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Abstract 

Background: Repeatability is a statement on the magnitude of measurement 

error. When biomarkers are used for disease diagnoses, they should be meas-

ured accurately. Objectives: We derive an index of repeatability based on the 

ratio of two variance components. Estimation of the index is derived from the 

one-way Analysis of Variance table based on the one-way random effects 

model. We estimate the large sample variance of the estimator and assess its 

adequacy using bootstrap methods. An important requirement for valid esti-

mation of repeatability is the availability of multiple observations on each 

subject taken by the same rater and under the same conditions. Methods: We 

use the delta method to derive the large sample variance of the estimate of 

repeatability index. The question related to the number of required repeats 

per subjects is answered by two methods. In first methods we estimate the 

number of repeats that minimizes the variance of the estimated repeatability 

index, and the second determine the number of repeats needed under 

cost-constraints. Results and Novel Contribution: The situation when the 

measurements do not follow Gaussian distribution will be dealt with. It is 

shown that the required sample size is quite sensitive to the relative cost. We 

illustrate the methodologies on the Serum Alanine-aminotransferase (ALT) 

available from hospital registry data for samples of males and females. Re-

peatability is higher among females in comparison to males. 
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1. Introduction 

Repeatability and reproducibility are ways of measuring precision, particularly 
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in the fields of biochemistry, radiology, and medical diagnoses. In general, scien-

tists perform the same experiment several times in order to confirm their find-

ings. These findings may show variations. In the context of an experiment, re-

peatability measures the variation in measurements taken by a single instrument 

or person under the same conditions, while reproducibility measures whether an 

entire study or an experiment can be reproduced. There has been confusion in 

the literature about the way that repeatability and reproducibility are quantified. 

Both concepts were often reported as either standard deviations or coefficient of 

variations. 

The main focus of this paper is on the concept of repeatability, which was first 

introduced by Bland and Altman [1]. For repeatability to be established, the fol-

lowing conditions must be in place: the measurements should be taken in the 

same location; the same measurement procedure; the same observer; the same 

measuring instrument, used under the same conditions; and repetition over a 

short period of time. 

What’s known as “the repeatability” is in fact a measurement of precision, 

which denotes the absolute difference between a pair of repeated test results. We 

note that when we have more than two readings per subject the idea of pairing 

produces several repeatability coefficients and the concept becomes unclear. 

Repeatability is also known as test-retest reliability indicating the closeness of 

the agreement between the results of successive measurements of the same mea-

surand carried out under the same conditions of measurement. A 

less-than-perfect test-retest reliability causes test-retest variability. Such variabil-

ity can be caused by, for example, intra-individual variability and intra-observer 

variability. A measurement may be said to be repeatable when this variation is 

smaller than a pre-determined acceptance criterion. A complete account on the 

reliability literature can be found in Shoukri [2] [3]. 

One of the most important applications of the concept of repeatability is in 

the construction of the normal range or reference range in clinical medicine, 

which relies on the availability of a large sample of healthy individuals. Research 

has shown that the distribution of these measurements is affected by two main 

sources of variations: the between subjects and the within subject-components of 

variations.  

This paper has three-fold objectives: Firstly; we define a proposed index of 

repeatability, as the ratio of the within-subjects’ variations to the between subject 

variation. The within subject variation is expected to be quite small relative to 

the between subjects-variations. To formalize the presentation, we assume that a 

single measurement iy  from subject 1,2, ,i k=   is written as:  

i i iy s eµ= + +                          (1) 

Hence is  represents the sources of between-subjects biological variation, and 

ie  represents sources of within subject variations, while µ  denotes the popu-

lation mean. Note that the assumption of additivity of components is made to 

simplify the presentation. However, a multiplicative model may be made addi-
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tive under the logarithmic transformation. Following Harries and De Mets [4] it 

is further assumed that ( )2
~ 0,i ss N σ , and ( )2

~ 0,i ee N σ  and that i is e⊥  for 

all i. We define the “Repeatability Index Parameter” (RIP) as 2 2

e sθ σ σ= . 

The salient point is that θ  cannot be estimated unless we have at least two 

repeated measurements on any subject in the study.  

