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Inference of ancestral information in recently admixed populations, in which every individual is composed of a
mixed ancestry (e.g., African Americans in the United States), is a challenging problem. Several previous model-based
approaches to admixture have been based on hidden Markov models (HMMs) and Markov hidden Markov models
(MHMMs). We present an augmented form of these models that can be used to predict historical recombination
events and can model background linkage disequilibrium (LD) more accurately. We also study some of the
computational issues that arise in using such Markovian models on realistic data sets. In particular, we present an
effective initialization procedure that, when combined with expectation-maximization (EM) algorithms for parameter
estimation, yields high accuracy at significantly decreased computational cost relative to the Markov chain Monte
Carlo (MCMC) algorithms that have generally been used in earlier studies. We present experiments exploring these
modeling and algorithmic issues in two scenarios—the inference of locus-specific ancestries in a population that is
assumed to originate from two unknown ancestral populations, and the inference of allele frequencies in one
ancestral population given those in another.

Recent advances in genotyping and sequencing technologies
have resulted in exciting discoveries of links between genes and
diseases via whole-genome association studies (Bonnen et al.
2006). In these studies, cases and controls are collected and single
nucleotide polymorphisms (SNPs) are genotyped across the en-
tire genome of these two populations. A discrepancy in the allele
distribution across the cases and the controls serves as evidence
for an association between the SNP and the condition studied.

One of the main caveats of such association studies is their
sensitivity to confounding effects. In particular, the ancestral
background of the cases and the controls may affect the results.
In order to overcome this problem, one could infer the ancestral
background of each individual using the genotypes and then
apply a correction to the statistical tests based on this informa-
tion (Price et al. 2006).

The inference of ancestral information is a nontrivial prob-
lem, and the accuracy of existing methods on this task is cur-
rently limited. Our focus in the present paper is on the setting of
recently admixed populations in which every individual is com-
posed of a mixed ancestry (e.g., African Americans in the United
States, Hispanic populations, and recently mixed populations in
large metropolitan areas such as New York or the San Francisco
Bay Area). These populations originate from two or more ances-
tral populations that were separated for a long time, and then
started mixing a small number of generations ago (e.g., 10–20
generations ago). Owing to recombination events, the genome of
every such admixed individual is a mosaic of haplotypes that
originated from the original ancestral populations. Thus, in order
to describe their overall ancestry, we have to find the locus-
specific ancestry for each individual, or the ancestral origin of
every locus in the genome of each of the individuals.

Given the genetic underpinnings of the ancestral origin
problem, it is natural to consider inference methods based on
probabilistic models. Indeed, most previous work has made use
of hidden Markov models (HMMs), where the states are the an-
cestral populations, the transitions roughly correspond to his-
torical recombination events, and the emission matrix models
population-specific allele frequencies (Pritchard et al. 2000;
Falush et al. 2003; Hoggart et al. 2004; Patterson et al. 2004). Such
Markovian models capture the linkage disequilibrium (LD)
among alleles that arises owing to admixture, but they fail to
account for within-population linkage disequilibrium (the HMM
assumes that alleles are independent once the ancestries are
known). It is possible, however, to augment the HMM to include
additional Markovian dependencies among the observed alleles
to attempt to account for the latter form of LD; such a model has
been referred to as a Markov Hidden Markov Model (MHMM)
and has been implemented in the program SABER (Tang et al.
2006).

In this study, we consider an augmented form of the HMM/
MHMM framework for modeling admixture that includes ex-
plicit indicators for recombination events. Specifically, if a re-
combination event occurs between SNPs, then the ancestries of
the SNPs are chosen independently; if recombination does not
occur, then the ancestries are set equal. These explicit indicators
serve several purposes. First, they make it possible to estimate
the location of recombination events; the set of events is
generally a strict superset of the set of change-of-ancestry events
that are captured by the state sequence. The use of explicit indi-
cators within an admixture model thus makes it possible to use
admixture data to make inferences regarding historical recom-
binations and recombination rates. Second, recombination in-
dicators can yield improvements in the estimates of haplotype
frequencies. Note in particular that the MHMM used in SABER
conditions on the ancestral state to decide whether to use pair-
wise or singleton allele probabilities (if the state does not change,
then the pairwise probabilities are used; otherwise singleton
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probabilities are used). However, haplotypes are broken up by
recombination, not only by change of ancestry, and it would
seem desirable to be able to condition on these more fine-grained
events.

