
yp vSp Xi

b. The special element cﬁp for that edge is chosen in

GiNej .

c. Rp(lp) = 0if r # P,Rp(p) has only a 1 in the

lower left corner, the rest is zero.

Proof: Ly, the sublattice of a distributive lattice,
1s distributive so that the covers of Ag generate a sublattice

L that is a Boolean algebra. The complement A{ of Af in L is

‘glven by 2 Ap.
r£t

Let ¢ { be picked in gij(At) not in ﬂij(Ao).. By the
proof of Lemma 5.1.B, At = kot + Ag. Clearly o { 1s not in
A{ the complement of At in L, for iIf it were then At would be
in A{.

Let R{ be a representation with kernel Al. Ri(t) # O
because o«{ 1s not in A{, but (), for r # t 1s in A, hence 1is

in A{ s0 Ry(o() = O
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As 1in Chapters III and IV induce a representatlon Ry
out of R{ such that Rt(a(%)is zero except in the lower left
corner, the entry there being by in k. Note that Ry (e¢y) for
r £ t, being part of Ri(elp) 1s still zero for r £ t. Now
let ol be 1/byalf. Clearly, the Ry and o thus defined
satisfy the concluslons of the lemma.

A fact concerﬁing cycles which is used later in this

chapter is given in the following lemma.

Lemma 5.1.D: If the graph G(Ag) has a chaln C with a repeated

edge then G(Ag) contains a cycle.

Proof: If PiaﬁPj appears in a chain, P; must appear
on one side of it and P3y on the other. There are two cases
to consider depending on whether P4y is on the same side of
PifP; each time P1LP; appears or not.

If the first case the chain C 1s

.» P1, PsXPy, Py, PdPy, ..., Py, PydPy Py,

Let Co be the chain obtalned from C by cutting off C before
the first Pj and after the second Pja

Examine Co followed by Cp with the PjFS,Ldentified.
It 1s clear that the orientation of successive edges alter-
nates. That the edges PifPj and PrfPj; are distinct is true
because they appear in successlion in the chain C. Hence Cq
1s a cycle.

In the second case the chain C is

) Pi: Pj_af,PJ'; Pj’ PkcfaPJ‘: Pk:"-‘: Pp, PrﬁPJ': Pj: Pj_i:Pj’ Pj_,~

Let Piifﬁ be the repeated edges closest together, then Pkiiﬁ
can be assumed not equal to Prijﬁ. Let Co be the chain C cut

off before the first PJ and after the second Pj,
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Examine Co followed by Co with the Pj‘s identified.
The orientation of successive edges alternates and,by the re-
mark above, the successive edges PyLB and Prgjb are distinct.

Co 1s therefore a cycle. Thils completes the proof of 5.1.D.

2. Graph with Cycle

The following theorem gives a third sufficient condi-
tion that a basic algebra be of strongly unbounded type. This
condition is described in terms of the graphs investigated in

the previous section.

Theorem 5.2.A: If the graph G(Ap) associated with any two-

sided ideal Ac < N has a cycle then A 1s of strongly unbounded

type.
Proof: Let C be a cycle. C equals

P1,, Pil«;&%l, le, Ping,Pj;l,...,Pjr, Pilof,PJ-r, Pi, -

The proof of Lemma 5.1.D insures that all the edges may be
taken to be distinct. ILet Rii, Rzay, --- » Rpp, Rir be the
representations associated with the 2r distinct edges of C by

Lemma 5.1.C.

Xy

(5:1)  Ryylel) = [By  Qu o (wY) = (L1, (21),... (L)
Y/q) S,av Xiﬁ

From the submatrices of these Rﬁv construct a matrix

function Reg of A,

(5“2) Reg =

as follows.
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Let Xp(ol) be the direct sum of Igx xj,(a) for
Y=1,..,r and let Xgl«) be the direct sum of stxi/‘(o() for
M= 1,...r, where X means Kronecker product and IS is an
identity matrix of degree s. Let Q(«) be the direct sum of
ISXQ,M,(O() for the 2r Q's. By Lemma 2.5.C, Xp(«), Xglal)
and Q(e¢) are all representations of A.