In Section 2 we specify the model generating the observations and discuss a 

general method of estimating RIP from a sample of k subjects when there is an 

opportunity to have n repeated samples per subject. In Section 3, we provide two 

alternatives for the sampling strategies. The first, we assume that the investigator 

has decided to acquire on total number of measurements N kn= , and the 

question becomes; what is the best split between ( ),k n , that maximizes the ac-

curacy of estimating RIP? 

One of the biggest obstacles in clinical studies is the cost constraints. There-

fore, the second strategy is to find the optimal split of N kn= , so that IRP is es-

timated with maximum precision under cost restrictions (constrained optimiza-

tion). The third objective of the study is to address the issue of estimating RIP 

when the assumption of the Gaussian distribution of observation is not tenable.  

2. Model Specifications and Parameter Estimation 

We assume that for subject i, n replicates of the same variable of interest 
ijy  are 

taken by the same instrument at the same time, so that 

ij i ijy s eµ= + +                         (2)  

1,2, ,i k=   

k is the number of subjects 

1,2, ,j n=   

n is the number of replications per subject 

We further assume that the components of the model described by (2) are 

such that: 

( )2
~ 0,i ss N σ , are independently distributed random variables measuring the 

subjects effect, are independently distributed of the within subjects variation 

denoted by ( )2
~ 0,ij ee N σ . 

Under the additivity assumption of the model components, we have:  

( ) ( ) ( )2 2 2 2 2 2
var 1 1ij s e s e s sy σ σ σ σ σ σ θ= + = + = +  

The parameter 2 2

e sθ σ σ=  is the target parameter of interest, named “Re-

peatability Index Parameter” (RIP). The components of variation of the model 

set-up can be estimated using the well-known one-way Analysis of Variance 

(ANOVA) with random effects (Table 1). 

S.O.V = Source of variation, DF = Degrees of freedom associated with the 

corresponding sum of squares, S.O.S = Corrected sums of squares, MS = Mean 

square error = S.O.S/DF, EMS = Expected mean square. The sample statistics 

needed for the ANOVA computations based on the available observations are 

given as: 
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Table 1. The ANOVA set-up. 

S.O.V DF S.O.S M.S EMS 

Between subjects k − 1 SSB MSB 2 2

e s
nσ σ+  

Within subjects N − k SSW MSW 2

e
σ  

Total N − 1    

 

..

1
ij

i j

y y
nk

= ∑∑  

( )2

.ij i
i j

SSW y y= −∑∑  

.

1

1 n

i ij
j

y y
n =

= ∑  

( )2

..

1

k

i
i

SSB n y y
=

= −∑  

The moment estimator of the parameter θ , and hence the maximum like-

lihood estimator (under balanced design) is given by: 

ˆ MSW
n
MSB MSW

θ  =  − 
                      (3) 

The parameter estimator θ̂  given in Equation (3) is a nonlinear function of 

the sample statistics, and therefore an exact expression for its variance is not 

available. We use the delta method (Kendall and Stuart, 1989) [5], to obtain the 

first approximation of the variance of θ̂  given by: 

( ) ( ) ( )

( )

2

2

ˆvar var 2cov ,

var

MSB MSB MSW
MSB MSB MSW

MSW
MSW

θ θ θθ

θ

    ∂ ∂ ∂
= +    ∂ ∂ ∂    

 ∂
+  ∂ 

  


   (4) 

Substituting the required quantities in (4) and simplifying we get the first or-

der approximation of the variance of θ̂  as:  

( ) ( )
( )( )

22

8

2
ˆvar

1 1

n
v

N n

θ θ
θ

θ

+
= =

− +
                  (5) 

An ( )1 100%α−  approximate Wald’s confidence interval on θ  may be 

constructed as: 

ˆ z vθ ±                             (6) 

where z in Equation (6) is the ( )1 2 100%α−  cut-off point from the standard 

normal table. 

3. How Many Repeats Do We Need? 

Our first approach to estimate the optimal number of replications is to assume 
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that N kn=  is fixed a priori, and one needs to determine the number of repli-

cates that minimizes the variance v, as given in (5). 