One of the goals of the paper is thus to investigate the role
of recombination indicators in HMM/MHMM models. Another
goal of the paper is to consider more broadly whether the HMM/
MHMM modeling and inference framework provides a practical
computational solution to the problem of modeling of admix-
ture and LD. In these models, inference of ancestry is tractable
once its parameters are determined, but the need to estimate
various hyperparameters is a challenging problem that has led
researchers to Markov chain Monte Carlo (MCMC) sampling pro-
cedures. These procedures have desirable theoretical properties in
the limit of large numbers of samples, but in practice they can be
overly slow for realistic data sets.

To tackle the computational problem, Sankararaman et al.
(2008) have recently presented a rather different, non-model-
based approach to inferring locus-specific ancestries. This
method (referred to as “LAMP”) is based on running a window
over the genome, computing the local ancestry of each indi-
vidual within each window based on a local-likelihood model,
and combining the results from the windows overlapping a given
SNP using a majority vote. Sankararaman et al. (2008) have
shown empirically that this approach provides estimates of an-
cestry that significantly improve on the HMM-based methods.
This improvement may be due to the inadequacy of the Mar-
kovian assumptions, but it may also arise because the HMM mod-
els are being initialized randomly and the MCMC procedures are
not mixing on a practical timescale.

To address this issue, note that practical applications of
HMMs in other literature, most notably the speech and signal
processing literature (Huang et al. 2001), emphasize the critical
need for effective initialization of parameter estimation proce-
dures for HMMs. Practical inference for HMM-based admix−
ture models may also require effective initialization. Accord−
ingly, we investigate the possibility of using the solution from
LAMP to initialize an HMM. Hill-climbing in likelihood from the
LAMP solution may provide an effective way to retain the advan-
tages of a model-based method while not sacrificing perfor-
mance.

A final issue that we investigate concerns the modeling of
background LD when the data are a dense set of SNPs. As alluded
to earlier, the HMM does not attempt to model background LD.
The MHMM models background LD via a simple first-order
Markov chain that links neighboring alleles. To evaluate the ad-
equacy of this model of background LD, we compare the MHMM
to an alternative approach that prunes SNPs with a heuristic that
discards highly correlated SNPs and then uses these SNPs as input
to an HMM.

Our experimental work focuses on the problem of inferring
locus-specific ancestries in a population that is assumed to origi-
nate from two unknown ancestral populations (Falush et al.
2003; Sankararaman et al. 2008). We also consider a less-studied
scenario in which we assume that one of the ancestral popula-
tions is unknown, or its genotypes are not given, and we wish to
infer the allele frequencies in this population. This scenario may
be appropriate in situations in which it is difficult to obtain ex-
ternal estimates of the allele frequencies of one of the ancestral
populations. This is the case, for example, in many modern Ca-
ribbean populations (such as Puerto Ricans), where the native
American population has vanished.

Methods

In this section, we describe the augmented HMM that serves as
the basis of our experiments. We also describe an MHMM that
incorporates a model of background LD along the lines of SABER
(Tang et al. 2006). We then describe various forms of inference
algorithms for these hidden Markov models, emphasizing the use
of the EM procedure for parameter estimation.

Probabilistic model

To simplify our presentation, let us assume that the number of
populations that have been admixed is two (the notation is
slightly more involved in the case of more than two populations,
but no new ideas are needed). Also, again for simplicity of pre-
sentation, we restrict our attention to haplotypes; genotypes can
be handled in a straightforward manner as described in the Ap-
pendix.

Let m denote the number of haplotypes, and let n denote the
number of SNPs. Let X be the observed binary matrix of SNPs;
that is, Xi,j is the jth SNP of the ith haplotype. Let p and q be the
vectors of the allele frequencies in the ancestral populations.
Hence, pj is the probability to obtain 1 in the jth SNP in the first
population, and qj is the corresponding probability in the second
population. The matrix Z denotes the ancestry information of
each haplotype at each SNP: Zi,j ∈ {0, 1} holds the ancestry of
haplotype i at the jth SNP (0 if SNP j of haplotype i originated
from the first population and 1 if it originated from the second).
We use the matrix W to denote recombination events. Specifi-
cally, Wi,j equals 1 if at least one recombination event occurred
during the history of the admixture process in the ith haplotype
in the interval between the (j � 1)-th SNP and the jth SNP, and
0 otherwise. The (n � 1)-dimensional vector � denotes the prob-
ability of at least one such recombination event, with �j corre-
sponding to the interval between the (j � 1)-th and the jth SNPs.
The fraction of the first population in the ancestral population,
which we call the “admixture fraction,” is denoted by �. Finally,
g denotes the number of generations of the admixed process (in
the sense that 1/[g � 1] models the average length of ancestral
chromosome blocks in the current admixed population).

