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ON THE INDIVIDUAL ERGODIC THEOREM
FOR SUBSEQUENCES!

By Jakos I. REICH
University of Wisconsin, Milwaukee

We define a concept of saturation for a sequence of integers {k;}. Inthe
main theorem we prove that if {k;} saturates and T is any weakly mixing
measure-preserving transformation on an arbitrary probability space, then
there exists a dense set Zr < L2 such that for fe 27

. 1 )
limy—e ¥ Y fiTYx) = E(f) ae.

This has the following application to probability theory:
Let Y3, Y3, - -+ be independent and identically distributed positive (or
negative) integer-valued random variables with E(Y1) < co. Let

ki) = i1 V(@) J=12
Then there exists a set C of probability one such that for € C and for any
weakly mixing measure preserving transformation 7' on an arbitrary prob-
ability space
limy—e Ilv Y AT''x) = E(f) ae.
for all fe L.

1. Introduction. Let {k;} be a sequence of integers. Suppose that for every
weakly mixing transformation T on an arbitrary probability space

& Tl = B(f)

for all fe L?. The analogue to the individual ergodic theorem would then be
that (1.1) implies

- (1.2) lim

(1.1) lim, ... =0

1
N
This, however, is not true, as Krengel in [4] shows that there exists a sequence
{k,} for which (1.1) holds for all mixing transformations but for which (1.2)
does not hold even when we restrict ourselves to bounded functions. In Theorem
(4.1) we give a condition on the sequence {k;} which implies:

Y f(Tkix) = E(f) a.e. for all felL'.

(1.3) For every weakly mixing measure preserving transformation
T on an-arbitrary probability space there exists a dense sub-
space Z; C L* such that for fe <,

limN_,w% S A(Thix) = E(f) a.e.
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1040 JAKOB I. REICH

Let Z, Z+, Z~ denote the integers, positive integers and negative integers,
respectively. Let Y,, Y,, ... be a sequence of independent identically distributed
integervalued random variables with E|Y,| < co and let

kj(w): lezl Y,((u), ]: 1,2, EECECI
In (6.3) we show that the sequence {k;(»)} almost surely satisfies (1.3). In (6.4)
we show that if the state space of the Y,’s is Z+ or Z~ then the sequence {k(w)}
almost surely satisfies (1.2).

To avoid technicalities we restrict ourselves to probability spaces. However,
with minor modifications all the proofs hold also for infinite measure spaces.

2. Notation and preliminaries. Let T denote a weakly mixing invertible,
measurable, measure-preserving transformation on an arbitrary probability space,
U the unitary operator on L? associated with T, and {F;};.[o..,; the resolution of
the identity for U.

Halmos proves the following lemma in [3]:

(2.1) LEMMA. T is weakly mixing if the only eigenvalue of the induced unitary
operator U is the number 1 and this eigenvalue is simple.

The following corollary is an éasy consequence of (2.1):

(2.2) CoroLLARY. If T is weakly mixing, then (F,f, f) is continuous except
possibly at 2z and F({27})f = E(f).

By a sequence {k;} we will mean a function from Z+ to Z (i.e., not necessarily
one to one). By a subsequence of Z or Z* we will mean a strictly increasing
sequence in Z or Z*.

Let J be a closed interval contained in the open interval (0; 27). We say that
the sequence {k;} satisfies a uniform order condition on J, if there exists a subse-
quence {N,} of Z* such that

Zr=1 SupaeJ < S

1 ) 2
- Z;Vil e”‘j"
Nl

and

NI

1+1
For a sequence {k;} let Z be the class of J on which {k,} satisfies a uniform

order condition. Let 57" = [0, 27]\(U,. , (interior J)). We say that 7 saturates

if 2" is at most countable. Note that ¥~ always contains the two-point set

{0, 27}. For a sequence {k,} define

ky* = max,g;cy |kjl , M(n) = max_, ;<. 217 2i5(k) -
Note that M(n) counts the greatest number of times that an integer between
—n and n has been repeated by the sequence {k,}.

lil'l’ll_mo =1.

3. Some auxiliary results.

3.1) LeMMA. If J is a closed interval contained in the interior of [0, 2x] then
L= n F(J)L?is dense in F(J)L®
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Proor. Let fe F(J)L? and ¢ > 0 choose & € L~ such that
(1) I1f = HP < -

By (2.2) it is clear that (F, f, f) is continuous on J; therefore we can find a closed
interval J in the interior of J such that

@ IF)h — FOMHP < =

Let ¢(4) be a twice differentiable function on [0, 27] such that 0 < ¢(4) < 1,
$(2) = 0 for 2 J°, and ¢(2) = 1 for 2eJ. It is clear that 37, |$(j)| < oo.
Let

0(x) = 5§ $() dFsh _21_”(, = §(j)e dF,h

= L% ¢(J) — e dFyh = 3%, $()Uh.
From the properties of ¢ follows g € L= n F(J)L’. By (2) and the properties of ¢,
l
©) ll9(x) — AP = == §&" [6(2) — 2 AF:h, B)

é So xni(A) d(Frh, ) = ?