Minimizing v with respect to the number of replications per subjects and 

solving for n we get: 

0 2
v

n
n

θ∂
= ⇒ = +

∂
                       (7) 

( )

2

2 2

1
0

2 1

v

n θ
∂

= >
∂ +

 

This means that ( )ˆvar θ  is minimized (i.e. maximizing precision) when at 

least 2 repeats are attained from each subject as shown in Equation (7). When 

0θ =  (no within subject-variation) then 2n =  precisely. 

We may also estimate the number of repeats for fixed width confidence inter-

val as follows: 

Suppose that we have decided on the number of subjects k. The question now 

is how many repeats per-subject are needed to estimate θ  with 95% confidence 

such that the width of the confidence interval has a maximum given length w. 

Since the length of the Wald’s confidence interval is given as: 

( ) ( )ˆ2 1.96 varw θ=  

( ) ( )
( ) ( )

2 22

2

8

4 1.96 2

1 1

n
w

kn n

θ θ

θ

⋅ +
=

+ −
 

Let 
( )

( )

82

2 2

1
1

8 1.96

kw
A

θ

θ

+
= >  

Solving for n we have: 

( ) ( )
( )

1 2
2

2 4 4

2 1

A A A
n

A

θ θ θ + + + + =
−

               (8) 

This closed form expression is quite simple, and the computation of n from 

Equation (8), is straight forward. Substituting 0.25θ = , 100k = , and 1w =  in 

(8), then 156n = . 

4. Estimating the Number of Repeats under Cost Constraints 

It is an extremely expensive, and in some circumstances, it is a difficult task to 

obtain repeated samples from each subject. Some of these difficulties are related 

to cost and time (which may be translated into cost). Clearly too small a sample 

may lead to a study that produces many false negatives, too large a sample may 

result in many false positives and additional cost. Thus, a critical decision in 

constructing accurate estimate of normal range is to balance the cost of recruit-

ing healthy normal with the need to obtain accurate estimate of RIP. In this sec-

tion we shall address the issue of obtaining the combination ( ),n k  that mini-

mizes the variance of θ̂  subject to cost constraints. The sampling cost depends 
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primarily on the size of the sample, and includes the data collection costs, sub-

jects recruiting costs, management and technicians’ costs. On the other hand, 

overhead costs remain fixed regardless of the sample size. The total cost is as-

sumed this additive formula 

0 1 2
T t kt nkt= + +                          (9) 

In Equation (9) 
0
t  is the fixed cost, 

1
t  is the cost of recruiting a healthy 

subject, and 
2
t  is the cost of taking a single measurement. Denoting the va-

riance of θ̂  by V, the main objective is to determine the number of repeated 

measurements that minimize the variance of θ̂  subject to cost constraints T. In 

terms of language of optimization, we construct the objective function  

( )0 1 2
Q V T t kt nktλ= + − − −                    (10) 

The parameter λ  in Equation (10) is the Lagrange-multiplier. The necessary 

conditions for minimization of Q are: 

0, 0, and 0.
Q Q Q

n k λ
∂ ∂ ∂

= = =
∂ ∂ ∂

 

Differentiating Q with respect to n, k, and λ  and equating to zero we get: 

( ) ( )3 2
2 1 2 0n n nR Rθ θ θ− + − + + =                (11) 

Note that from Equation (9) we have: 

0

1 2

T t
k

t nt

−
=

+
, where 

1 2
R t t=  

The cubic Equation (11) has an explicit solution given by: 

1 32 1
3

3 3
optn

θ θα β+ + = + + 
 

                (12) 

where  

( )
( ) ( ){ }2

1 3

1
2 3 1 2

1
Rβ θ θ

θ α
= + + +

+
 

and  

( )
( )

( )
( )

( )
( )

( )

( ) ( )

2 2

4 3

1 2

2

2

3

3 2

3 1 1
3 1 6 4 2

1 1 1

1 1
12 1 8 10 2 1

11

1 1 1 2
9

1 11 1

R R R R

R R R R R

R

α
θ θ θ

θθ

θ
θ θθ θ

 = + − + −
+  + +

+ + − + + − − 
+ + 

  +  + − + +   + + + + 

 

Equation (12) is the optimum number of replicates per subject that is needed 

to minimize the variance of the estimated RIP when the total cost of the investi-

gation is held fixed. 