Let P(o¢) have Tgx P, (o¢) directly below Tg X x5, )
in X7 and directly to the left of Igx Qg («) in @ for (m,¥) =
(1,1)y, «o. , (r,r). Direcfly below Igxxj, and directly to
the left of IgXQup put Peg X Par(of) where Pog is the primary
matrix with eigenvalue c¢. Fill out the rest of P with zeros.

Let S(a«) have IgX S, (e¢) directly below Ig XQuy in Q
and directly to the left of ISXXiM in Xg for (m,v) =
(1,1), (2,1), ... , (r,r), (1,r). Fill out the rest of S(«)
with zeros.

Let Y(«) have sty,uv(“) directly below Igx X34, in
Xp and directly to the left of Igxx;, in X for (w,Y) =
(1,1), (2,1), ... , (r,r). Directly below Igx X3p and di-
rectly to the left of Igx xi, pub Pog X Vip(«). Fill out the
rest of Y(«) with zeros.

The form of the block Y(«) will play an important

part in the proof of the theorem.

[Ts X y11 Peg X Vir

Igx V21 Ig xy=22

Is X Vp-1r-1

l IsxX¥Vp p-2 ISXYPI‘}
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It is now shown that R,g 1s a representation of A with
an indecomposable direct summand of degree at least 2rs. It
must first be shown that R,q is indeed a representation of A.
It certainly is an additive matrix function of A because all
of the blocks that went into its construction were. Examine

the expression

(5.4) Reg @B) - Reg (o) Reg(8)

block by block. As was noted before, the dlagonal blocks of
of R,y are themselves representations, so (5.4) can be non
zero only in the positions P, S, and Y.

The expression

(5.5) P (o)X (8) + Q(ot)P ()

appears in the position P of Reg(«) R, (@). It has
[Tsx Puyle)] = TTgxxy, @] + [Tg% Qu ()] - [15%B,, (¢)]

which equals IS><{PMv(d) . va(@) + va(d) * Py (8)] directly
below Is><xjy and directly to the left of Is><Q#v in Q for
(#,») = (1,1), ... , (r,r). But this expression is Igx B, («8)
from the rule for PMﬁ(dﬁ) given by the form of R, in (5.1).

Below Tgx x;  and to the left of IgxQir in

Jr
Res (o) Res(@) is
[Peg ¥Par(a)] - [Igxxj,(@)] + [ITgxQp(«)] - [PegxPir(e)]

which equals PogX [ Pip(at) ° X35,.@8) + Qur(x) * Par(8)] by the
multiplication rule for Kronecker products. But this last
expression is seen to be the corresponding entry in P@x@);
Thus Reo5(®@) - Reg(el) Reg(B) 1s zero in all the positions

corresponding to P(«).
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By a repetition of the same methods, 1t 1s shown that

S(«)Q(@) + Xp(«¢)s(@) - S(x@)

Y(e)X7(8) + S(e¢)P(]) + Xg(xt)Y(g) - Y(«8) = O.

0 and that

Then the expression (5.4) is zero and R,q(ot) 1s a representa-
tion of A.

Recall that R,y was constructed out of the representa-
tions R, (&,») = (1,1), ... , (1,r) associated with the 2r
edges of the cycle C by Lemma 5.1.C. This same lemma also
showed the existence of 2r special elements In N assoclated
with those edges.

