
On the infeasibility of training neural 

networks with small squared errors 

Van H. Vu 

Department of Mathematics, Yale University 
vuha@math.yale.edu 

Abstract 

We demonstrate that the problem of training neural networks with 
small (average) squared error is computationally intractable. Con

sider a data set of M points (Xi, Yi), i = 1,2, ... , M, where Xi are 
input vectors from Rd, Yi are real outputs (Yi E R). For a net-

work 10 in some class F of neural networks, (11M) L~l (fO(Xi)

Yi)2)1/2 - inlfEF(l/ M) "2:f!1 (f(Xi) - YJ2)1/2 is the (avarage) rel
ative error occurs when one tries to fit the data set by 10. We will 
prove for several classes F of neural networks that achieving a rela

tive error smaller than some fixed positive threshold (independent 
from the size of the data set) is NP-hard. 

1 Introduction 

Given a data set (Xi, Yi), i = 1,2, ... , M. Xi are input vectors from Rd , Yi are real 
outputs (Yi E R). We call the points (Xi, Yi) data points. The training problem 
for neural networks is to find a network from some class (usually with fixed number 
of nodes and layers), which fits the data set with small error. In the following we 
describe the problem with more details. 

Let F be a class (set) of neural networks, and a be a metric norm in RM. To 

each 1 E F, associate an error vector Ef = (1/(Xd - Yil)f;l (EF depends on the 
data set, of course, though we prefer this notation to avoid difficulty of having too 
many subindices). The norm of Ej in a shows how well the network 1 fits the data 
regarding to this particular norm. Furthermore, let eo:,F denote the smallest error 
achieved by a network in F, namely: 

eo: F = min liEf 110: 
, fEF 

In this context, the training problem we consider here is to find 1 E F such that 



372 v.n Vu 

IIEfila - ea ,F ~ fF, where fF is a positive number given in advance, and does not 
depend on the size M of the data set. We will call fF relative error. The norm a 
is chosen by the nature of the training process, the most common norms are: 

100 norm: Ilvll oo = maxlvi/ (interpolation problem) 

12 norm: IIvl12 = (l/M2::;l v[)1/2, where v = (Vi)t;l (least square error prob
lem). 

The quantity liEf 1112 is usually referred to as the emperical error of the training 
process. The first goal of this paper is to show that achieving small emperical error 

is NP-hard. From now on, we work with 12 norm, if not otherwise specified. 

A question of great importance is: given the data set, F and fF in advance, could 
one find an efficient algorithm to solve the training problem formulated above. By 
efficiency we mean an algorithm terminating in polynomial time (polynomial in the 

size of the input). This question is closely related to the problem of learning neural 
networks in polynomial time (see [3]). The input in the algorithm is the data set, 

by its size we means the number of bits required to write down all (Xi, Yi). 

Question 1. Given F and fF and a data set. Could one find an efficient algorithm 
which produces a function f E F such that liEf II < eF + fF 

Question 1 is very difficult to answer in general. In this paper we will investigate 
the following important sub-question: 

Question 2. Can one achieve arbitrary small relative error using polynomial algo

rithms ? 

Our purpose is to give a negative answer for Question 2. This question was posed 
by 1. Jones in his seminar at Yale (1996). The crucial point here is that we are 
dealing with 12 norm, which is very important from statistical point of view. Our 
investigation is also inspired by former works done in [2], [6], [7], etc, which show 
negative results in the 100 norm case. 

Definition. A positive number f is a threshold of a class F of neural networks if 

the training problem by networks from F with relative error less than f is NP-hard 
(i.e., computationally infeasible) . 

In order to provide a negative answer to Question 2, we are going to show the 
existence of thresholds (which is independent from the size of the data set) for the 
following classes of networks. 

• Fn = {flf(x) = (l/n)(2:~=l step (ai x - bi)} 

• F~ = {flf(x) = (2:7=1 Cistep (ai x - bd} 

• On = {glg(x) = 2:~1 ci<!>i(aix - bi)} 

where n is a positive integer, step(x) = 1 if x is positive and zero otherwise, ai and 
x are vectors from Rd , bi are real numbers, and Ci are positive numbel's. It is clear 

that the class F~ contains Fn; the reason why we distinguish these two cases is that 
the proof for Fn is relatively easy to present, while contains the most important 
ideas. In the third class, the functions 1>i are sigmoid functions which satisfy certain 
Lipchitzian conditions (for more details see [9]) 

Main Theorem 

(i) The classes F1, F2, F~ and 02 have absolute constant (positive) thresholds 



On the Infeasibility of Training Neural Networks with Small Squared Errors 

(ii) For ellery class F n+2, n > 0, there is a threshold of form (n- 3/'2d- 1/'2. 