Note that, when 
1

0t =  and 
2

1t =  (i.e. 0R = ), then 2optn θ= + , as given 

in Equation (7). 
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This means that a special cost structure is implied by the optimal allocation 

procedure discussed in the previous section. Note also, when 0θ = , 

( )1 2
1 1 2optn R= + +  , implying that the ratio 

1 2
R t t=  is as important factor 

in determining the optimal allocation ( ),n k . 

Examples:  

0.1R = , 0.1θ = , then 2n =  

0.1R = , 0.5θ = , then 3n =  

0.2R = , 3θ = , then 6n =  

0.5R = , 4θ = , then 7n =  

Remarks: 

We set as a bench mark to the value of the estimator of RIP a maximum of 1%. 

That is if the within subject variation relative to the between-subjects variation is 

above 1%, then repeatability is low, and visa-versa. 

Note also, that the estimator of θ is a non-linear function of the sample data, 

and hence is potentially biased estimator. Moreover, the derived variance is just 

a first order approximation of the actual variance. Finally, if the measurements 

are not normally distributed, then construction of confidence interval on the 

population parameter using the normal quantiles will not be acceptable unless 

the sample size is quite large. One way to assess the properties of the proposed 

estimator is to use the nonparametric-bootstrap sampling techniques. We shall 

address this issue in the data analysis section.  

5. Effect of Non-Normality of Components of Variations on  

the Estimated Variance of RIP 

Not all biological markers that are measured on continuous scale have Gaussian 

distributions. In this section we drop the assumptions of normality regarding the 

distributions of ib  and ije , and evaluate the effect of non-normality on the es-

timation of the RIP. The immediate consequences of dropping the assumption 

of non-normality of the measurements are: 

1) The one-way ANOVA mean squares MSB and MSW will not have 

chi-square distributions. 

2) The mean squares MSB and MSW are no longer independent, and hence 

the ratio of the mean squares will not have the usual F-distribution. 

Relaxing the assumption of normality both the measures of Kurtosis of ib  

and ije  are needed in the calculation of the asymptotic variance of θ̂  [6]. 

Let eδ  and bδ  denote respectively the coefficients of kurtosis of ije  and 

ib . These quantities are defined as:  

( ){ }4 4
3b i bE bδ σ= −  

( ){ }4 4
3e ij eE eδ σ= −  

 Using results for the balanced one-way ANOVA [6] we have: 

( ) 4

1
var eMSW cσ= , ( ) 4

2
var eMSB c σ= , and ( ) 4

12
cov , eMSW MSB c σ= , where 
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( ){ } 1

1

1
1 2 e

n
c k n

n
δ

− − = − +  
 

( ) ( ) ( ) ( )1 2 12

2
2 1 2 1 e

bc k n n
n

δ
θ δ θ− − −  = + + + +    

 

( ) 1

12 ec kn δ−=  

Using the delta method [5], and substituting in (4) we get, the first order ap-

proximation, variance of θ̂  is:  

Simplifying we get: 

( ) ( ) ( ){ }2 3 4

1 122 2

1ˆvar 2n c n cc
n

θ θ θ θ θ θ= + − + +            (13) 

Comments:  

The first question that needs to be answered is: which component of variation 

has the largest effect on the variance of the RIP estimate, and hence on the 

number of repeats. We answer this question in a heuristic manner. We note 

from Equation (13) that eδ  is divided by the factor {kn} in 
1
c , 

2
c , and 

12
c . 

The implication is that, as the number of subjects increase, the kurtosis of the 

error term has negligible effect on the variance of the estimated RIP. 

We may also demonstrate the effect of non-normality using tools of probabil-

ity and power calculations. This can be illustrated through testing of statistical 

hypotheses on the RIP. Suppose that we need to determine the number of sub-

jects to detect the departure from the null hypothesis 
0 0

:H θ θ=  in the direc-

tion of the one-sided alternative 
1 1 0

:H θ θ θ= < , with type-one error rate α  

and power 1 β− . For fixed n, we can show that: 

[ ] [ ]
( )

2

0 1

2

0 1

 z z
k

α βυ θ υ θ

θ θ

  + =
−

                 (14) 

If we set the Type I error rate at 5% and power at 80%, for given values of 

0 1
, , , bnθ θ δ  and eδ , the estimated values of k can be easily calculated.  

