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A PRODUCT OF SPHERES
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Abstract. In this paper it is proved that the smooth connected sum of a product
of ordinary spheres with an exotic combinatorial sphere is never diffeomorphic to the
original product. This result is extended and compared to certain related examples.

Before stating the result which provides our point of departure, we recall some
standard notation. If Mn is a closed smooth oriented «-manifold, the inertia group
I(M) consists of all exotic «-spheres 2 such that M # S is orientation-preservingly
diffeomorphic to M. Then in the first section of this paper we shall prove the follow-
ing result :

Theorem A. Ifn^5 and M is a product of ordinary spheres, then I(M)=Q.

The special case where M is a product of two ordinary spheres was proved
independently by DeSapio [6], Kawakubo [12], and the author [26]. Actually, a
weaker version of Theorem A may be derived almost trivially by means of framed
cobordism [14], and our proof may be considered an example of the relative diffi-
culty of computing the intersection I{Mn) n 9Pn+1 in general.

In the second section we discuss some generalizations of Theorem A, and in 2.3
it is shown that the methods of §1 generalize in a nonempty manner. We are led to
conjecture the following result, which is proved in §4 :

Theorem C. Let Pk be a product of ordinary spheres, and let 2" be a homotopy
sphere («^5). Then the inertia group of£nxPk is equal to the inertia group of
2> x Sk.

This result is first proved for Pk = Tk, the fc-dimensional torus, in §3. That
section also contains a diffeomorphism classification theorem for all smooth
manifolds homeomorphic to Sn x Tk. The result (Theorem B) may be interpreted
as an analog of the classification of smooth manifolds homeomorphic to5"x S",
particularly as formulated in [17, Proposition 5.7].

Remark. Our methods may be applied to determine whether any two given
smoothings of a product of several spheres are diffeomorphic, but any closed
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138 REINHARD SCHULTZ [May

formulas along the lines of [26, p. 187] would necessarily be quite involved and
very tedious to express.

1. Proof of Theorem A.
1.1. The inertia group I(M) was defined in the first paragraph of this paper. If

S is any topological sphere, let i: M#S -> M be the obvious homeomorphism.
Then the subgroup I0(M)çI(M) will consist of all homotopy spheres 2 such that
there is an orientation-preserving diffeomorphism h : M # S —>- M which induces
the same maps in homology and fundamental groups as the mapping i (compare
[27, p. 82]).

Remark. In general, I0(M)^=I(M). The simplest examples known to the author
occur when Misa 9-dimensional fake torus ; it may be chosen to be either com-
binatorially equivalent or inequivalent to Tg as one prefers.

1.2. Proposition. Let M be a closed smooth n-manifold (n 2: 7) which embeds in
Rn+1. Then Io(M)=0.

If M is a product of the spheres Su ..., Sk where the dimension of S¡ is d(i),
then there is a standard embedding of Rda)+ixS2 into fl*D + <«2>+i# Using such
standard inclusion maps we get a chain of inclusions

M = S1 x S2 x S3 x ■ • • x Sk ç if(1)td(2l + 1x S3 x • • • x Sk

c   ^í¡(l) + c¡(2) + d(3) + l X ■ • ■ X S

c   Dd(l) + - + d()c-l) + l x c   c   Dd(l) + - + d(fc) + l

This well-known argument is the one used to great advantage in Novikov-
Siebenmann splitting theory (compare [3]).

Proof. Without loss of generality, M is contained in the unit disk Dn + 1. Then
Dn + 1 is the union of two manifolds Kand If such that dV=M, dW=Sn u (-M),
and V n W = M. Suppose now that /¡:M#S^-Misa diffeomorphism with the
appropriate algebraic properties. Let W1 be the cobordism formed by adding 2
to both ends of 5 W [26, 1.1], and form the manifold X= Wx uft V. By construction,
dX=T,. On the other hand, by a standard argument involving van Kampen's
theorem, Mayer-Vietoris sequences, and the Hurewicz theorem it follows that X
is contractible and hence S = Sn.

Remark. The quotient I(M)/I0(M) is a subquotient of the group Aut H*(M)
of automorphisms of the homology groups of M. Explicitly, I/Iq^A/B, where
A £ Aut H*(M) consists of all automorphisms <p such that <p=(/_1/i)* for some
almost diffeomorphism h and 5s Aut //*(A/) consists of all <p such that <p=k* for
some diffeomorphism k. Let C consist of all <p such that <p=kie for some homotopy
self-equivalence k, so that A/B^C/B. According to 1.5 below, B and C are equal
if M is a product of spheres, and hence in this case A and B are also equal. Thus if
M is a product of spheres, we have I(M)=I0(M).
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1971] ON THE INERTIA GROUP OF A PRODUCT OF SPHERES 139

1.3. If/is any homotopy self-equivalence of a product of spheres, then/induces
automorphisms of the subgroups of spherical homology classes. Hence one obtains
a collection of square matrices with integral entries and determinants ± 1, one
matrix for each factor dimension appearing. These matrices are further restricted
as follows :

Lemma. Let A represent the induced automorphism of k-dimensional spherical
homology classes with respect to the standard basis.

(i) If k is even, A is a permutation matrix up to the signs of the factors.
(ii) Ifk is odd and k^\, 3, 7, then A reduced mod 2 is a permutation matrix.
Conversely, any square matrix A satisfying the above restrictions is induced by a

dijfeomorphism of a product of k-spheres.