(iii) For every F~+'2' 11 > 0, there is a threshold of form (n-3/2d-3/'2 . 

(iv) For every class 9n+2, n > 0, there is a threshold of form (n- 5 / 2d- 1/ 2 . 

In the last three statements. ( is an absolute positive constant . 

373 

Here is the key argument of the proof. Assume that there is an algorithm A which 
solves the training problem in some class (say Fn ) with relative error f. From 
some (properly chosen) NP-hard problem. we will construct a data set so that if f 

is sufficiently small, then the solution found by A (given the constructed data set 
as input) in Fn implies a solution for the original NP-hard problem. This will give 

a lower bound on f, if we assume that the algorithm A is polynomial. In all proofs 

the leading parameter is d (the dimension of data inputs). So by polynomial we 
mean a polynomial with d as variable. All the input (data) sets constructed ""ill 
have polynomial size in d. 

The paper is organized as follow. In the next Section, we discuss earlier results 
concerning the 100 norm. In Section 3, we display the NP-hard results we will use in 

the reduction. In Section 4, we prove the main Theorem for class F2 and mention 
the method to handle more general cases. We conclude with some remarks and 
open questions in Section 5. 

To end this Section, let us mention one important corollary. The Main Theorem 

implies that learning Fn, F~ and 9n (with respect to 12 norm) is hard. For more 

about the connection between the complexity of training and learning problems, we 
refer to [3], [5]. 

Notation: Through the paper Ud denotes the unit hypercube in Rd. For any 

number x, Xd denotes the vector (x, X,." x) of length d. In particular, Od denotes 
the origin of Rd. For any half space H, fI is the complement of H. For any set A, IAI 
is the number of elements in A. A function y( d) is said to have order of magnitude 

0(F(d)), if there are c < C positive constants such that c < y(d)jF(d) < C for all 
d. 

2 Previous works in the loo case 

The case Q = 100 (interpolation problem) was considered by several authors for 
many different classes of (usually) 2-layer networks (see [6],[2], [7], [8]). Most of the 
authors investigate the case when there is a perfect fit, i.e., eleo,F = O. In [2], the 
authors proved that training 2-layer networks containing 3 step function nodes with 
zero relative error is NP-hard. Their proof can be extended for networks with more 

inner nodes and various logistic output nodes. This generalized a former result of 
Maggido [8] on data set with rational inputs. Combining the techniques used in 
[2] with analysis arguments, Lee Jones [6] showed that the training problem with 
relative error 1/10 by networks with two monotone Lipschitzian Sigmoid inner nodes 
and linear output node, is also NP-hard (NP-complete under certain circumstances). 

This implies a threshold (in the sense of our definition) (1/10)M- 1/ 2 for the class 

examined. However, this threshold is rather weak, since it is decreasing in M. This 
result was also extended for the n inner nodes case [6]. 

It is also interesting to compare our results with Judd's. In [7] he considered the 
following problem "Given a network and a set of training examples (a data set), 
does there exist a set of weights so that the network gives correct output for all 
training examples ?" He proved that this problem is NP-hard even if the network is 



374 V. H. Vu 

required to produce the correct output for two-third of the traing examples. In fact, 

it was shown that there is a class of networks and a data sets so that any algorithm 

will produce poorly on some networks and data sets in the class. However, from 

this result one could not tell if there is a network which is "hard to train" for all 

algorithms. Moreover, the number of nodes in the networks grows with the size of 

the data set. Therefore, in some sense, the result is not independent from the size 

of the data set. 

In our proofs we will exploit many techniques provided in these former works. The 

crucial one is the reduction used by A. Blum and R. Rivest, which involves the 

NP-hardness of the Hypergraph 2-Coloring problem. 

