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Abstract. The classical integral formula for determining
the indirect e�ect in connection with the Stokes±Helmert
method is related to a planar approximation of the sea
level. A strict integral formula, as well as some approx-
imations to it, are derived. It is concluded that the cap-
size truncated integral formulas will su�er from the
omission of some long-wavelength contributions, of the
order of 50 cm in high mountains for the classical
formula. This long-wavelength information can be
represented by a set of spherical harmonic coe�cients
of the topography to, say, degree and order 360. Hence,
for practical use, a combination of the classical formula
and a set of spherical harmonics is recommended.
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1 Introduction

Geoid determination by Stokes' well-known formula
requires that all topographic masses are removed or
reduced to a layer on or below the geoid. The e�ect of
restoration of these masses is the indirect e�ect. The
most common reduction method is Helmert's second
condensation method, where the topographic masses are
reduced to a surface layer at sea level in a spherical
approximation of the geoid. This classical method, using
a planar approximation, has been extensively discussed,
by, for example, Heiskanen and Moritz (1967), Wi-
chiencharoen (1982), VanõÂ�cek and Kleusberg (1987),
Wang and Rapp (1990) and SjoÈ berg (1994). SjoÈ berg
(1994, 1995, 1997) and Nahavandchi and SjoÈ berg (1998)
used a spherical harmonic approach to derive the
indirect e�ect. Common to all the above methods is

that they are limited to the second or third power of
elevation.

A recent description of the Stokes±Helmert method
for geoid determination was given by VanõÂ�cek and
Martinec (1994). The speci®c problem of determining
the indirect e�ect was treated by Martinec and VanõÂ �cek
(1994), who pointed out that the classical formula may
be severely biased.

In the present paper, we will start to compare the
formulas based on planar approximation with those
based on spherical harmonics. Further on, a rigorous
surface integral formula for the indirect e�ect will be
derived (assuming a spherical approximation of the ge-
oid and constant topographic density). The strict for-
mula is ®nally expanded in a Taylor series for
comparison with the previous approximate solutions.

2 The indirect e�ect to power H3

The classical formula (see e.g. Wichiencharoen 1982) for
determining the indirect e�ect on the geoid for Helmert's
second condensation method is

NI�P�classic � ÿplH2
P

c
ÿ lR2

6c

ZZ
r

H3 ÿ H3
P

`30
dr �1�

where

l � Gq0, G being the universal gravitational constant,
and q0 the density of topography, assumed to be
constant;

H ;HP=orthometric heights of the running and compu-
tation points, respectively;

`0 � R
�������������������������
2�1ÿ cosw�p � 2R sin w

2;
R = mean Earth surface radius;
r = the unit sphere;
w = geocentric angle between computation point P and

running point on the sphere;
c = mean normal gravity.Correspondence to: Lars E. SjoÈ berg
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SjoÈ berg (1994, 1995, 1997) developed the indirect
e�ect in terms of (surface) spherical harmonics to the
power H2, and Nahavandchi and SjoÈ berg (1998) ex-
tended this approach to the power H3. The results can
be summarized as
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X1
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nÿ 1

2n� 1
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H m
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and Pn�cosw� is Legendre's polynomial of order n.
Equation (2) can be reformulated as an integral

similar to Eq. (1). To achieve this, we ®rst rewrite Eq. (2)
as follows:
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where we have used the notation
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Inserting Eq. (3), and considering thatX1
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and (Heiskanen and Moritz 1967, p. 39)
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we arrive at
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In view of the fact that
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we ®nally obtain
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Comparing the classical formula [Eq. (1)] with the new
one [Eq. (9)], we obtain the di�erence

dNI�P � � N classic
I ÿ Nnew
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or, in view of Eq. (8)
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Formula (12) shows that there are some long-wave-
length di�erences of power H2 between the classical and
new formulas. (The terms of power H3 are less than a
few centimetres, and they can therefore be neglected in
most cases.) The most likely explanation for this
di�erence is that the classical method su�ers from the
planar approximation. This can be seen from the
following example. For a smooth topography, the ®rst
term on the right-hand side of Eq. (11) can be
approximated by

ÿ 3Rl
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r

H2

`0
dr�: ÿ 3plH2

P s0
Rc

�: ÿ 0:027s0H2
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where s0 is the maximum polar radius (in km) and HP is
also given in km. For example, with s0 � 555 km
(corresponding to a geocentric radius of about 5�) and
HP=1 km, this term becomes ÿ1:5 cm, but for
HP � 6 km it ranges to ÿ50 cm! (Cf. Martinec and
VanõÂ�cek 1994). Hence ÿdNI in Eq. (12) can be regarded
as a correction to the classical method, which leads to
the formula

Nnew
I � N classic

I ÿ dNI �14�

3 A strict formula for the indirect e�ect

At the point P on the sphere of radius R, the topographic
potential at point P can be written (for constant density)