Proof. Case 1. k even. It will be more convenient to consider the dual auto-
morphism of spherical cohomology classes, whose matrix is the transpose of A.
If one considers the standard basis of spherical cohomology classes, then the fact
that cup products are preserved implies that the image of a standard basis class
(whose cup square vanishes) must be a multiple of some basis element. An easy
algebraic argument now implies that the transpose of A must be a permutation
matrix up to the signs of the entries ; clearly A must also be of the same type.

Conversely, it is immediate that any matrix satisfying (i) is induced by a self-
equivalence of fc-spheres.

Case 2. k odd, k^=\, 3, 7. As above we look at the induced cohomology auto-
morphism. In this case all ^-dimensional cup squares vanish; hence, in analogy
with the formulation of the Arf invariant, we are forced to consider higher order
operations. Since k ^ 1, 3, 7, there is a second or third order cohomology operation

<p: Sub H\X; Z2) -> Quot H2k(X; Z2)

which detects the Whitehead product; for further discussion see [5]. Since all the
cohomology groups of a product of spheres have bases of cospherical classes, it is
immediate that <p is everywhere defined and has no indeterminacy. Using the
naturality of <p we may argue much as before that A reduced mod 2 is a permutation
matrix.

The converse in this case is somewhat less trivial to show; we introduce some
notation. Two square matrices A, B are permutation conjugate if there is a per-
mutation matrix P such that B=P~ 1AP. The matrix C is an extended 2x2 matrix
if it is obtained by placing a 2 x 2 matrix in the upper left corner, ones down the
rest of the diagonal, and zeros elsewhere.

Sublemma. Let A be an invertible matrix over the integers which is the identity
when reduced mod 2. Then there exist unimodular matrices Cr, Ds over the integers
such that
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140 REINHARD SCHULTZ [May

(i) Each CT, Ds is the identity mod 2.
(ii) Each matrix is permutation conjugate to an extended 2x2 matrix of deter-

minant ± 1.
(iii) There is the relation

C1--CmAD1-Dm = I.

This result may be proved by reviewing the proof of the elementary divisor
theorem [10, pp. 83-84] and noticing that at each step one may choose C„ Ds as
claimed.

We now prove the converse of Case 2. If B satisfies the hypothesis above, by
means of the Sublemma express B as a product FI A of matrices 5( which satisfy
(i) and (ii). By a result of Wall [31, Lemma 5], there exist self-diffeomorphisms /(
of a product of A:-spheres which induce the matrices Bx in homology. Thus the
product of the/( induces B in homology.

Case 3. A: =1,3, 7. We claim that any invertible matrix over the integers is
induced by some diffeomorphism. This is shown for 2x2 matrices in [17, 1.2].
More generally, any invertible n x n matrix may be written as a product of matrices
which are permutation conjugate to extensions of invertible 2x2 matrices. As in
Case 2, construction of the required diffeomorphism is immediate.

1.4. We now consider self-equivalences of a product of spheres such that the
induced automorphism of spherical homology classes is the identity. Let P be a
fixed product of the spheres Su ..., Sk where the dimension of St is d(i).

Let G5+1 be the topological monoid of orientation-preserving homotopy self-
equivalences of S".

Lemma. Let h be a homotopy self-equivalence of P which induces the identity
automorphism of spherical homology classes. Then h is homotopic to a product Yl ht,
where h¡ is a fiber homotopy equivalence of P when considered to be the trivial St
bundle over the remaining factors.

Proof. Let Qt be the product of the first (i— 1) factors, let R¡ be the product of
the last (k-i) factors, and letP^giX R{; by definition P=PixSi. The projections
of P onto Qt and R¡ are denoted by qt and rt respectively, and 7r¡ : P -> St is the
ordinary projection. We first observe that it suffices to prove the result for self-
equivalences /: Sx x P± ->- S1! x P1 satisfying tr-íf~irí. For -n^f: S1xP1-> Sx is
adjoint to some /': Px -> Gda)+1 by homological considerations, and if g is a
homotopy inverse to /' with adjoint self-equivalence g§, then f =fg# has the
property TT1f1~ir1. Since f factors up to homotopy, so does f~ff#.

Assume by induction that it suffices to prove the Lemma for self-equivalences
/ satisfying qtf~ qx. (For convenience assume k ä 3, since a proof for k = 2 may be
obtained by skipping this paragraph; alternatively, this case is proved in [17,
§§2-3].) We shall show that it suffices to prove the Lemma for / satisfying qi+1f
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1971] ON THE INERTIA GROUP OF A PRODUCT OF SPHERES 141

=<7¡ + 1; i.z.,qif=qi and 7r(/=7Ti. Again take/': P¡->- Gdm+1 to be adjoint to ttJ", and
assume q¡f=qi. If g is inverse to/', consider h=fg#; as before, we have n^ic£wu but
we also know that

9th = qjgf ~ qtg# = qt

by our hypotheses on /and the construction of g#. This finishes the inductive step
and thus implies that it suffices to show the Lemma when qkf~qk; without loss
of generality, they may be assumed equal.

But Qk=Pk, and the fact that/commutes with projection onto Pk implies that
f=g# for some suitable g:Pk-> Gdm + 1. This proves the Lemma.

Remark. If « induces the identity in homology, then the «¡ may be chosen
likewise.