3 Sonle NP hard problems 

Definition Let B be a CNF formula, where each clause has at most k literals. 
Let max(B) be the maximum number of clauses which can be satisfied by a truth 
assignment. The APP MAX k-SAT problem is to find a truth assignment which 
satisfies (1 - f)max(B) clauses. 

The following Theorem says that this approximation problem is NP -hard, for some 

small f. 

Theorem 3.1.1 Fix k 2: 2. There is fl > 0, such that finding a truth assignment. 
which satisfies at least (1- fdmax(B) clauses is NP-h a rd. 

The problem is still hard, when every literal in B appears in only few clauses, and 

every clause contains only few literals. Let B3(5) denote the class of CNFs with at 

most 3 literals in a clause and every literal appears in at most 5 clauses (see [1]). 

Theorem 3.1.2 There is t2 > 0 such that finding a truth assignment, which satisfies 
at least (1 - f)max(B) clauses in a formula B E B3(5) is NP-hard. 

The optimal thresholds in these theorems can be computed, due to recent results 

in Thereotical Computer Science. Because of space limitation, we do not go into 

this matter. 

Let H = (V, E) be a hypergraph on the set V, and E is the set of edges (collection 
of subsets of V). Elements of V are called vertices. The degree of a vertex is the 

number of edges containing the vertex. We could assume that each edge contains 

at least two vertices. Color the vertices with color Blue or Red. An edge is colorful 
if it contains vertices of both colors, otherwise we call it monochromatic. Let c( H) 
be the maximum number of colorful edges one can achieve by a coloring. By a 

probabilistic argument, it is easy to show that c(H) is at least IEII2 (in a random 

coloring, an edge will be colorful with probability at least 1/2). Using 3.1.2, we 

could prove the following theorem (for the proof see [9]) 

Theorem 3.1.3 There is a constant f3 > 0 such that finding a coloring with at 
least (1 - t3)c(H) colorful edges is NP-hard. This statement holds even in the case 
when every but one degree in H is at most 10 

4 Proof for :F2 

We follow the reduction used in [2]. Consider a hypergraph H(V, E) described 

Theorem 3.2.1. Let V = {I, 2, . . " d + I}, where with the possible exception of 
the vertex d + 1, all other vertices have degree at most 10. Every edge will have 

at least 2 and at most 4 vertices. So the number of edges is at least (d + 1) /4. 



On the Infeasibility of Training Neural Networks with Small Squared Errors 375 

Let Pi be the ith unit vector in R d+l , Pi = (0,0 , . .. ,0,1,0, .. . ,0). Furthermore, 

Xc = LiE C Pi for every edge C E E. Let S be a coloring with maximum number 
of colorful edges. In this coloring denote by Al the set of colorful edges and by A2 
the set of monochromatic edges. Clearly IAII = e(H). 

Our data set will be the following (inputs are from Rd+l instead of from Rd , but it 
makes no difference) 

where (Pd+1,1/2)t and (Od+l , l)t means (Pd+1, 1/2) and (Od+l, 1) are repeated t 
times in the data set, resp. Similarly to [2], consider two vectors a and b in R d+l 

where 

a = (al,"" ad+l), ai = -1 if i is Red and ai = d + 1 otherwise 

b = (b l , . .. , bd+l) , bi = -1 if i is Blue and bi = d + 1 otherwise 

It is not difficult to verify that the function fa = (1/2)(step (ax + 1/2) + step (bx + 
1/2)) fits the data perfectly, thus e:F2 = IIEjal1 = O. 

Suppose f = (1/2) (step (ex - I) + step (dx - 6» satisfies 

M 

MllEjW = 2)f(Xd - Yi)2 < Mc2 

i=l 

Since if f(X i ) # Yi then U(Xi ) - Yi)2 2: 1/4, the previous inequality implies: 

Po = l{i.J(Xd # Ydl < 4Mc2 = p 

The ratio po/Mis called misclassification ratio, and we will show that this ratio 
cannot be arbitrary small. In order to avoid unnecessary ceiling and floor symbols, 

we assume the upper-bound p is an integer. We choose t = P so that we can also 

assume that (Od+l, 1) and (Pd+l, 1/2) are well classified. Let Hl (H2) be the half 
space consisting of x: ex - 'Y > 0 (dx - 6 > 0). Note that Od E HI n H2 and 

Pd+l E fI I U fI 2. Now let Pl denote the set of i where Pi t/:. HI, and P2 the set of i 
such that Pi E Hl n H 2• Clearly, if j E P2 , then f(pj) # Yj, hence: IP2 1::; p. Let 
Q = {C E EIC n P2 # 0}. Note that for each j E P2, the degree of j is at most 10, 

thus: IQI ::; 10!?:?1 ::; lOp 

Let A~ = {Clf(xc) = I}. Since less than p points are misclassified, IA~ .0. A I I < p. 