Evaluate Ryg at the special element associated with

Piui’%v in C. Rcs(OQMV) is zero everywhere except In Y directly
below Is><xjv in Xp and directly to the left of Igx X1, in Xg-
In that non zero position is Ig if (a,») = (1,1), ... , (r,r)
or Peg if @a,v)‘= (1,r). All of this follows from the proper-

tles of the R,, of Lemma 5.1.C and the construction of R.g-

3y
Now let B be in the commutator algebra of Rqg-

Bii1 Biz Buis

Bz1 Bzz Baa|

(5.6) B

Bsy Baz Bas

where B 1s divided up to correspond to Rpg 1n (5.2). B satis-
fies the commutator equation BRngz) = Ryg()B for all o« in A.
Evaluate Reg(ol) at the 2r special elements. Since Y(«) is the
only non zero part of Rcs(uﬁ, the commutator equatlion implies

the following equations:

"

BagY(x),
0, Y(«)Bis = 0, Boa¥Y(«() = O,

Y (e¢)B11

(5.7) Y(al)B1o

1t
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where o 1s one of the special elements. According to the
form of Y in (5.3) and the description of Y evaluated at the
special elements, (5.7) implies that Bis, Bia, Bsa are all
zero and that By; and Bas are direct sums of an sx s block Bg,
repeated r times in each. For .o = oy, the commutator equa-
tlon implies BoPog = PpgBo 80 that by Lemma 2.5.B, Bp has s
equal eigenvalues. Then B has 2rs equal eigenvalues and, by
Lemma 2.5.A, Rog has an indecomposable direct summand Tog of
degree at least 2rs. C(Clearly, A is of unbounded type.

It is now shown that A is of strongly unbounded type.
Let V be the space of R,q and let Vg be the space of T,g. Let
Rog(opp)V = Vo. It 1s clear that Vo.has for a basls the last
s basis vectors of V when R,y 1s in the form (5.2). Let By be
a commuting matrix of Rog that 1s ldentity on Vp and zero on
its complement in V. B must have the previously described
form for commutlng matrices, Baap 1s the direct sum of an sx s
matrlx Bo whlch must have unit elgenvalues and 1s therefore
non singular. Then 1t follows that BpVp = Vo. Now apply the
commutator equation Rog(odpp)Bp = BpReg(olpp) to all of V.

Vi 2 Rog(edpp )V = Rog(&dpp)BpV = BrReg(Xpp)V = Vo

hence vy 2 Vo.

The space Vo 1s used 1n proving that T,g and Tjyq
cannot be equivalent when d # c¢c. Suppose that they were
simllar, then there would exlst a matrix P intertwining R.q
and Rgg» which when cut down to Vp or any subspace of 1it,
represents an lsomorphlasm. P satlisfies the intertwining

equation,

(5.8) Rgg (&)P = PRog (),
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for all o« in A. But for o = o115 &ppReg @) equals
Rds (). Therefore, for those & , (5.8) looks like the com-

mutator equation. Let P be divided into submatrices,

Pi1 P12 Pis
P = Pz1 P2z Pa2aj ,

Pay Paz Pas

corresponding to the divisions of B. It 1is clear from the
previous argument concerning the commutator equation that Pz,
P13, Pos are all zero and Pyy and Pas are direct sums of an
sx s matrix Py. Finally let o = o1y in the intertwining

equation, this implies

(5.9) PysPo = PoPeg

But P cut down to Vg is Py so that Pgy is non singular. Then,
the above equatlon (5.9) is impossible, because Pog and Pds
are primary matrices with distinct eigenvalues d £ c¢c. There-
fore no such P can exist and T,g and Tgg must be inequivalent.
Since the field k 1s infinite there exists an infinite number
of such inequivalent 1ndecomposable representations T,y with
degrees between 2rs and the degree of Rog. A 1s of strongly
unbounded type and, by Theorem 2.3.B, 80 18 any algebra with
A for a basic algebra. This completes the proof of Theorem

5.2.A.

3. Graph with a Chain that Branches at Each End

The fourth sufficient condition that an algebra be of

strongly unbounded type i1s described in the following theorem.