Given the parameters g, �, p, q, and �, we model a haplotype
as being generated as follows: Recombination points are gener-
ated on each chromosome based on a Poisson process whose rate
parameter depends on g and the recombination rate r. This pro-
cess corresponds to setting some of the Ws to 1. Then the ances-
tries of the resulting chromosomal blocks are determined inde-
pendently for each block, with � being the probability to choose
the first ancestry. We assume that the mating is random across
the populations. Given the ancestry at a particular position, an
allele is generated using the corresponding ancestral allele fre-
quency. We assume that the alleles are generated independently
in a block.

We now describe the marginal and conditional distributions
of the model. We assume a uniform prior over the interval [0, 1]
for each of the parameters �, p, q. The parameter g is assumed to
be distributed uniformly over the interval [gmin, gmax] for some
gmax > gmin > 1. Given the ancestry and given the allele frequen-
cies of a specific SNP j in haplotype i, Xi,j is a Bernoulli random
variable with distribution:

Pr�Xi,j = 1 |Zi,j, pj, qj� = �pj Zi,j = 0

qj Zi,j = 1
. (1)
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The distribution of the ancestry of a specific SNP depends on
the occurrence of a recombination event. On the occurrence of a
recombination between SNPs j and j � 1 of haplotype i, the an-
cestry Zi,j is chosen with probability � to be 0 and 1 otherwise. If
there was no recombination, the ancestry stays the same as that
at the previous SNP:

Pr�Zi,j |Zi,j−1, Wi,j, �� = ���Zi,j, Zi,j−1� Wi,j = 0

�1 − ��Zi,j��1−Zi,j� Wi,j = 1
.

where �(x, y) = 1, if x = y.
Since we assume that the recombination process is a Poisson

process, the variables Wi,j and Wi,k are independent for k � j and
the probability for a specific location between SNPs j � 1 and j to
have at least one recombination depends solely on �j. For j > 1,
we have Pr(Wi,j = 1|�j) = �j and �j = 1 � e�(g�1)ljrj, where lj is the
distance between the (j � 1)-th SNP and the jth SNP and rj is the
recombination rate in that region. In our specific problem, �j is a
deterministic function of g. In other situations, it may be more
appropriate for g to parameterize a prior over �j.

Marginalizing over the recombination indicator Wi,j, we ob-
tain the mixture distribution that is used as a transition matrix by
programs such as STRUCTURE (Falush et al. 2003) and SABER
(Tang et al. 2006).

Modeling background LD

The HMM framework assumes that alleles are conditionally in-
dependent given the states and thus is not able to capture within-
population LD. The MHMM model implemented in SABER (Tang
et al. 2006) attempts to capture such background LD by allowing
additional dependencies directly between the observable Xi vari-
ables. The form of these dependencies differs depending on the
ancestries Zi,j�1 and Zi,j. In particular, if these ancestries are the
same, then a pairwise emission probability is used. If these an-
cestries are different, then a singleton emission probability is
used. SABER estimates the pairwise probabilities using ancestral
haplotypes (which are assumed to be available).

Given that our model makes use of explicit recombination
indicators Wi,j, we can condition on these variables instead of the
ancestry variables Zi,j. Formally, we define the following transi-
tion matrix for j > 1:

Pr�Xi,j = 1 |Wi,j, Zi,j, Xi,j−1, pj, qj, pj−1,j, qj−1,j�

= �Pr�Xi,j = 1 |Zi,j, pj, qj�, if Wi,j = 1

Pr�Xi,j = 1 |Zi,j, Xi,j−1, pj−1,j, qj−1,j�, otherwise

(2)

The transition matrix is defined so that if Wi,j = 1 (i.e., a
recombination has occurred between SNPs j � 1 and j), then the
allele seen at position j is independent of the allele at position
j � 1. If Wi,j = 0, the SNPs at position j � 1 and j belong to the
same ancestral haplotype, and the emission probability of the
allele at position j depends on the allele at j � 1. Here pj�1,j and
qj�1,j are the pairwise (conditional) SNP frequencies at positions
j � 1 and j in the haplotypes from the two respective popula-
tions.