1.5. Corollary. Let h be a homotopy self-equivalence of P. Then there is a
diffeomorphism gofP which induces the same automorphism of homology as h.

Proof. By 1.3 we can find a diffeomorphism which induces the same automor-
phisms of spherical homology classes as «, so without loss of generality we may
assume that h induces the identity on spherical homology classes. Thus by 1.4 we
are reduced to considering the induced homology automorphisms of fiber homo-
topy equivalences represented by homotopy classes in the groups \PX, Gm)+1]. The
latter group is generated by various homotopy groups of GdU) + 1, and the identity
automorphism of homology is always induced unless there is a factor of the form
7rdH)(Gdm + 1). Furthermore, it is well known (compare [1], [13]) that each element
of this homotopy group may be written as the sum of an element inducing the
identity in homology with an element in the image of irdm(SOd{i) + 1). In other
words, every homology automorphism represented by an element of Trdm(Gdil) + x)
may also be represented by an element of Trm)(SOd(i) + 1) and consequently by a
diffeomorphism.

1.6. Proof of Theorem A. Suppose « : P #2 -»■ P is an orientation-preserving
diffeomorphism. Then by 1.5 there is a diffeomorphism/of P such that/« and i
induce the same mapping in homology (and hence in fundamental groups). Con-
sequently, 2 610(M) (see 1.1) and by 1.2 we have that 2 is the ordinary sphere.

1.7. We give an easy application of Theorem A which was motivated by the case
where M is a product of two spheres. Let Dn be the group of diffeomorphisms of the
«-disk which are the identity near the boundary. If Diff M is the diffeomorphism
group of the closed «-manifold M (« ä 6), then by means of a coordinate chart one
may form an inclusion mapping a: Dn-r Diff M. By the Cerf-Palais disk theorem
the homotopy class of a is independent of the choice of chart. Hence there is a
well-defined mapping

^:rn+1 = 7r0(Z)n)^7r0(DiffM).
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142 REINHARD SCHULTZ [May

Proposition. If M is a product of ordinary spheres, then tr* is a monomorphism.
In fact, if 7f0(Diff M) is the group of concordance classes of diffeomorphisms of M
[32], then the mapping

rn +1 -* 7T0(Diff M) -> if0(Diff M)

is a monomorphism.

The proof of this fact when M is a product of two spheres (M=SpxSq) is
contained in the results of Levine [17], Sato ([24], [25]), and Turner [30] on
7r0(Diff5,px5'').

Proof. If ß e rn + ! goes to zero under the above map, then it follows that the
mapping torus of o*ß is diffeomorphic to the mapping torus of the identity. Since
these mapping tori are M x S1 # S% + 1 and Mx S1 respectively, the result follows
since I(MxS1)=0.

2. Generalizations.
2.1. The methods of §1 are of such a straightforward nature that one is im-

mediately confronted with the problem of generalizing them. Instead of considering
a product of ordinary spheres, it is possible to consider the product Snx/"c of a
homotopy sphere Sn with a product Pk of ordinary spheres such that Y>nxPk
embeds in Rn+k+1- this always happens if &^max (« — 3,1-n), since S" then
embeds in Rn+k + 1 with trivial normal bundle [8]. In the metastable range
k}t(n +1)/2 this is still the case for a wide variety of homotopy spheres; separate
results along these lines are due to Novikov [22] and Antonelli [2]. (The latter may
be generalized using results of Mahowald [18].) In any such example we should
assume that the highest dimensional factor of Pk has dimension ^« — 4 (provided
n ä 5), since otherwise X" x Pk is diffeomorphic to Sn x Pk and hence any generaliza-
tion is empty. Proposition 1.2 will still hold for 'LnxPk, and hence to show that
I(EnxPk)=0 it suffices to look again at the possible automorphisms of homology.

By the reasoning of 1.5, we may assume that any diffeomorphism

h:ZnxPk# Un + k^I,nxPk

induces the same map in homology as g#i, where g represents an element of
[Pk, Gn+1]. A more detailed analysis of the Mayer-Vietoris sequence than that of
1.2 is now necessary. A basis for HqÇZxP) may be constructed consisting of
monomials in the fundamental classes of Z and the factors of P (multiplication is
by the external homology cross product). A straightforward computation shows
that the matrix of A* is unitriangular with respect to such a basis; for cup product
considerations imply that a monomial n with r factors is sent by h* into ¡¿ + t,
where t is a linear combination of monomials with less than r factors. A direct
examination of the Mayer-Vietoris sequence as in 1.2 now shows that the manifold
X with dX= U (same notation as in 1.2) is again acyclic; this follows readily from
the unitriangularity of the matrix of A*. Since all 1-dimensional homology classes
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are spherical and the Hurewicz map is an isomorphism on ^(2 x P), X is again
simply connected; this concludes the proof that X is contractible and U=Sn+k.

We have remarked above that the stated generalization may well be empty. One
well-known generalization of a nontrivial nature is the case Pk = Tk, which suggests
that the almost diffeomorphism class of 2n xPk should depend only on the dimen-
sions of the factors of Pk; this will be shown in subsection 2.3.

2.2. In this subsection we recall how smoothing theory [15] and the Sullivan-
Wall reformulation of Browder-Novikov theory ([21], [29], [33]) give related
methods for determining whether two smoothings of a manifold M are diffeo-
morphic. We include general statements of these fairly standard principles and
formulas in order to explain at least part of the formalism involved in the routine
computational proofs of some assertions which appear later.