Theorem 5.3.A: If the graph G(Ao) associated with any two-

51ded ideal Ape N contalns a chain which branches at each end

then A 1s of strongly unbouhded type
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Proof: Tet C and its branches be as follows:

Pkl ,Pkl;f_ Py s PKS;EPJ-P,PKB
(5.10) le,Pifflﬁl,Pil,,..,Pjr,
ProsProd By s Pk4iPJ‘r’Pk4

Note that the vertices Pj, and Pjr at the ends of C
each have order three, so that there are four cases to con-
sider depending on whether these two vertices have left or
right order three. It 1s assumed here that both have left
order three. The other three cases are proved by analogous
methods.

It is also assumed that all of the edges appearing in
(5.10) are distinct. For if not, Lemma 5.1.D implies that
the graph has a cycle and the algebra A; by Theorem 5.2.A, is
already of strongly unbounded type.

Let Ruy be the representations associated with the

edges in the chain ¢ by Lemma 5.1.C,

Xip

(5.11) Ruy = Puy Qup (,‘hv) = (1,1),(1,2),...,(r-1,r).
y,wﬂ S,uy X3
Let R§ be the representations associated with the branches

in (5.10) by Lemma 5.1.C,

Xy
(5.12) RS = |Bf @ (p,2) = (1,1),(2,1),0,r),(4,r).

From the submatrices of these representations form

the matrix function R.g,



X
(5.13) Reg = (P Q ,
Y S Xp

as follows.

Let Xp(«) be the direct sum of IzSXXJ-V(o() for
Y=1,...,r and let Q(«) be the direct sum of IQSXQ#)}(&),
IZSXQJ;(o() for (A,¥) equal to (,1),...,(r-1,r) and for (p,V)
equal to (1,1), (2,1),(3,r), (4,r). Let Xp(«) have
IsX Xy, (o) + Tg xxy, («) in the top diagonal block,

T X Xkg(«) + IgX Xpe, () in the bottom diagonal block and

the direct sum of Isgx Xj—,u(d)’ m=1, ... , r-1 in the middle
diagonal block. Xp(«f), Q(«) and Xp(«) are all representations
of A, by Lemma 2.5.C. |

Let P(«) have Iog XP,, (&) directly below TogX x3 and
directly to the left of Isg X Quy Tor (u,2) = (1,1),...,(r-1,r)
and IzsxP)-‘: () directly below IngXj); and directly to the left
of Tog XQ) for (§,¥) = (1,1), (2,1), (3,r), (%,r). Fill out
the rest of P(«) with zeras..

Let S(«) have Iog XSy, («) directly below Iog ¥ Quy in
Q and directly to the left of I»gxx1, in Xp for (A, Y) =
(1,1),...,(r=-1,v). Put (I5,0)xSI(«) below Iog5XQ; to the
left of Tgxxy, , (0,Ig)xST(«) below TosXQf to the left of
IgX Xk, (Is,Ig)XSpl) below IngXQp to the left of TgX Xi s
(IgsPcs) X Sp(«) below Iag XQp to the left of Ig xxy,, where
Peg is the primary matrix of degree s with eigenvalue c.

Fill out the rest of S(x) with zeros.

Define Y(«) similarly. Let IogxX Y.y appear directly
below IpgX% x4, directly to the left of Ieg Xxy, for (ps9) =
(1,1), ... ,{(r-1,r). Put (I4,0)xyi below Iog X X3, to the
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left of Igx Xk, , (0,I4)x v5 below Izg xxj, and to the left of
Is XXk, (Ig,Ig)xyn below Iegx xj, and to the left of Igx Xy,
(Ig,Pog )X yo below Tex Xxj, and to the left of Igyxy,. Fill
out the rest of Y with zeros.

Of particular importance in the procof of this theorem

is the form of Y(&f).