Specifically, for an effect size ( ) ( )0 1
0.05 0.02θ θ− = − , 0bδ = , and 6eδ = , 

and 5n = , then from Equation (14) we need to recruit 6 subjects, while for the 

same range of values of the RIP we need to recruit 21 subjects if 6bδ = , and 

0eδ = . The worst situation is when the two components of variation are far 

from being normal. For example, for the same values under the null and alterna-

tive hypotheses, with 3bδ = , 3eδ = , and 30n = , then 67k = . However, 

when 0b eδ δ= = , we need to recruit 18k =  only. These computations illu-

strate the impact of the departure from normality of the distribution of between 

and within subject-variations on the sample size requirements. 

6. Data Analysis and Bootstrap 

In this section we apply the methodology presented in this paper on Serum Ala-

nine-aminotransferase (ALT). The ALT is a critical parameter for both the as-
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sessment and follow-up of patients with liver disease. Therefore, establishing the 

repeatability and the precision of ALT measurements as a diagnostic marker are 

of paramount importance. Regardless of gender or body mass index (BMI) [7], 

the normal range was most often estimated from a population that included pa-

tients with subclinical liver disease, including non-alcoholic fatty liver disease 

(NAFLD), which is now documented as the greatest prevalent cause of chronic 

liver disease worldwide [8]. Recent studies have recommended establishing 

normal ranges for ALT separately in males and females [9]. 

Furthermore, lately published HBV guidelines suggested that treatment deci-

sions should be based on these new ALT levels [10], with the exception of one 

recently published Korean study, no earlier reports have established normal liver 

histology when evaluating reference ALT ranges [11].  

From a large tertiary hospital-based registry, the available data were grouped 

into female group with 20 subjects and another male group of 30 subjects. In 

both groups, each subject’s ALT was evaluated three times according to the rules 

set in [1]. The data are summarized in Table 2, for females and in Table 3 for 

males. 

Bootstrap results 

We used R to bootstrap the data. We set the number of bootstrap samples at 

1000 for both data sets.  

Bootstrap Statistics for females’ data: 

original bias std. error 

0.001 0.00117 0.0004 

As can be seen from Figure 1, both the histogram and the Q-Q plot show that 

the large sample distribution of the estimator is skewed to the right. Therefore, 

one should be careful when constructing Wal’s confidence limits of the popula-

tion RIP 

Bootstrap Statistics for males’ data: 

original bias std. error 

0.002 - 0.0001 0.0006 

In contrast to females’ data, the histogram of the sample statistics as shown in 

Figure 2 is skewed to the left, but the Q-Q plot exhibit closer to normality. This 

may be due to the fact that the males’ data is larger than the females’ data. 

 

Table 2. Descriptive statistics of the female ALT data. 

ALT 

Mean 

Standard  

Deviation 
N Minimum Maximum 

ALT1 

75.05 
39.16 20 1 141 

ALT2 

76.65 
39.34 20 2 143 

ALT3 

75.84 
39.30 20 1 142 

https://doi.org/10.4236/ojs.2019.94035


M. Al-Eid, M. M. Shoukri 

 

 

DOI: 10.4236/ojs.2019.94035 539 Open Journal of Statistics 

 

Table 3. Descriptive statistics of the male ALT data. 

ALT 

Mean 
Standard Deviation N Minimum Maximum 

ALT1 

106.97 
81.91 30 6 317 

ALT2 

108.87 
81.96 30 8 319 

ALT3 

108.00 
82.06 30 7 318 

 

 

Figure 1. Histogram and the Q-Q plots of the 1000 bootstrap 

samples of the estimated RIP (females ALT data). 

 

 

Figure 2. Males’ data histogram and the Q-Q plots of the 1000 

bootstrap samples of the estimated RIP. 
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7. Comments and Summary 

As can be seen from the histograms and the Q-Q plots, the distribution of the es-

timated RIP = t1* is far from being normally distributed. But we expect that the 

distributional properties may be closer to normality when the number of subjects 

is much larger than the number of have here. When one attempts to establish the 

population-based reference range of health populations, the number of subjects is 

typically in the hundreds, and the issue of normality may be irrelevant. 

Further investigations for the case of categorical measurements and when the 

number of replications per subject is not fixed, are needed.  
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