Why do we condition on recombination events instead of
ancestries (as in SABER)? Note that the conditioning in SABER
ignores recombinations that do not change the ancestries. Such
recombinations are expected to be common when the admixture

fraction � K 1⁄2. In that case, assuming random mating, an ex-
pected fraction �2 + (1 � �)2 of recombinations will not lead to a
change in the ancestry. Ignoring such events can be problematic.
Consider a scenario where the haplotype frequencies are esti-
mated from an ancestral population. Assume that 00 and 11 are
the only haplotypes present in this ancestral population. In the
admixed population, a new haplotype, say 01, may arise because
of a recombination event that is not accompanied by a change in
the ancestry. By ignoring the recombination event and assuming
that the two loci share a haplotype, the MHMM would assign a
small probability (indeed, a zero probability in our example) to
the new haplotype 01. On the other hand, in a model that con-
ditions on the recombination indicators Wi,j, the new haplotype
is assigned a frequency that is the product of the allele frequen-
cies at the two loci.

Inference problems

In this section, we focus on two inferential problems that can be
framed within the HMM/MHMM formalism. In both problems,
we seek the maximum a posteriori (MAP) estimates of a subset of
the variables in the model, and we find parameter estimates via
the EM algorithm. For simplicity, we assume that the number of
generations g is constant and known, and therefore � is known.
This is often the case for admixed populations. The two problems
that we consider are: (1) The admixture fraction is known, the
allele frequencies are unknown, and the goal is to find the local
ancestries for each SNP in each haplotype. The optimization
problem is to find (W, Z) such that Pr(W, Z |X, �, g) is maximized.
We refer to this problem as the “local ancestries inference prob-
lem.” (2) The allele frequencies are known for one of the ances-
tral populations, and the goal is to find the allele frequencies of
the other as well as the admixture fraction. Here, the local an-
cestries are missing variables. The optimization problem is to find
(q, �) such that Pr(q, � |X, p) is maximized. We refer to this
problem as the “ancestral allele frequencies inference problem.”

Local ancestries problem

To compute the local ancestries, we would like to compute the
MAP estimates of Z and W by solving the following optimization
problem:

arg max log
Z,W

�Pr�W, Z |X, �, ���. (3)

In each iteration of EM, the updates to Z and W are com-
puted by a Viterbi algorithm with the emission probabilities
Pr(Xi,j |Zi,j, pj, qj) replaced by an integral over pj, qj. The E-step
involves computing the posterior probabilities of pj, qj; that is,
Pr(pj, qj, |Xi,j, Z(t)

i,j). This can be done easily using Bayes’ theorem.
The M-step involves solving m separate optimization problems in
Zi, Wi, i ∈ {1, . . . , m} where Zi denotes the vector of ancestries
for the ith haplotype and Wi denotes the corresponding vector of
recombination events:

log�Pr�Zi,1 |��� + I1,i�Zi,1� + �
j=2

n

�Ij,i�Zi,j� + fi,j−1,j�Zi,j−1, Zi,j, Wi,j��

(4)

where

fi,j−1,j�Zi,j−1, Zi,j, Wi,j� ≡ log�Pr�Zi,j |Zi,j−1, Wi,j, ��� + log�Pr�Wi,j |�j��
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corresponding to log transition probabilities and

Ij,i�Zi,j� ≡ �
i=1

m

�
j=1

n

� �log�Pr�Xi,j |Zi,j, pj, qj�� Pr�pj, qj |X.,j, Z.,j
�t�� dpj dqj�

are expectations of the log emission probabilities.
Generally, the values of Ij,i(z) can be tabulated for each i, j, z

by computing the integral over a grid on the {pj, qj}. For our
setting, we have a uniform prior over pj and qj which permits the
integral to be evaluated analytically as shown in the Appendix.
We can maximize Equation 4 by dynamic programming. The
values obtained for Z, W are then used to recompute the integrals
Ij,i(Zi,j) and the procedure is iterated.

Ancestral allele frequencies problem

To compute the ancestral allele frequencies, we compute the
MAP estimates of q and �:

arg max log
q,�

Pr�q, � |X, p, �� = arg max log
q,�

Pr�X |p, q, �, ��

since we have a uniform prior on q and �. We assume g and p to
be known. Let q(t), �(t) denote the current estimates of q, �. The
EM algorithm produces new estimates q(t+1), �(t+1) that improve
the objective function:

qj
�t+1� =

�
i=1

m

Xi,jdi,j�1�

�
i=1

m

di,j�1�

, ��t+1� =
�
i=1

m �di,1�0� + �
j=2

n

ci,j�1, 0��
m + �

i=1

m

�
j=2

n

�
z∈{0,1}

m

ci,j�1, z�

.