First consider smoothing theory. Assume M is smoothable and has a preferred
basic smoothing (M0, t0). The group 0>(M) of concordance classes of PL homeo-
morphisms of M acts on the right of the set [M, PD/O] of concordance classes of
combinatorial smoothings of M as follows : lf(N, t) is a smoothing of M (t: M -> N
is a smooth triangulation) representing the concordance class a and « is a PL
homeomorphism of M representing <p e ^(M), then the concordance class of (N, th)
is defined to be the element a-<p; this class does not depend on the choice of repre-
sentatives for a and <p. Then two concordance classes of smoothings are diffeo-
morphic if and only if they are in the same orbit under the action of ¿P(M). It is
generally difficult to compute this action explicitly. However, the following
relationship is useful. Suppose a0 is the basic smoothing of M; i.e., under the iso-
morphism between the set of concordance classes of smoothings of M and the
group [M,PD/0] (compare [15, §6]), a0 corresponds to the identity. Then the
action of <p e ^(M) on an arbitrary smoothing a is given by the formula

(i) a-tp = a0-q> + h*a,

where h*a represents the homotopy composition a[h].
There are several obstacles to the effective computability of the above action,

the most immediate of which is the computation of the group ¿P(M) ; to the best of
our knowledge, the only explicit results along this line are for complex projective
spaces [29], products of two spheres ([11], [17]) and tori ([9], [34]). It is therefore
reasonable to work within a framework depending upon the more accessible
group S(M) of homotopy self-equivalences.

We do this by means of surgery theory. The group S(M) acts on the left of the
set hS(M) of homotopy smoothings by the formula <p-(X, h)=(X, <ph), where
h:X^-M is a homotopy smoothing. As before, two homotopy smoothings
determine diffeomorphic manifolds if and only if they are in the same orbit of
$(M). Of course there is a natural map basically defined by taking the combina-
torial smoothing (N, t) to the homotopy smoothing (N, r_1). Under this map,
the action of an element of ^(Af) goes over to the action of the inverse of its
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representative in $(M). In analogy with formula (i), it is possible to deduce some-
thing about the action of S(M) on an arbitrary element of hS{M) from its effect
on the obvious basepoint (M, id). Let q : hS(M) -> [M, G/O] be the map which
sends each homotopy smoothing to its normal invariant. Then for any a e hS(M),
the normal invariant of <p-a is given by the following formula:

(ii) q(<p-a) = (cp-i)*q(a)+q(<p.O).

We give an example of the action of <£{M) on hS(M) which will be used later;
it is essentially due to Novikov [21, §11]. Let M=Sn x Sk, and let <p e é'(Sn x Sk)
be determined by the class 6 e irn(Gk+1). If s: Gk+1 -> G/O is the obvious mapping,
then q(yO)= —s^O. (The sign discrepancy arises because the results of [21] have
been reformulated here.)

Finally we say something about combinatorial smoothings which give the trivial
homotopy smoothing. Such a smoothing is of the form a0 ■ <p, where 9 is a PL self-
equivalence of M which is homotopic to the identity. The study of such maps
involves the n1 portion of the long exact sequence of surgery theory [33], and it is
not hard to see that the above set of smoothings may be given as follows. Let
S: [M, Q(G/PL)]^Ln+1(M) be the map which takes a 1-simplex of normal
mappings to its surgery obstruction, and let d: Q.(G/PL) -> PD/O be the canonical
map in the extended fibration sequence of

PD/O -> G/O -> G/PL.

Then the concordance classes of smoothings which are homotopy equivalent to
the identity are the elements of the set ¿^(Kernel S).

2.3. Proposition. Let a, ß e Tn, and let S1! be a factor of P having maximal
dimension. Then S%xP and S%xP are almost diffeomorphic if and only if S^ x S± and
Sa x Sx are, in which case they are diffeomorphic.

In particular, we see that there are many nontrivial examples of products Sß xPk
where k^n — 3 and Pk is simply connected.

We assume n is greater than the dimension of any factor of P.
Proof. The "if" direction is immediate, since the two products SgxSi and

Sa x Si are almost diffeomorphic if and only if they are diffeomorphic [26, 1.5].
Before proving the "only if" direction, we make the trivial observation that in

order to classify the homotopy smoothings of a product Q of ordinary spheres up
to a diffeomorphism which is the identity on spherical homology classes it is
necessary to look at the orbits of the subgroup Si{M)'=,S{M) of homotopy self-
equivalences which induce the identity on spherical homology classes. This is
more convenient for our purposes since in 1.4 we obtained a set of generators for
<ai{M). Furthermore, it is clear (compare 1.5) that if the manifolds 52 xP and
S}xP are almost diffeomorphic, then there is an almost diffeomorphism which
induces the identity in spherical homology.
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It will simplify matters to factor an element of ¿'1(Sn x Pk) in a special manner.
Let Slf...,St be the factors of Pk; then any element of $1{SnxPk) may be
expressed as a product

&!«! • • • kfiih'
where the map «' is a fiber homotopy equivalence with fiber Sn and base Pk, the
map «j is a fiber homotopy equivalence with fiber 54 and base SnxP¡ (see 1.4 for
definition of P¡) which is the identity on Sn, and ki = k[x\, where k¡ is a fiber homo-
topy equivalence with fiber St and base Sn. The proof that such factorizations
exist is a straightforward formal exercise based on 1.4.