V t�P � � l
ZZ

r

Z R�H

r�R

r2 dr
`

dr �15�

where ` � ������������������������������
r2 � R2 ÿ 2rRt
p

, r is the geocentric radius of
topographic point and t � cosw. The corresponding
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potential of a condensed layer according to Helmert's
second condensation method becomes

V c�P� � lR2

ZZ
r

H
`0

dr �16�

corresponding to a surface layer of density q0H on the
sphere of radius R. By di�erencing and dividing by c
(Bruns' formula), we obtain the indirect geoid e�ect

NI�P � � 1

c
V t�P � ÿ V c�P �ÿ �

� l
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`0

� �
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where we have introduced the kernel function
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R
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This formula can be directly integrated to (cf. Martinec
and VanõÂ�cek 1994)
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Therefore, Eq. (17), with the function f �H ; t� pro-
vided by Eq. (19) or Eq. (19a), is a rigorous integral
formula for the indirect e�ect.

4 Taylor expansion of the strict formula

For completeness, we now derive the power series of NI

from the strict formula of Eq. (17) above. We start from
a Taylor expansion of f �H ; t� around f �0; t�:
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where f �k� is the k-th radial derivative (i.e. with respect
to H ) of f �H ; t�. It follows directly from Eq. (18) that

f �0; t� � 0 and f �1��0; t� � R2=`0

Thus we can rewrite Eq. (17) as
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In the limit H ! 0, or equivalently r! R, we obtain
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and we also have

1

4p
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d�1ÿ t�F �Q� drQ � F �P�

for any continuous function F and t � coswPQ, which
de®nes the properties of D�t� and d�1ÿ t�. By inserting
Eqs. (24) and (25) into Eq. (21), we ®nally arrive at
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i.e. the third-order Taylor expansion of the strict
formula of Eq. (17) equals our previous formula Eq. (9).

5 Numerical investigations

In order to numerically investigate the indirect e�ect, we
have applied the classical and new integrals, Eqs. (1) and
(7) respectively. We have also applied the classical
formula corrected with the harmonic expansion of Eq.
(14) as well as the strict integral of Eq. (17) with f �H ; t�
given by Eq. (19a). The results of the spherical harmonic
approach are limited to the third power of elevation H .
The harmonic coe�cients of heights H 2

n and H3
n are

determined from Eq. (3). For this, a 30� 300 Digital
Terrain Model (DTM) is generated using the Geophys-
ical Exploration Technology (GETECH) 5� 50 DTM
(GETECH 1995a). This 30� 300 DTM was averaged
using area weighting. Since the interest is in continental
elevation coe�cients, the heights below sea level are all
set to zero. The spherical harmonic coe�cients are
computed to degree and order 360. The parameter l �
Gq is computed using G � 6:673� 10ÿ11 m3 kgÿ1 sÿ2
and q � 2670 kgmÿ3. R=6371 km and c = 981 Gal are
also used in the computations. Strictly, Bruns' formula
requires c to be computed for geodetic latitude /.
However, since NI reaches at most 2 m, c is set to a

constant. This approximation is of the order of the
¯attening of the ellipsoid (ÿ0:003), which is at most
6 mm.

Two test areas of size 2� 2� are chosen. Both of these
test areas are in Sweden. The area A is limited by lati-
tudes 57 and 59�N and longitudes 13 and 15�E, located
in the south of Sweden. The topography in this area
varies from 40 to 340 m. The area B is limited by lati-
tudes 63 and 65�N and longitudes 13 and 15�E, located
in north-west Sweden. The topography in this area is
more rugged than in test region A and varies from 276 to
1051 m.

First, the strict formula is computed with a global
integration. The integration area is extended outside the
test areas and limited to cap size (w) of 20�. A 2:5� 2:50
DTM (GETECH 1995b) is used inside the cap size of
20�. Further out, we have applied a 30� 300 DTM. This
result is then used as the `true' solution to compare with
all other methods. Figure 1 shows the indirect e�ect
computed by the strict formula [Eq. (17)] for area B. It
ranges from ÿ1:53 to 7.43 cm.

For the classical and new integral approaches, a
2:5� 2:50 DTM (GETECH 1995b) is also used. The
integration area is again extended outside the test areas,
but limited to cap sizes of 3 and 12�. Figures 2±4 show
the indirect e�ect computed by the classical [Eq. (1)] and
new integral [Eq. (7)], as well as the classical formula
corrected with the harmonic expansion [Eq. (14)]
methods with 12� integration area in test region B.

Figures 2 and 3 are similar in shape with minor dif-
ferences. The plots range from ÿ4:30 to 1.03 cm (Fig. 2)
and ÿ2:99 to 1.79 cm (Fig. 3). Both of them include the
local contributions with pure integral formulas, but they

Fig. 1. The indirect e�ect computed by
strict method [Eq. (17)] with a global
integration in test region B. Contour
interval is 0.2 cm
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are lacking the far-zone contribution outside the cap of
radius 12�.