Here

ci,k�w, z� ≡ Pr�Wi,k = w, Zi,k = z |Xi, q�t�, ��t�, p, ��

and

di,j�z� ≡ Pr�Zi,j = z |Xi, q�t�, ��t�, p, ��

are the posterior probabilities of (W, Z) and Z at the jth SNP of
haplotype i, respectively, and are computed by an application of
the forward–backward algorithm in the E-step.

These updates have an intuitive interpretation. At each po-
sition j, the new value of qj is the fraction of SNPs that are 1 out
of all SNPs belonging to the second population (weighted by
their posterior probabilities). The update for � is the fraction of
ancestries chosen from the first population whenever a new hap-
lotype is chosen (weighted by their posterior probabilities).

Experiments

We have implemented the HMM and the EM algorithm that we
have described in a program that we term “SWITCH.” We have
also implemented a program that we refer to as “SWITCH-
MHMM” that is based on the MHMM. In this section, we describe
experiments aimed at evaluating these procedures.

These experiments were run on data sets generated from
HapMap data (http://www.hapmap.org). We used SNPs found in
the Affymetrix 500K GeneChip Assay (http://www.affymetrix.
com/products/arrays/specific/500k.affx) from Chromosome 1
for each of the HapMap populations; that is, Yorubans (YRI),
Japanese (JPT), Han Chinese (CHB), and western Europeans
(CEU). For a pair of populations, we simulated admixture by pick-
ing individuals from two ancestral populations in the ratio

�:(1 � �). In each generation, individuals mate randomly and
produce offspring. The rate of the recombination process is set to
10�8 per base pair per generation (Nachman and Crowell 2000).
The mixing process is repeated for g generations. We generated
data sets consisting of admixtures of YRI-CEU, CEU-JPT, and JPT-
CHB populations. We set g to 7 and � to 0.20 since these roughly
correspond to the admixing process in African-American popu-
lations as estimated in Falush et al. (2003), Patterson et al. (2004),
and Tian et al. (2006). For each of the problems, we use only
genotype data. Since the HMM underlying SWITCH assumes that
the SNPs are conditionally independent given the states, in the
input to SWITCH we greedily remove SNPs that have a high
correlation coefficient, r2 > 0.1, with any other SNP. We refer to
this usage of SWITCH as “uSWITCH.” (When the entire set of
SNPs is used, we refer to the usage simply as “SWITCH.”) Ances-
try estimates at the discarded SNPs were filled in from the highly
correlated SNP that was retained.

The remainder of this section is organized as follows. First,
we compare the performance of various methods on the local
ancestries problem. The role of the inference algorithms and
background LD models are discussed in the next two sections,
respectively. The performance of methods on the problems of
predicting recombination events and the ancestral allele frequen-
cies problem are then discussed in the following sections.

Local ancestries problem

We first compare the estimates of the ancestries obtained from
SWITCH to the estimates obtained from SABER and LAMP. In
these experiments, the methods are given g and �. We consider
two settings depending on whether the ancestral frequencies, (p,
q), are available. Even when the frequencies of the ancestral
populations are available, it is still advantageous to use the data
to update the frequency estimates, which may have drifted from
the ancestral frequencies.

When they are available, uSWITCH uses a maximum-
likelihood classification based on these frequencies as initializa-
tion. We refer to this variation of uSWITCH as uSWITCH-ANC.
SABER also requires the ancestral allele frequencies. The version
of LAMP that uses ancestral frequencies is termed “LAMP-ANC.”

When the ancestral allele frequencies are not known, LAMP
can still be used, as can uSWITCH. For the latter, we use the
estimates of ancestries from LAMP to initialize the EM algorithm.

For each individual i and SNP j, each method finds an esti-
mate âij

p ∈ {0, 0.5, 1} for the true ancestry aij
p. We measure the

accuracy of a method as the fraction of triplets (i, j, p) for which
aij

p = âij
p. The first half of Table 1 compares the accuracies of SABER,

LAMP-ANC, and uSWITCH-ANC on 100 random data sets of YRI-

Table 1. Accuracies of ancestry estimates averaged over 100 data
sets

Method YRI-CEU CEU-JPT JPT-CHB

uSWITCH-ANC 97.6 � 0.3 94.5 � 0.8 66.4 � 2.7
LAMP-ANC 94.9 � 0.6 93.7 � 0.7 69.9 � 2.1
SABER 89.4 � 0.8 85.2 � 1.2 68.2 � 1.9
uSWITCH 96.0 � 0.6 83.2 � 5.6 51.4 � 2.8
LAMP 94.0 � 0.8 82.9 � 5.5 50.6 � 2.5