Let j: PD/O -> G/O be the usual inclusion. Then the normal invariant of the
smoothing Sa x P is given by

;>6lrB(G/0)C [5" x P, G/O].

We wish to examine the effect that each fiber homotopy equivalence in the above
factorization has on the -nJfi/O) component of [SnxP, G/O]. It is not difficult to
show that «' and the /¡¡ do not affect this factor at all. Let 6¡ e Trn(Gdm + 1) be the
homotopy class determined by kt, let st: Gdm+1 -> G/O be the obvious map, and
let et: Gdm + 1 -> S¡ be the evaluation map. Then the net effect of the k¡ on the tt„
component is to add terms of the form — j¡*Oí and 0f*(ef*ot), where i/it e TrdW(Gdm+1).
In particular, if Sg xP and S% xP are diffeomorphic, then j*ß=j*a mod image s^.
(Recall d(l)^d(i), all /'.) But by the results of Levine ([16], [23]), this implies
that SJ}_„ embeds in Rdifí + 1 with trivial normal bundle, and hence by [26, 1.8]
and Sa x Sx are diffeomorphic.

2.4. We make an observation on the inertia group of SßXPk when /c^« —4.
In this case all fiber homotopy equivalences in [Pk, Gn+1] induce the identity in
homology, and hence S}xPk jf S"+k and S}xPk are diffeomorphic if and only if
Sß x Si Sîx S± some diffeomorphism induces the identity in homology.

3. Manifolds homeomorphic to Sn x Tk.
3.1. In this section we shall express the inertia group of SpxTk in homotopy-

theoretic terms. Actually, we shall classify up to homology-preserving diffeo-
morphism all smooth manifolds homeomorphic to SnxTk, where «§4 and
l^A:^«-4. This result is a fairly straightforward analog of the classification
theorem for SnxSk (compare [26, p. 187]).

We first introduce some notation. The group [Tk, SOn + 1] acts on [SnxTk, Y]
(any Y) as follows: Take an5* bundle automorphism/# of Tk x Sn induced by a
representative mapping / and pull back by composing with /#. Notice that if
W=Snv(Sn/\Tk) and q: S nxTk->S nxTk/Tk~W is the canonical projection,
then this action of [Tk, SOn + 1] maps the image of the induced mapping

q*: [W, Y]^[SnxTk, Y]

into itself. Furthermore, if Y is an iterated loop space, we shall give a computation
of this action in 3.3 and the Appendix.
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3.2. Theorem B. Under the above assumptions, any manifold M homeomorphic to
SnxTk is diffeomorphic to a smoothing (Ma, ta) whose concordance class is in the
image of q*: [W, PD/O]->[SnxTk,PD/O]. Two such smoothings q*a,q*ß are
diffeomorphic by a map h : Ma -*■ Me such that hta and tß induce the same map in
homology if and only if a and ß are in the same orbit of[Tk, SOn + 1].

Proof. First notice that any smoothing of Sn x Tk whose concordance class lies
in the image of [Tk, PD/O] is in the orbit of the basic smoothing under a self-
equivalence of Sn x Tk given by an element of [Tk, PLn], and consequently by 2.2(i)
it is possible to find a smoothing diffeomorphic to the given one whose concordance
class restricts trivially to [Tk, PD/O]. In other words, it is an image of q*; likewise
for Top/O, Topn.

If the concordance classes a, ß determine diffeomorphic smoothings as stated
in the theorem, then as homotopy smoothings they are in the same orbit of
£x(Snx.Tk). But by 1.4 this group is merely [Tk, Gn+1], and the condition that
the smoothings have no Tk component implies that the group element is in the
image of [Tk, SOn+1]. Since the elements of the latter group act diffeomorphically
on Sn x Tk, the action on normal invariants in [W, G/O] is merely given by compo-
sition; a similar statement holds for [W, PD/O]. Hence by the general theory we
know that a, ß are diffeomorphic as desired if they are in the same orbit of
[Tk, SOn + 1] on [W, PD/O]. Furthermore, if a diffeomorphism exists with the
desired properties, then the homotopy smoothings in question are in the same orbit
of [Tk, SOn+1] on [W, G/O]. This means that for some group element g, ga and ß
are equivalent homotopy smoothings.

It is therefore sufficient to show that two smoothings of the special type are
concordant if they are homotopy equivalent. We must accordingly determine the
intersection of the set 8*(Kernel S) of homotopically trivial smoothings described
at the end of 2.2 with the image of q*. But by the Shaneson-Wall computation of
Ln+k+1(SnxTk) ([28], [33]), the mapping S corresponds to the homomorphism

[Sn x Tk, O.ÍG/PL)] -?-+ [W, ÇliG/PL)] —► [W, Q(G/Top)],
where r is a one-sided inverse to q*. Hence the kernel of S consists of [Tk, Q.(G/PL)],
and its image in [Tk,PD/0] clearly intersects that of [W, PD/O] trivially. This
concludes the proof that got and ß are identical.

3.3. We shall comment on the computation of the group action on [S n x Tk, PD/O].
Recall that if P is a product of spheres and H is a homotopy associative and
commutative //-space, then the group [P, H] is a direct sum 2 nw(H), where A
runs over all nonempty subsets of the set of factors of P and \A\ is the sum of the
dimensions of the factors belonging to A. Thus [Tk, SOn+1] and [W, PD/O] may
be respectively expanded as follows :

[Tk,SOn+1] = 2"w(SOn+1),

[W, PD/O] = «¿PD/O) 0 2 »i m +ÁPD/0).
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It certainly suffices to compute the gAa B (and gAan) separately. There are several
distinct cases; the derivations are given in the Appendix.

