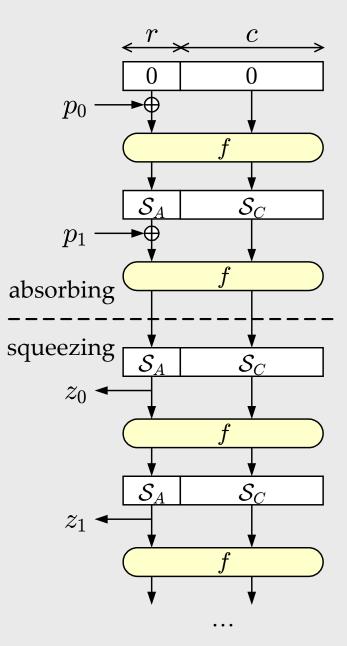
On the Indifferentiability of the Sponge Construction

Guido Bertoni, Joan Daemen, Michaël Peeters^{*} and <u>Gilles Van Assche</u> *NXP Semiconductors STMicroelectronics

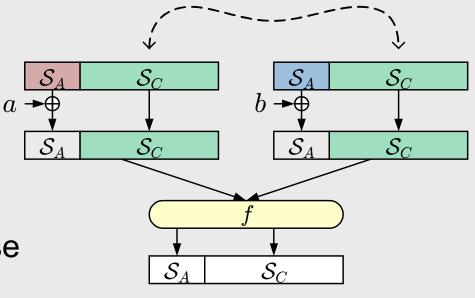
Introduction


- Sponge functions model
 - the **finite state** of iterated cryptographic functions
 - as in iterated hash functions, stream ciphers, etc.
- Random sponges can be used
 - as a reference for (hash function) design
 - as an inspiration for (hash function) design
- Sponges are simple

Introduction
 Definitions
 Uses Examples
 Indifferentiability
 Constructing a sponge function
 Conclusion

Sponge Construction

The last absorbed block must not be zero.



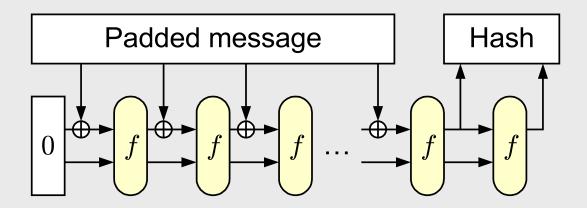
Eurocrypt 2008, Istanbul, Turkey

Inner Collisions, State Collisions

Inner collision

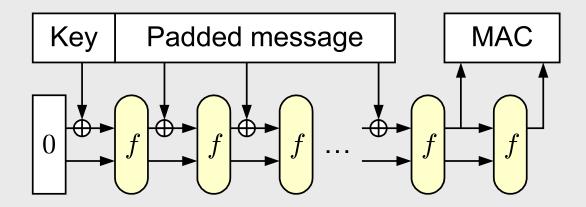
- State collision
 - Absorbing phase
 - Hash collision
 - Squeezing phase
 - Output periodicity

State collision

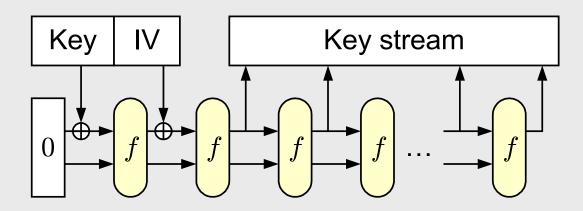

Random Sponges

- Random T-sponge
 - Randomly chosen in $(2^{c+r})^{2^{c+r}}$ transformations f
- Random P-sponge
 - Randomly chosen in (2^{c+r})! permutations f

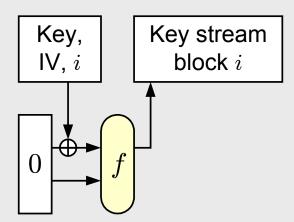
✓ Introduction
 ✓ Definitions
 ❑ Uses Examples
 ❑ Indifferentiability
 ❑ Constructing a sponge function
 ❑ Conclusion


Uses Examples (1/5)

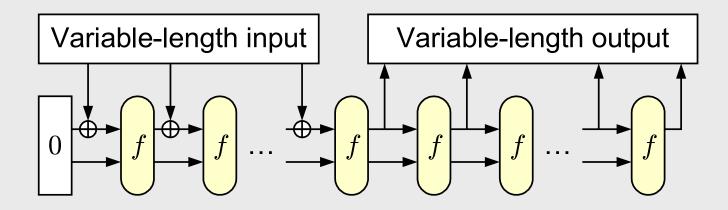
Hash function


Uses Examples (2/5)

Message authentication code


Uses Examples (3/5)

• Stream cipher


Uses Examples (4/5)

Random-access stream cipher

Uses Examples (5/5)