The methods are compared under two settings. When the ancestral allele
frequencies are known, the methods compared are LAMP-ANC,
uSWITCH-ANC, and SABER. When the ancestral allele frequencies are not
known, the methods compared are uSWITCH and LAMP.
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CEU, CEU-JPT, and JPT-CHB. uSWITCH-ANC improves signifi-
cantly over LAMP-ANC and SABER on the YRI-CEU data set. On
the CEU-JPT, uSWITCH-ANC and LAMP-ANC have comparable
performance, and both methods are more accurate than SABER.
All methods perform poorly on the JPT-CHB data set because of
the closeness of the two populations. The second half of Table 1
compares the accuracies of uSWITCH and LAMP. On the YRI-
CEU data, uSWITCH, with an accuracy of 96.0%, improves sig-
nificantly over LAMP, which has an accuracy of 94.0% (Wil-
coxon Paired Signed Rank test P-value of 3.89 � 10�18). Inter-
estingly, uSWITCH improves significantly over LAMP-ANC even
though the latter uses the ancestral allele frequencies. On the
CEU-JPT and the JPT-CHB data sets, uSWITCH seems to have
slightly higher accuracies than LAMP. We believe that using
more informative priors on the variables (p, q) should yield fur-
ther improvements by improving the estimation of low-
frequency alleles. These results indicate that the HMM is most
useful when the mixing populations can be easily distinguished
as is the case with the YRI-CEU admixture.

Although the versions of uSWITCH have a factor of five to
10 increase in running time compared to LAMP, they still run
under an hour on large data sets, making them feasible for ge-
nome-scale problems.

Role of the inference algorithm

To understand the impact of the inference algorithm and the
initialization, we compared uSWITCH to STRUCTURE. While the
model used in uSWITCH is the same as the model used in STRUC-
TURE when the recombination indicators W are integrated out,
the inference algorithms differ. uSWITCH obtains the posterior
mode of the ancestries Z using an EM algorithm with LAMP
providing the initialization. STRUCTURE computes the posterior
marginals of each Zi,j using an MCMC algorithm to integrate out
the unknown parameters. To evaluate the output from STRUC-
TURE, we threshold the posterior mean to obtain the actual an-
cestry estimates; that is, position i, j is assigned 0, 1, or 2 alleles
from one of the populations depending on whether the posterior
marginal E(Zi,j |X) lies in [0, 0.5), [0.5, 1.5), or [1.5, 2]. We com-
pared the ancestry estimates produced by the two methods on
the YRI-CEU data set. STRUCTURE was run for 10,000 burn-in
and 50,000 MCMC iterations (see below for further discussion of
this choice). The linkage model was used. STRUCTURE was run
on non-overlapping sets of 4000 SNPs covering 36,000 of the
38,000 initial SNPs because of numerical instabilities when larger
numbers of SNPs were used.

On the YRI-CEU data set, uSWITCH achieved an accuracy of
97%, while STRUCTURE achieved an accuracy of 84%. To isolate
the reason for this difference, we evaluated MCMC algorithms
that differ from STRUCTURE in varying degrees. First, we ran
MCMC from a random starting point for 1000 iterations with
100 iterations of burn-in and used the posterior mean as the
ancestry estimates. This yielded estimates with an accuracy of
91.13%. When the LAMP estimates were used as a starting point,
the accuracy was 94.9%. This suggests that the chain has not
mixed in our STRUCTURE runs. To test this suggestion formally,
we simulated five such chains each from different random start-
ing points. We then computed a multivariate potential scale re-
duction factor (PSRF) (Brooks and Gelman 1998) for random sets
of 100 ps and qs and found it to be consistently large (>1.2).
When the Markov chain is unable to converge quickly, the ini-
tialization influences the ancestry estimates. Given that the

MCMC algorithms do not converge even after being run for sev-
eral days (in particular, the STRUCTURE runs required a little less
than 3 d, while the other MCMC runs took about a day to run),
good initialization becomes essential.

Two other differences between STRUCTURE and the MCMC
algorithm that we implemented are that the latter discards cor-
related SNPs and fixes the hyperparameters. We modified the
MCMC runs to retain the correlated SNPs, and the accuracy falls
to 74.9%. We conclude that the pruning of highly correlated
SNPs can have a large impact on the accuracy of models that do
not attempt to account for background LD. Another approach to
this problem is to attempt to account for background LD via the
MHMM approach; we discuss this approach in the following sec-
tion.