(Í)   gA<Xn = <*n + (<XnJ(gA))A-
(ii) If A n B= 0, then gAa B = (aBJ(gA))AuB.

(iii) If A n 5# 0, then gA<^B = aB-
3.4. The homology automorphisms of Sn x Tk are given by the group of diffeo-

morphisms Z2 x GL (k, Z). Thus by 2.2(h) there are standard smoothings which are
diffeomorphic by an arbitrary homology automorphism, and one smoothing may
be computed from the other by means of homotopy composition. As an "applica-
tion" of the criteria given here and above, we have tabulated the number of
differentiably inequivalent products in some simple cases and listed the results
below.

Manifold

Oriented or
unoriented
almost
diffeomorphism
classes

Oriented
diffeomorphism
classes

Unoriented
diffeomorphism
classes

Concordance
classes of
smoothings

SexT2

15

30

30

1568

S7xT2

30

180

180

896

s10xt2

1988

1988

1988

5,904,384

S10x7"3

1988

3976

2982

17,561,445,984

Table. Number of differentiably inequivalent smoothings of some topological
manifolds under various relations

3.5. Corollary. Ifn^5andk^n-4, then I(S^ x Tk)=I(SnB x Sk).

Proof. Let

ß0 = ß e TTrlPD/O)   and   ß1 = (ß, y) e tt^PD/O) ® iTn + k(PD/0).

By 2.4 we may assume ß0 and ß-y are diffeomorphic by a map which induces the
identity in homology. A direct examination of 3.3 now shows that g(ß0)=ßi if and
only if g e TTn(SOn+1) and y=ßJ(g). But these elements are precisely those of the
inertia group of S£ x Sk [26, 2.5].

3.6. Remark. We have not considered products involving exotic 3- and 4-
dimensional homotopy spheres, the reason being that if 2n is a homotopy sphere
and « = 3 or 4, then I,nxPk = SnxPk unless n = 3 and Pk is the /c-dimensional torus
[7]. In the latter case, by surgery theory T,3xTk¥=S3x Tk (k^2) if and only if 23
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bounds a framed 4-manifold of index 8. On the other hand, Shaneson has con-
structed a manifold M5 which is diffeomorphic to X3 x T2 if such a E3 exists [28,
§7]. By the remarks made in 2.1, we know /(S3 x Tk) = 0 for all X3, and hence one
would naturally guess that I(M5 x T*)=0. This may be shown directly by means of
the techniques used in this paper.

4. The inertia group of 2" x Pk.
4.1. Of course, if pk^Tk then the structure oîS1{SnxPk) is considerably more

complicated. In particular, if/represents an element of this group, then -n?f\Pk
might not be homotopic to the identity. We shall first dispose of the special case
where this mapping is the identity; the assumption k^n — 4 will hold throughout
this subsection.

Lemma. There is an orientation-preserving diffeomorphism h from S^xPk # Sy+k
to Sß x Pk such that nPh\P is the identity if and only ify=ßJ(a)for some a e Trk(SOn).

Remark. The condition rrPh\P=id implies that h induces the identity in
homology.

Proof. If such a diffeomorphism exists, then there is an element <p e £{Sn xPk)
such that TTp<p\P=\P and <p-(ß, 0) = (j8, y). Much as in 2.3, we factor <p into a
product of the form

fkJii-'-kfa
where the map/is a fiber homotopy equivalence with fiber Sn and base Pk, the
map ki=k'iX 1, where k[ is a fiber homotopy equivalence with fiber St and base
Sn, and the map ht is a fiber homotopy equivalence with fiber St and base SnxPi
which is the identity on SnvP¡ (i.e., it comes from an element of [Sn AP¡, Gdm + 1]).

As in 2.3, we compute the effect of each factor in turn. In particular, at each
point in the computation, except perhaps the last, any homotopy smoothing whose
normal invariant in [SnxPk, G/O] vanishes on the [Pk, G/O] component is taken
to another one with the same property. This also happens at the last step if and
only if/is in the image of [Pk, SOn+1]. Hence a diffeomorphism as required exists
if and only iff~1(ß, y) = (Yl ktht)-(ß, 0). We basically computed the action of/-1
in 3.3. The action on the right-hand side is basically that of adding elements in the
image of 7rn+U|(GdM) + 1), where A is a proper (possibly empty) subset of {1,..., /}
and d(A) is the dimension of the largest factor sphere of Pk not contained in A.
In particular, the irn+k(G/0) component is zero.

Notice that if/represents -a e 7rfc(50B+1)s [Pk, SOn+1], then/(ft 0)=(ß, ßj(*))
and hence the "if" portion of the Lemma follows.