[15,0)x v}

(0,Ig)x Y‘f

TogXy11  Iag XViz
Iog x Voo

Iog X Yyp—1r-1 T2g X Yp-ip
(IS :IS) X yg
(IS,PQS) X Y;

1t 1s now shown that R,g is a representation of A with
an indecomposable direct summand which has a degree an in-
tegral multiple of s. It is necessary to first show that Reg
i1s a representation of A. It is an additive function of A
because all of the blocks that went into its construction

were. Examine the expression,

(5'15> Ros(°(>Rcs(°() - RCS@(G);

block by block. The diagonal blocks of Roq are representa-
tions themselves so (5.15) can be non zero only in the posi-
tions corresponding to P, S, and Y.

Examine the position corresponding to (Ig,0)x yi

in Reg(e()Res(B)- Appearing in that position 1s

[(Tg,0) xyt(e)] - [Tasxxy, (@) + [(Is,0)xst(x)] [I2sxP}(8)] +

[Tsx 3, ()] - [(Ig,0)X yi(@)] which equals
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(I5,0) x (y1(at)xy, (@) + S1(«)Pi(8) + xi, (#)y1(g) ) by the rules
for operation with Kronecker products. But this last expres-
sion is (Ig,0)x yi((@) by the rule for vi(«®) given by the
form of the representation R} in (5.12). Hence (5.15) is zero
in the position corresponding to (IS,O)><yiu A repetition of
these same methods implies that all of the positions in (5.15)
are zero and that Rpog 1s a representation of A.

Recall that Rqg was constructed out of the representa-
tions associated with edges of the figure (5.10) by Lemma 5.1.C.
The same lemma associated a specilal element in A with each of
these representations.

Consider R,  evaluated at the special element oly,

associated with R

uy DYy Lemma 5.1.C. Rcs(q%y> is zero every-

where except in Y directly below Izg XXJV and directly to the

left of TIsg yxiﬂx Iog appears 1n that position. The above

fact is true for (4,) = (1,1), ... , (r-1,r). All of this
follows from the properties of the RMv and “%v of Lemma 5.1.C
and the construction of Reg -

Now consider R,g evaluated at the special elements
disel?, di, oty associated with Py £Pj, , szinl, Pks‘aijr,
Bkgiﬁh,respectively by Lemma 5.1.C. Rcs(dg)iﬁ zero_except

in the positions corresppndingrto Y. The only non zero en-

tries of Rcs(°45 are the following: Regli) has (Ig,0) below
TpgX xj, to the left of IgXxy, , Res(f) has (O,IS)‘below
Togx Xy, tO the left of Ig XXy, Reglolf) has (IyTg) below
Ies % xj, to the left of IsX Xgg» Regls) has (Ig,P.g) below
Igsrxxjr to the left of I X xk,-

Now let B be in the commutator algebra of Reg. Let

B be divided into submatrices to correspond to the division
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Bi:1 Biz Bais

B2y Bzaz Bas

(5.16) B

Bai1 Baz Bas

B must satisfy the commutator equation,

Reg(a¢)B = BRepg (),

for all o in A. Consider this equation for o equal to the
special elements a&v andcif . Since Y(«) is the only non
zero part of Reg, the commutator equation implies the follow-

ing equations,

Y(«)Byy = Baa¥(«L)

(5.17) Y(«l)B1z = 0, Y(d)Bas = O, Bpa¥(K) = O,

where of i1s one of the special elements. From the form of Y

in (5.14) and the description of Y evaluated at the special

elements, (5.17) implles that Bis, Bia, and Bsos are all zero.
By letting of equaloli, o, &11, --- 5 ofp_1p in (5.17),

it follows that Bj; 1s a direct sum of a 2s X2s black Bo,
(5»18) Bo =

Bas 1s the direct sum of the block Bp down to the last 2s X 2s

dilagonal block B',

(5.19) B! =

Letting o = oy in (5.17), and using (5.18) and (5.19)
in (5.17) implies B, = Ba = Bp. Finally, letting o/=o3 in
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(5.17) implies that By = By and ByPeg = PegBi. Since P,g 1s
a primary matrix, Lemma 2.5.B impllies that B; has a single
eigenvalue. Then from the above description of B, B has at
least (4r + 2)s equal eigenvalues. By Lemma 2.5.A, R.g has
an lndecomposable direct summand T,g of degree at least
(4r + 2)s and A is clearly of unbounded type.