Color V by the following rule: (1) if Pi E PI, then i is Red; (2) if Pi E P2 , color i 
arbitrarily, either Red or Blue; (3) if Pi t/:. Pl U P2 , then i is Blue. 

N ow we can finish the proof by the following two claims: 

Claim 1: Every edge in A~ \Q is colorful. It is left to readers to verify this simple 
statement. 

Claim 2: IA~ \QI is close to IAII · 

Notice that: 

IAI \(A~ \Q)I ::; IAI.0.A~ 1+ IQI ::; p + lOp = IIp 

Observe that the size of the data set is M = d + 2t + lEI, so lEI + d 2: M - 2t = 
M - 2p. Moreover, lEI 2: (d + 1)/4, so lEI 2: (1/5)(M - 2p). On the other hand, 
IAII2: (1/2)IEI, all together we obtain; IAII2: (1/10)(M - p), which yields: 



376 V. H. Vu 

Choose f = f4 such that k(f4) ~ f3 (see Theortm 3.1.3). Then f4 will be a threshold 
for the class ;:2. This completes the proof. Q.E.D. 

Due to space limitation, we omit the proofs for other classes and refer to [9]. How
ever, let us at least describe (roughly) the general method to handle these cases. 

The method consists of following steps: 

• Extend the data set in the previous proof by a set of (special) points. 

• Set the multiplicities of the special points sufficiently high so that those points 
should be well-classified. 

• If we choose the special points properly, the fact that these points are well-classified 
will determine (roughly) the behavior of all but 2 nodes. In general we will show 

that all but 2 nodes have little influence on the outputs of non-special data points. 

• The problem basically reduces to the case of two nodes. By modifying the previous 
proof, we could achieve the desired thresholds. 

5 Remarks and open problems 

• Readers may argue about the existence of (somewhat less natural) data points of 
high multiplicities. We can avoid using these data points by a combinatorial trick 

described in [9]. 

• The proof in Section 4 could be carried out using Theorem 3.1.2. However, we 
prefer using the hypergraph coloring terminology (Theorem 3.1.3), which is more 
convenient and standard. Moreover, Theorem 3.1.3 itself is interesting, and has not 
been listed among well known "approximation is hard" theorems. 

• It remains an open question to determine the right order of magnitude of thresh
olds for all the classes we considered. (see Section 1). By technical reasons, in the 
Main theorem, the thresholds for more than two nodes involve the dimension (d). 
We conjecture that there are dimension-free thresholds. 

Acknowledgement We wish to thank A. Blum, A. Barron and 1. Lovasz for many 
useful ideas and discussions. 

References 

[1] S. Arora and C. Lund Hardness of approximation, book chapter, preprint 

[2] A. Blum, R. Rivest Training a 3-node neural network is NP-hard Neutral Net
works, Vol 5., p 117-127, 1992 

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Learnability and the 

Vepnik-Chervonenkis Dimension, Journal ofthe Association for computing Ma
chinery, Vol 36, No.4, 929-965, 1989. 

[4] M. Garey and D. Johnson, Computers and intractability: A guide to the theory 
of NP-completeness, San Francisco, W.H.Freeman, 1979 



On the Infeasibility o/Training Neural Networks with Small Squared Errors 377 

[5] D. Haussler, Generalizing the PAC model for neural net and other learning 
applications (Tech. Rep. UCSC-CRL-89-30). Santa Cruz. CA: University of 

California 1989. 

[6] L. J ones, The computational intractability of training sigmoidal neural networks 
(preprint) 

[7] J. Judd Neutral Networks and Complexity of learning, MIT Press 1990. 

[8] N. Meggido, On the complexity of polyhedral separability (Tech. Rep. RJ 5252) 

IBM Almaden Research Center, San Jose, CA 

[9] V. H. Vu, On the infeasibility of training neural networks with small squared 

error. manuscript. 