By the reasoning of 2.3, this implies that the component yA of /" 1(ß, y) in
7Tn+\A\(G/0) is in the image oí irn+tAi(GMA>+1) provided A is a nonempty proper
subset. Since the natural inclusion

GJ(PL~)^G/PL
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is a homotopy equivalence for s^ 3 ([16], [23]), we know that yA is in the image of
7rn+|^|(PLiM) + 1); i.e., the homotopy sphere it represents embeds in Euclidean
space of codimension d(A)+1 with trivial normal bundle [16]. By the computation
of 3.3, we see that the ■nn + k{G/0) component oif~l{ß, y) is the sum ofj*{y-ßJ(a))
(some a e nk(SOn)) with terms of the form yAJ{èi)- • •■/(&)> where the f¡ are in
homotopy groups of the orthogonal group and in particular ^ e Trq(SOp) for some
ptq+2^d(A). However, by the results of [26, 1.8, 2.6] we know that yAJ($1) = 0.
Thus the entire sum is jJy—ßJ{<*)), which by the previous computation of
(EI k{hi)-(ß, 0) vanishes in irn+k(G/0). In other words, y—ßj(a) e 8Pn+k+1.

This difference actually vanishes. If the normal invariant of q>± =f~xy is computed
in the homotopy triangulation theory, it will vanish basically because the images of
the yA in 7rn+ lM(G/PL) are zero by the previous paragraph. Hence by surgery theory
95! is homotopic to a PL homeomorphism i/iu and we have that/(ß, y) and ß-tpy are
equivalent as homotopy smoothings. By the special homotopy-theoretic nature
of «pi as displayed above, we may write

ß-fa = ß+0-fa.
Furthermore, 0 • fa may be chosen to be a sum of terms y'A where A runs over all

proper subsets of {1,..., /} and j*y'A=yA, with a term 8 = y—ßJ(a) enn+k(PD/0)
satisfying y*8=7*(y — ßJ(a)) = 0. Suppose Pk is simply connected, so that each
d(i)>2; since the terms y'A are in the image of ■"% + \a\{PL2u) + \)^ they may be
successively removed by PL self-equivalences. Therefore, there is a PL self-
equivalence i/>2 of SnxPk such that

Q-fafa = 8e^n+k{PD/0).
In other words, S is in the inertia group of SnxPK. Hence 8=0 by Theorem A.

If Pk is not simply connected, the above argument fails for terms y'A such that
the product of all factors not in A is a torus. However, if one takes repeated
infinite cyclic coverings, it follows that such terms y'A must also vanish by Theorem
A. Thus 8 = 0 holds without the assumption that Pk is simply connected.

Thus f(ß,y) is homotopy equivalent to a smoothing whose TTn + k(PD/0) term
vanishes. The final step in the proof is to show that the irn + k(PD/0) components of
homotopy equivalent smoothings of orientable manifolds cannot differ by an
element of 8Pn + k + 1. This is a trivial exercise in the use of the principle given at the
end of 2.2. Since the TTn + k(PD/0) component of/(j8, y) is y-ßj(a) e dPn + k + 1, this
element must vanish, and the Lemma is proved.

4.2. In this subsection we discuss some consequences of the stable equivalence
theorems due to Mazur in the simply connected case [19] and Milnor in the non-
simply connected case [20]. If Mn is any closed w-manifold with vanishing White-
head group and h is an oriented homotopy self-equivalence of M, then there is an
orientation-preserving diffeomorphism H: MxSn+k -> MxSn+k for all k^3
such that iTMH\M=h. Actually, it can be shown that H is homotopic to a fiber
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homotopy equivalence covering h, and this fiber homotopy equivalence in [M, G]
actually represents the normal invariant of q(h) in [M, G/O] (see [3] for this inter-
pretation of the normal invariant, and compare with [23]).

4.3. Proof of Theorem C. As stated before, we assume k^n—4. For by 2.1,
if k^n-3 we know that I(S^xPk)=0 for all Pk. As noted in 2.1, the truth of
Theorem C has already been established for many homotopy spheres if k ^ (n +1)/2
by the work of Novikov and Antonelli.

If <p e£1(SnxPn) induces the map h = -nPy\P (which is necessarily a homotopy
self-equivalence) we have shown above that a diffeomorphism H of SnxPn may
be constructed. Furthermore, up to homotopy we may write cp = H<p0, where
TTP(p\P= \P. Hence if H<p0(ß, y) = (ß, 0)—equivalently, <p0(ß, y) = H~1{ß, 0)—we wish
to compute the nn + k(G/0) factors on each side of this equation. Now A is a product
of fiber homotopy equivalences A4 and His a product of associated diffeomorphisms
Hi, and by the formula due to Novikov appearing in 2.2(h) we may assume that
the induced fiber homotopy equivalence is the stabilization of the inverse of A¡. A
routine computation now shows that the right-hand side will have no TTn+k(PD/0)
factor, and hence none exists for G/O either.

To compute the left-hand side, we proceed in much the same manner as in 4.1.
We again show/*(y—ßj(a))=0, <p0 is homotopic to a PL homeomorphism, and
ultimately y-ßj(a) is shown to be the nn+k(PD/0) component of the right-hand
side. By the reasoning of 4.1, this class vanishes, and the result is proved.

Appendix. Derivation of formulas in 3.3. We derive formulas 3.3(i)-(iii) for two
reasons. First of all, generalizations of them are used in the proof of Theorem
C. Secondly, they have been used subsequently by the author to investigate the
plumbing pairing. It should be noted that the action of a class gA e TriM(SOn+1)c
[Tk, SOn+1] (see 3.3) only depends on its image in Tr\A\(Gn + 1). Therefore, we shall
work with [Tk, Gn+1] and in the process obtain the generalizations necessary for
Theorem C. The only property of PD/O used is that it is a highly homotopy
associative and commutative //-space. Hence we can make the argument for //,
where H is PD/O, G/O, or Top/O [4].