Mask generating functions, key derivation

See PKCS#1 and IEEE Std 1363a

✓ Introduction

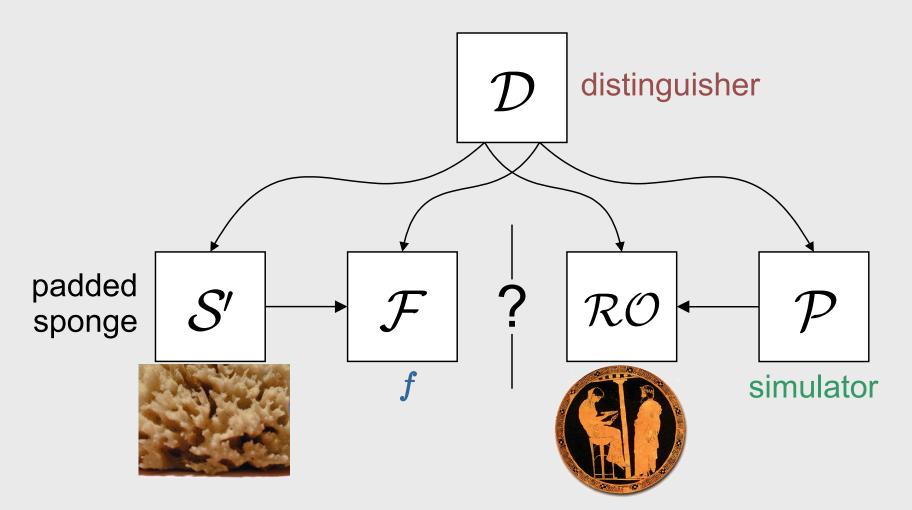
- ✓ Definitions
- ✓ Uses Examples

Indifferentiability

Constructing a sponge functionConclusion

Distinguishing Random Sponges

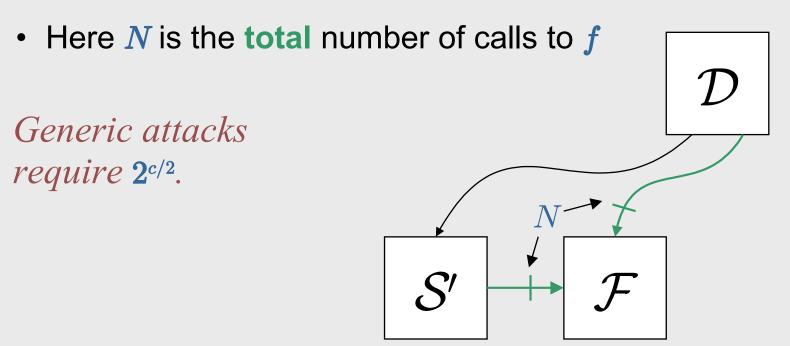
- Adversary queries a black box, either RS or RO
 - Budget of *N* input and output blocks
- **Theorem:** A random sponge can only be distinguished from a random oracle by the presence of **inner collisions**.
 - When $N \ll 2^{c/2}$, inner collisions are


unlikely

Only gives an upper bound.

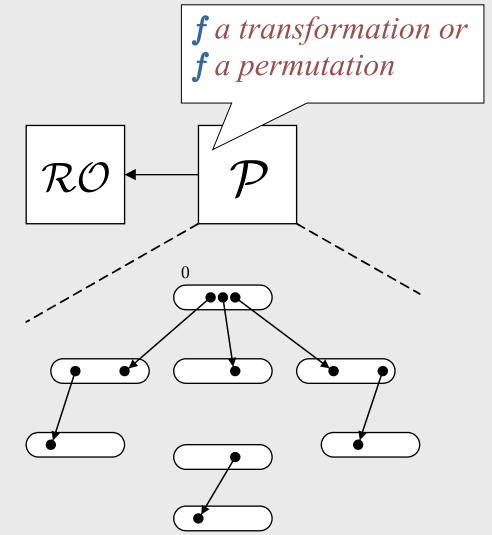
Indifferentiability Framework

- Goal: obtain lower bound on generic attacks
- Distinguisher has to differentiate between:
 - the ideal system (Random Oracle), and
 - the construction (here, the Sponge),
 - with access to publicly-known function or parameter (here, the transformation f)
- If indifferentiable
 - cryptosystem using construction as strong as cryptosystem using ideal system
- Maurer et al., TCC 2004; Coron et al., CRYPTO 2005


Differentiating Random Sponges

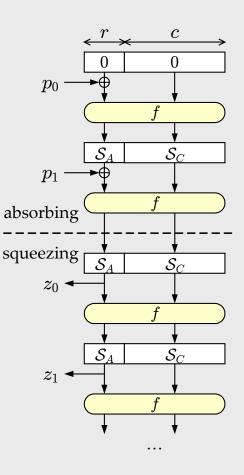
Eurocrypt 2008, Istanbul, Turkey

Differentiating Random Sponges


• **Theorem:** a random sponge can be differentiated from a random oracle only with probability $\approx N(N+1)/2^{c+1}$, with $N < 2^c$.

Eurocrypt 2008, Istanbul, Turkey

Proving the Indifferentiability


- Simulating *f*
 - Keeps memory of (input, output) pairs in a graph
- Properties
 - Sponge-consistence
 with what RO says
 - Similar output distribution
- Can be differentiated
 - By different distribution of simulator and random *f*

✓ Introduction
 ✓ Definitions
 ✓ Uses Examples
 ✓ Indifferentiability
 ❑ Constructing a sponge function
 ❑ Conclusion

Constructing a Sponge Function

- Choose *c*, *r*
 - No generic attacks below 2^{c/2}
 - Transformation or permutation over c+r bits
- Construct a *random^(!)* transformation?
- Construct a random^(!) permutation!
 - It shall not have any special properties^(!)
 - · except its compact description
 - Other constructions build upon permutations: see also Snefru, FFT-Hash, SMASH, ...

Advantages of the Sponge Construction

- Relative simplicity in design
 - Permutation similar to block cipher design
 - E.g., block cipher without key schedule
- Flexibility
 - One permutation can accommodate for several (c,r) pairs
- Efficiency
- Simplicity
 - Simple model, simple proofs
 - Suitable for many applications
 - Variable-length output

✓ Introduction

- ✓ Definitions
- ✓ Uses Examples
- ✓ Indifferentiability
- ✓ Constructing a sponge function

Conclusion

- Sponges are a simple model
 - to model the finite state of iterated primitives
- Sponges are a simple tool
 - for building hash functions and stream ciphers
 - for expressing compact security claims
- Sponges are fun!

http://sponge.noekeon.org/