Figures 1 (`true' solution) and 4 (corrected classical
solution) are similar in shape and only slightly di�erent
in magnitude. In both these formulas, the local infor-
mation and long-wavelength contributions are present.

Finally, Fig. 5 depicts the smooth long-wavelength
spherical harmonic representation of the indirect e�ect
[Eq. (2)], ranging from 4.23 to 6.96 cm. This suggests
that the classical formula corrected with the harmonic
expansion [Eq. (14)] is the best alternative to the strict
formula in this study.

Fig. 2. The indirect e�ect computed by
classical method [Eq. (1)] with 12� integra-
tion area in test region B. Contour interval
is 0.2 cm

Fig. 3. The indirect e�ect computed by
new integral method [Eq. (7)] with 12�
integration area in test region B. Contour
interval is 0.2 cm
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In order to obtain further insight into how the
methods di�er, the classical, new integral and harmonic
expansion approaches and the classical formula, cor-
rected with the harmonic expansion, are subtracted from
the strict method. These di�erences are presented for the
two test areas using integration areas of 3 and 12� in

Tables 1 and 2, respectively. These tables show errors of
the classical formula, Eq. (1), as well as the new integral
formula Eq. (7). We note also that the errors even in-
crease with cap size (see Tables 1 and 2), revealing that
an integration area of 12� is too small to account for the
long-wavelength signal. Also, the pure harmonic ex-

Fig. 4. The indirect e�ect computed by
classical formula corrected with the har-
monic expansion [Eq. (14)] with 12� cap
size in test region B. Contour interval is
0.2 cm

Fig. 5. The indirect e�ect computed by the
spherical harmonic method [Eq. (2)] in test
region B. Contour interval is 0.2 cm

92



pansion of the indirect e�ect [Eq. (2)] is not a good
alternative, because it lacks local details.

In both test regions (A and B), the classical formula
corrected with the harmonic expansion [Eq. (14)] agrees
better with the strict formula than the other two meth-
ods, especially when the cap size is increased from 3 to
12�. Tables 1 and 2 show that the mean of di�erences
between two methods decreases from 1.01 to 0.84 cm.
This justi®es our belief that the best alternative for the
computation of the indirect e�ect is the use of Eqs. (14)
and (12).

6 Conclusions

The indirect geoid e�ect is composed of both local
e�ects and long-wavelength contributions. This implies
that most formulas studied in this paper may have some
numerical problems in representing these di�erent
signals. Our strict formula, Eq. (17), as well as its
approximations, Eqs. (7) and (9), require that the
integration area covers most of the globe to include
the long wavelengths. However, a pure set of spherical
harmonics, Eq. (2), truncated to, say, degree 360 will not
contain the local details. For the test areas A and B in
Sweden, the long-wavelength contribution from the
harmonic expansion is of about the same signi®cance
as the short-wavelength signal of the local integrals. In
the classical formula, Eq. (1), such long-wavelength
information, ranging to ÿ50 cm, is missing even for a
global integration area. We conclude that our Eqs. (14)
and (12) may be a suitable compromise between the
local contribution [represented by the classical formula
of Eq. (1)] and a set of spherical harmonics, Eq. (12),
that is subtracted to account for the long-wavelength
signal.

Finally, all the surface integrals above could be
slightly generalized from a constant to a laterally vari-
able topographic density (l), simply by putting l inside
the integrals.
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Table 1. Error of approximate formulas for indirect e�ect in test regions A and B with 3� cap size
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Ave )2.25 )1.23 )0.55 0.11 )3.60 )2.14 )1.01 0.99
SD 0.48 0.63 0.20 0.85 0.54 0.78 0.30 1.02

Units in cm
Eq. (1) = classical formula; Eq. (7) = new formula; Eq. (14) = corrected classical formula; Eq. (2) = harmonic expansion

Table 2. Error of approximate formulas for indirect e�ect in test regions A and B with 12� cap size

Test region A Test region B

Eq. (1) Eq. (7) Eq. (14) Eq. (2) Eq. (1) Eq. (7) Eq. (14) Eq. (2)

Max )1.91 1.85 )0.41 2.31 )5.05 1.54 )0.31 4.30
Min )3.12 )2.94 )0.71 )2.12 )8.24 )9.75 )1.55 )4.03
Ave )2.74 )1.35 )0.65 0.11 )6.38 )5.04 )0.84 0.99
SD 0.43 0.65 0.22 0.85 0.57 0.80 0.29 1.02

Units in cm
Eq. (1) = classical formula; Eq. (7) = new formula; Eq. (14) = corrected classical formula; Eq. (2) = harmonic expansion

93