Modeling background LD

As discussed above, we refer to our implementation of an MHMM
model based on the recombination indicators Wi,j as SWITCH-
MHMM. We also implemented a version of the model based on
the ancestries Zi,j instead of the recombination indicators. We
refer to this model as “MHMM”; it is the same as the model
underlying SABER. (Our implementation differs from SABER in
the inference procedures that we used; in particular, the ancestry
estimates were computed by a Viterbi algorithm.)

In the first scenario that we studied, both the MHMM and
the SWITCH-MHMM were given the ancestral haplotypes. The
ancestral haplotypes were used to estimate the pairwise SNP
emission probabilities. The single SNP frequencies were esti-
mated using LAMP-ANC. In this experiment, SWITCH-MHMM
achieved an accuracy of 91.9%, while the MHMM yielded an
accuracy of 88.9%. This demonstrates that improvements can be
obtained by conditioning on recombination indicators instead of
conditioning on ancestral states.

In a second scenario, the pairwise SNP emission probabili-
ties were estimated directly from the admixed data. In this case,
the accuracies of SWITCH-MHMM and MHMM were both
95.7%. It is interesting to note that these accuracies are higher
than in the case that ancestral haplotypes were used to estimate
parameters. This is presumably because the estimates of haplo-
type frequencies are more accurate when estimated from the ad-
mixed population itself. Finally, we also measured the accuracy
of ancestry estimates from SWITCH (i.e., when the entire set of
SNPs was taken as input) and observed that the accuracy drops to
93.1%. This improvement in accuracies when background LD is
taken into account has been observed before (Tang et al. 2006).
However, the accuracy of uSWITCH is higher than SWITCH-
HMM. Thus, the heuristic of removing highly correlated SNPs
and then running SWITCH appears to be competitive, in prac-
tice, to the methods based on explicit (but simplified) models of
background LD.

Predicting recombinations

Another advantage of the use of the recombination indicators W
is that they open the possibility of inference of historic recom-
binations created by the mixing process after the initial admix-
ture event. While a change in the ancestry between two SNPs
implies a recombination event, many recombination events do
not result in a change in the ancestry. When � is small, this
happens quite often. To study this issue, we measured the accu-
racy of uSWITCH in predicting such recombinations. If a pre-
dicted recombination falls within 5 kb of the SNPs flanking a true
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recombination, it is called a true positive. If multiple recombina-
tions are predicted within this window, only one is counted as a
true positive. False positives and false negatives are defined simi-
larly. The precision and recall of the predictions are then com-
puted as

Precision =
TP

TP + FP

and

Recall =
TP

TP + FN
.

We combine these numbers by taking a harmonic mean, report-
ing

F − score =
2Precision × Recall
Precision + Recall

.

As a baseline, we use a null model that predicts recombina-
tions based on the exponentially distributed lengths of the hap-
lotypes. The total number of recombinations in the null model is
set to the number of predicted recombinations, and the precision
and recall of the predictions are computed similarly.

On the YRI-CEU data set, uSWITCH attains an F-score of
70.8, while the null model attains an F-score of 52.8. uSWITCH
was found to be consistently more accurate than the null model
on the CEU-JPT and JPT-CHB data sets as well (data not shown).

We now consider models that attempt to account for back-
ground LD. For the MHMM model, since the model does not
explicitly represent recombinations, the recombinations are in-
ferred (naively) based on a change in the ancestry labels. The
results are shown in Table 2. When we use the ancestral haplo-
types to estimate parameters, the MHMM and SWITCH-MHMM
achieve F-scores of 35.0 and 41.5, respectively. Using the ad-
mixed data to estimate parameters, the two models achieve F-
scores of 78.0 and 79.3, respectively. We see that the explicit W
variables allow more accurate prediction of recombinations in
the admixed genomes. When we restrict attention to breakpoints
(recombinations that change the ancestry), the difference be-
tween the models is diminished although the relative perfor-
mance is the same.

As discussed in the previous section, SWITCH-MHMM (and
the other models that incorporate background LD) has lower
accuracy than uSWITCH, which ignores background LD and uses
a heuristic to prune correlated SNPs. However, SWITCH-MHMM
predicts recombinations more accurately (while uSWITCH is
more accurate in predicting breakpoints). This result suggests

that models that incorporate background LD (albeit imperfectly)
may be useful in inferring recombinations in admixed genomes.