Putting together the estimates in (1) and (3) finishes the proof.

3.2) LeEMMA. [f {k;} satisfies a uniform order condition on J, then for h € L= n
FJ)L?

lim, _, _]lv DY h(T*ix) = E(h) a.e.

Proor. First, E(h) = 0 since J is a closed interval contained in the interior
of [0, 2z]. Let {N,} be the subsequence of Z+ in the definition of uniform order.
For ¢ > 0 let

4, = { N, T W) | < e} for I1=1,2,...
Then
1 1« ki) |
P(4;) £ — (x| L= M(Thx)| P(dx)

€ N,
11 .01 Ny ”"lzthh

:?ZSO ——Zj=1e’ (£2h, k)
h||? i

= 2ln'lelz pl” ZNZ etti |

The last inequality is a consequence of & e F(J)L’. Since {k,} satisfies a uniform
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order condition on J,

i Pz < P e sup,,, ZNz il < oo

Let A, be the set of x contained in all except possibly finitely many of the sets
4,..
By the Borel-Cantelli lemma P(4,) = 1. In Lemma (3.3) we prove that if
x ¢ A, then
lim supy._,, % TV h(Thix)| < e

Now let 4 = N7, Ay;- Then P(4) = 1 and for x e 4

: 1
lim,_, ~ Y h(T*x) =0.

(3.3) LEMMA. Let A, be the set in the proof of (3.2). Then for x € A,
1
~ D (T 5x)

Proor. Let {N,} and {4, } be as defined in the proof of (3.2). If x € 4,, there
exists a positive integer n(x) such that xe 4, , for I = n(x). Let N > N,,,; then
there exists / > n(x) such that N,,, = N > N,. Therefore

1
& T W(T*%)

lim sup,

< eg.

< I_L 310, h(T#ix)

1
| Zevi T

I (R

+ Il (T — 1)

<ot [l (D~ 1),

1

<ML

=3 ZI 1, h(T*ix)
1
l

< | D T

The last inequality follows since x e 4, for / > n(x). From the definition of
uniform order (N,,,/N, — 1) — 0 as | — oo, which finishes the proof.

(3.4) LEMMA. Suppose {k;} satisfies an order condition on J,, ---,J,. Then
there exist closed nonoverlapping intervals I, - - -, I,, such that each I; is contained
in some J,, Ui, J; = U, 1, and {k;} satisfies an order condition on each I, | =
L2, ...,m

Proor. The fact that we can find the partition 7, with the desired set theoretic
properties is obvious; that {k,} satisfies an order condition on I, I,, - - -, I,, fol-
lows from the fact that each I, is contained in some J,.

4. The main theorem.

4.1 THEOREM. Let {k;} be a sequence of integers and suppose S saturates.
Then {k;} satisfies (1.3).
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Proor. The fact that <7, is a subspace is obvious. Let fe L* be such that
E(f) = 0. Let 2" = {0,}_,, where w is finite or infinite, be the set in the defini-
tion of saturation. Also (F,f, f) is continuous, since E(f) = 0.

Fixe > 0. From the continuity of (F, f, f) it follows that there exists a neigh-
borhood 7; for each 4, such that

(M (F(@f ) <
Let @ = U‘;“=1§>

i

2’+1 vj:1,2,---,w.

Then it is clear that
IF@f = Al < =

Since @*is closed and @° C U, , (interior J) there exist intervals J,, - - -, J, € _Z
such that J7_, J, D @*. Apply Lemma (3.4) to find nonoverlapping intervals
L, -, I,e _J# such that

2) UL =Ui Do

Since (F,f, f) is continuous, F(U7, I,)f = 2.7, F(I)f.
Now apply (3.1) and (3.2) to each ], to find 4, € L* n F(I,)L? such that

3) Iy = FUIP < for 1=1,2,...m
m

and lim,_ (1/N) > h(T*ix) = Oa.e. forl = 1,2, ...,m. Leth = 3" h(x).
Then
k= fII* = [lh — Zie FIOAP + (1F(U L)
= Xl — FISP + [[FEOSF <.

The second-to-last inequality follows from (2) and the last inequality from
(1) and (3). The pointwise convergence of 4 is guaranteed by the choice of the
h’s. This proves the theorem for f with E(f) = 0; for the general f¢ L2 ﬁnd h
as above for f — E(f) and let h = h + E(f).

The following theorem is the special case of a theorem in [2] (page 3).

4.2) THEOREM. If there exists a constant K > 0 such that for f e L
Plx > 2} < KUl

then the set of [’s in L' for which lim,_ (1/N) ¥, f(T*ix) exists a.e. is closed
in L.

£ A (%)

supy

Now we are in the position to prove the following theorem.

4.3) THEOREM. Suppose {k} isa sequence for which 7 saturates. If in addition

supy, Fey™ - Mitky*) ANJ(kN*) =r< oo,

then for all fe L', lim,_, (1/N) 3, f(T*ix) = E(f) a.e.
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ProOF. We have

P {x|sup, |1 Zi A1) > 4}
=P {x supy kN*—]]:;I(b!i) . ,I;l_; AT > 2}
N
< P{x|supy & mx AT > A < Wbt

The last inequality follows from the maximal ergodic lemma.