To show A 1s of strongly unbounded type proceed as in
the previous theorems. Let V be the space of Reg, let Vep be
the space of T,q and let Vo be the space RCSQiﬁ)V. Vo has for
a basis the last s basis vectors of V when Rqog is in the form
(5.13). Let By be the commuting matrix which is identity on
Vp and zero on 1ts complément in V. The bottom s xs diagonal
block By in Bp has unit elgenvalues and is non singular. By
the form of such commuting matrices By has only zeros above
By. Then BpVo = Vo. Now apply R.g(o(p)Bp = BrReglan) to all
of V. Vp 2 Reglolz)Vp = Rog (e )BrV = BrResWp )V = BrVo = Vo,
hence Vg 2 Vp.

Now 1t can be shown that T,y and Tgg are not equiva-
lent for c”# d. Suppose they were equlvalent, then there
would exist P, intertwlining Rqg and Rgqg such that P, when cut
down to Vp or Vo, represents an isomorphlsm. P .satisfies the

intertwining equation,
(5.20) PReg () = Rgg(e()P,

for all & In A. Note that for all the special elements except
oA R,g(®) = Rggle). For these o the intertwining equation
looks exactly like the commutator equation. Let P be divided

into submatrices corresponding to those of B,
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P11 O 0
P = P21 ng 0

Pay Paz Pas

The blocks in P above the diagonal may be taken to be 0. Also
Py; 1s the direct sum of an s xs matrix Py and Pass is the
direct sum of the same Py down to the last s xs diagonal block
which is P,. All of this follows from the previous arguments
concerning commuting matrices and the above comment about
(5.20). |

Now let & = o4 in (5.20). This implies that Py = Pg
and PoP,g = PggPo. Note that P cut down to Vo 1s Py, which 1s
therefore non singular. Under these cilrcumstances the above
equation 1s impossible because Pog and Pqq have distinct
elgenvalues d # c.

The conclusion can then be drawn that Te.g and Tgg
are inequivalent for ¢ # d. Since the field k is infinite,
A has an infinitfe number of inequivalent indecomposable rep-
resentations T,q with degrees between 4rs and the degree of

R A 1s therefore of strongly unbounded representation

cs”®
type.

4. Graph with a Vertex of Order Four

A restatement of the condition in Theorem 4.1.C of

Chapter IV can now be made in terms of the graph.

Theorem 5.4.A: If the graph Gg associated with any two-sided

ideal AqcN has a vertex of order four or more then A is of

strongly unbounded type.

Proof: If Go has a vertex of order four, there exist

four covers A;, As, As, Ay of Ag such that ﬁirj(Ar) covers
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¢irj(AO> (or ﬁijr(Ar) covers Qijr(Ao) ) for r = 1,2,3,4. The
first case occurs when the vertex of order four has left order
four, the other case occurs when 1t has right order four. ﬁij
is the lattice homomorphism of L, into subspaces of eiAej. By
Lemma 5.1.B, A, can be written Ap = k«y + Ag where o 1s
chosen in eirNej (or in eiNejr)° Recalling the lattice homo-
morphism @y (and 1@) of Lp into the lattice of left ideals (or
right ideals), @j(Ap) = kop +Aoej (or 18(An) = ke'y + eiho).
But then @j(Ao) has four covers in ﬁj(LA) (or 4@(Ao) has four
covers in i@(L,) ) and, by Theorem 4.1.C, A is of strongly un-
bounded type.
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