Derivation of (i). Let TA^Tk be the substances corresponding to the subset
As{l,...,k}, and let SA be the sphere of the same dimension. The map gA is
related to a fiber homotopy self-equivalence of TA x Sn which passes to a map h on
SA x S n via the collapsing map TA -> SA. Therefore it suffices to look at [Sn x SA, //],
which maps monomorphically into [Sn x TA, H] and [Sn x Tk, H] via composition
with projections.

The basic idea is to exploit the natural isomorphism [X, H]^[SX, BH], where
addition is derivable from the //-space BH. Now the suspension of Sn x SA is the
wedge ofSn+1, SSA, and S(SnSA), and hence the object is to compute the restrictions
of SVA): S(Sn x SA) -> Sn + 1 to the three summands. But the restriction to 5n + 1
is the suspension of the identity (A is fiber-preserving and basepoint-preserving).
The map SSA-+Sn+1 is the suspended evaluation map of A, which vanishes
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provided k<n. Finally, the map S(SnSA) -* Sn+1 is induced by the Hopf construc-
tion; in particular, if gA comes from [TA, SOn+1], then the homotopy class of this
map is J(gA). Hence the components of S(-rrh)*an are an (S" + 1 factor), O (SA
factor), and an-J(gA) (Sn+1SA factor).

Derivation o/(ii). Let TA, TB be the subtori corresponding to the disjoint subsets
A, B. The induced fiber homotopy equivalence of SnxTAxTB over TA passes to a
fiber homotopy equivalence of SnSB x SA over SA. The remainder of the derivation
is nearly identical to (i).

Derivation o/(iii). Let C=A-A n B, D=A n B, and E=B—A n B; the cases
where C or E may be empty are included; we make the convention that S0 ={pt}.
Here we obtain a fiber homotopy equivalence hx\c of (SnxScxSD)xSE over
Sc x SD such that h is the identity of the product of the positive hemispheres
Dê,D£^Sc,SD.

We begin by considering the map S(ph): S(Sn xScx SD) -> Sn+1SD, where p is
projection onto SnxSD followed by collapse onto the smash product. Now the
suspension of Sn x Sc x SD is a wedge of at most seven spheres, one for each non-
empty subset of {Sn, Sc, SD}; if C=0, then the summands corresponding to
smash products involving Sc do not appear. We next look at all possible restrictions
of S(ph) to summands of S(Sn xScx SD).

[a] Sn+1 and SSD. The restriction of S(ph) to these spheres is trivial since their
dimension is less than that of Sn+1SD.

[b] Sn+1Sc and SSC. Consider the composite
(1,*)                        tt/j

Sn x Sc -—* Sn x Sc x SD-> Sn x SD-> SnSD.

The projections of the composite of the first two mappings onto the Sn and SD
factors are easy to determine. In particular, the projection onto SD is constant.
But if <p: [/->- Vx Wis any map such that 7rw<p is constant then the composite into
Va Wis trivial provided everything is arcwise connected. Hence the restrictions of
S(ph) to Sn+1Sc and SSC are trivial.

[c] Sn + 1SD. The degree of the restriction of S(ph) to Sn + 1SD may be computed
from the cohomology of the spaces involved, and it is +1.

[d] Sn+1(Sc A SD). We claim this restriction is also homotopically trivial. First
of all, « extends to a map of Ix Sn x Sc x SD in the obvious fashion. Next observe
that the restriction to Ix Sn x D¿ x Sc is the identity. Hence « extends further to a
fiber-preserving map h! over Sc on the union Ix Sn x.SD x Sc u Dn+1 x Z)¿ x SE,
where Ix Sn£ Dn+1 by the annulus embedding and the map is the identity on the
second portion.

Now SnxIxSDv Dn+1xD£ is a manifold with boundary Sn x SD u SnSD,
and by restriction «' induces a fiber homotopy equivalence h" of SnSD x Sc on the
other boundary component. If one chases a suitable family of diagrams involving
the fiber homotopy equivalence on the cobordism, it follows that the restriction
of S(ph) to Sn+1(SD/\SC) is homotopic to the Hopf construction on the map
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SnSDxSc-+ SnSD induced by the fiber homotopy equivalence A". But on each
fiber

SnSD = SnxD¿ u Dn+1xdD£

the fiber homotopy equivalence maps Sn x D¿ and Dn+1 x dD£ to themselves, the
latter by the identity. It then follows that the induced fiber homotopy equivalence
of SnSD x SE is fiber homotopic to the identity by the Alexander trick. Hence the
Hopf construction is homotopically trivial.

We proceed to derive 3.3(iii). If E= 0, then the result is immediate since the
only summand of S(SnxScxSD) on which S(ph) is nontrivial is SSD, and the
map SSD -> SSD is the identity by [c]. On the other hand, if Ej=0, then consider
the smash product of A with the identity on SE. The summand 7rn+|B|(//) is in the
image of the projection induced composite

[SnSD A SE, H] -> [(SnxSD) A SE, H] -+[(SnxScx SD) A SE, H]

-+[SnxScxSDxSE,H],

and therefore it suffices to compute the effect of the composition A* on an element
a e [SnxScx SD, £2|B|//] which is in the image of 7rn+|D|(Q|B|//). According to the
factor by factor analysis of restrictions appearing in [a]-[d], we have h*a=a as
desired.
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