5. A sufficient condition for saturation. Let {k } be a sequence, and let {k,,
k,, - - -, ky} denote the set which contains k,, - - -, k,, and lists each integer ac-
cording to its multiplicity. The cardinality will be denoted by

.1 THEOREM. Suppose for a sequence {k;} there exists a finite set K C Z*
such that for each N there exists j, € K satisfying

(1 _ I{k1+j1v’ ""kN ‘lj‘V]N} n {kv ""kNH) =0<7\177>

for some 0 < r < 1. Then j saturates.
Proor. Let S, = {k,, ---, ky}. Then

— l_]lV (Z;‘v:l eikja _ Z;'V=1 ei(kj+j1v)a)

< BSyASy +jl _ o (,L> .
N Nt

(1 — eive) & ;b

Let J be any closed interval which does not contain a root of unity of order
Il;exJ. Then min; . inf,., |l — €| =y > 0. Therefore

< Lo(l)-o(L)

Then the subsequence N, = [/, = 1,2, ..., has the desired properties, where
[+] denotes the integral part function. Now _7 saturates because

[0, 2z]\U. , (interior J)

2 4 — 12 ,
Z{O’ME’A_;T""’(LRZM’Z”} where M = [],cxj.

1 ik ;a
W Zj.vzle kg

SUDgqe s

Note that a sequence {k;} can satisfy a uniform order condition even though
it is “thin” in the integers, i.e.,
—N, N]n {ky, ky, -}
2N

=0.

im,__ I

Here is an example:

1’21!21"]' 1’22922+ 1’22+29""2”a2”+ 1,2n+2,_”’27»+n’2n+1’_..'
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Let k; be the jth integer in this sequence. It is not hard to show that
Wkp s ky) Ok + 1, - ky + 1) :0<¥1ﬂ)_
N/’

N
then by (5.1) _Z saturates.
6. Applications to probability theory. Let Y, Y,, .-, be a sequence of in-
dependent identically distributed integer-valued random variables. Let k;(0) =
Yio Yy(w), for j=1,2, .... In[1], Blum and Cogburn prove

(6.1) THEOREM. [If E(Y,) < oo and E(e***1) + 1 for B < a < r then a.s.
limy_, SUp,<,s, | 200, €*i% = 0.

The authors prove this theorem by actually proving the following sharper
version:

(6.2) THEOREM. If E(Y,) < oo and E(e***1) + 1 for 8 < a < y then there exists
a set C with P(C) = 1 such that for w e C

SUPg<asy % 2y €% = O(N7H)

This theorem enables us to prove:

(6.3) THEOREM. If E(Y,) < oo then the 7 (w) associated with {k (w)} saturates
a.s.

ProoF. Assume first that Y| is nonlattice, i.e., that E(e’**1) == 1 for0 < a < 2.
Let J, = [1/n, 2z — (1/n)]. Then by (6.2) there exists C, with P(C,) = 1 such
that for we C,, {k,(w)} satisfies a uniform order condition on J,. Let C =
Nz_; C,. Then P(C) = 1 and for w € C, {k;(w)} satisfies a uniform order condi-
tionon J, forn > 3. Now _#(w) saturates for ¢ C because [0, 27]\U e ., (in-
~ terior J) = {0, 2}. If Y, is lattice, with lattice distance n > 1, then E(e***1) == 1
for (k — 2x/n < a < k2x/n, k = 1,2, ..., n. Now argue for each interval
[(k — 1)2z/n, k27 /n] as we did for [0, 2] in the nonlattice case.

With the additional restriction that the state space of the Y,’s be Z+ or Z~
we can prove:

(6.4) THEOREM. Suppose Y, has state space Z+ or Z~ and E(Y|) < co. Then
there exists a set C with P(C) = 1 such that for o ¢ C and every T

limNW% ¥ f(T4@x) = E(f) ae.  forall fell.

Proor. We will prove the theorem for state space Z+, since the same proof
with obvious modifications works for Z-.

Since the Y,’s have state space Z* it follows that for the sequence {k ()},
ky*(0) = ky(w) and M(n, w) is 0 or 1 for allne Z. Also by the law of large
numbers lim_, k,(0)/N = E(Y,)a.s. Now the theorem follows from (4.3) and

(6.3).
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7. Epilogue. It should be noted that we can extend the condition of uniform
order to sequences {x,} of probability measures on Z. Namely, {z,} satisfies a
uniform order condition on the closed interval J C (0, 2x) if there exists a sub-
sequence {N,} such that

Z};";lsup,mIﬁl\,l(a)|2 < oo and lim,_,, maxy <vew,, |ty — ‘”Nzl(Z) =0.

Then Lemmas (3.2)—(3.4) have their obvious analogues for {¢,} and the theorem
corresponding to (4.1) states:

(7.1) THEOREM. If {¢,} saturates, then for every T there exists a dense subspace
Fp < L* such that for fe 2,

lim, .. §, ATx)uy(d)) = E(f) a.e.

Except for obvious modifications the proofs remain the same.
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