Ancestral allele frequencies problem

We now turn to the problem of inferring ancestral allele frequen-
cies. To obtain a benchmark, we implemented a naive algorithm.
The naive algorithm is given the true value of � (which is not
available to the model). The idea behind the naive algorithm is as
follows. For a position j with minor allele frequency fj, and allele
frequencies pj and qj in the two populations, if the number of
individuals is large, fj can be written as fj = (1 � �)pj + �qj. Thus
we compute the allele frequency qj at position j as

qj = max�min�fj − �1 − ��pj

�
, 1�, 0�.

We used two different estimates of �, yielding algorithms that we
refer to as “Naive1” and “Naive2.” Naive1 uses the value of
� = 0.20, which is the admixture fraction in the first generation
of admixture. Naive2 uses an � measured from each data set.

We calculated the L1 error (the sum of the absolute values of
the errors) between the estimated q̂ and the true q. The L1 error
averaged over 100 data sets of YRI-CEU, CEU-JPT, and JPT-CHB is
shown in Table 3. We see that uSWITCH reduces the L1 error by
∼30% in the YRI-CEU and the CEU-JPT data sets, while there is no
significant difference for the JPT-CHB data set.

We also compared the ancestry estimates from uSWITCH
with those from STRUCTURE on single instances of YRI-CEU,
CEU-JPT, and JPT-CHB data sets (the running time of STRUC-
TURE prohibited multiple runs). The L1 errors for uSWITCH are
7.1%, 8.3%, and 12.7% on the respective data sets. STRUCTURE
obtains errors of 25.8%, 29.0%, and 25.2%, respectively.

Conclusions

Markovian models such as HMMs and MHMMs are a natural
approach to admixture that aim to strike a balance between pre-
dictive performance and inferential complexity. We have ex-
plored several variations on the HMM/MHMM theme with the
aim of identifying combinations of model specification, infer-
ence procedure, and data preprocessing that are most effective in
realizing this balance.

We have found that explicit indicators of recombination
events can be useful. These indicators allow us to provide a more
fine-grained version of the MHMM that allows new haplotypes
to emerge when recombinations occur, and not only when an-
cestral state changes. We found that this approach yielded better
estimates when haplotype emission probabilities are inferred
from ancestral populations. Also, by making the recombination
events explicit in our model, we are able to infer historic recom-

Table 3. Average L1 error in the estimates of q

Method YRI-CEU CEU-JPT JPT-CHB

uSWITCH 7.7 � 0.5 8.5 � 0.6 11.7 � 1.3
Naive1 11.8 � 0.5 12.2 � 0.5 12.5 � 0.5
Naive2 11.8 � 1.2 12.3 � 1.2 12.6 � 1.2

The methods compared are uSWITCH (which estimates q and � jointly)
and two naive algorithms that are given the true � = 0.20 and � esti-
mated from the data, respectively.

Table 2. Accuracies of the different models on the prediction of
recombinations and breakpoints

Model

Recombinations Breakpoints

F-score
Precision/

Recall F-score
Precision/

Recall

MHMM (anc)a 35.0 21.5/95.1 12.2 6.5/99.9
SWITCH-MHMM(anc)a 41.5 26.5/95.2 23.4 13.3/98.3
MHMM 78.0 87.0/70.0 49.5 33.5/94.8
SWITCH-MHMM 79.3 85.0/74.3 49.8 33.8/94.8
uSWITCH 74.5 88.7/64.2 53.7 33.8/92.5

a(anc) Denotes that the ancestral haplotypes were used to estimate pa-
rameters.
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binations. While being interesting in and of themselves, these
predictions may be helpful in allowing admixture data to be used
in the inference of recombination hotspots.

HMM and MHMM models require the estimation of model
hyperparameters. One approach to estimating these hyperpa-
rameters is to use MCMC algorithms, but these algorithms can be
impractical on realistic data sets. We have shown that an EM-
based approach starting with an accurate initialization (the non-
model-based procedure LAMP) yielded high accuracy at reason-
able cost. Indeed, this approach yielded the best results of any
algorithm that we studied.

Our conclusions regarding background LD are mixed. If an
MHMM model is to be used to attempt to capture background
LD, then we recommend conditioning on explicit recombination
indicators. On the other hand, we found that a heuristic ap-
proach, in which highly correlated SNPs are discarded before
running an HMM, yielded higher accuracy than the MHMM.
One possible direction for future research is to consider richer
MHMM models than the pairwise model considered here and in
SABER.

An important caveat of our work is that we have not studied
the robustness of our methods to factors such as variable recom-
bination rates, continuous gene-flow models, and nonrandom
mating. The extent to which the Markovian models that we have
studied here are robust to such factors is currently unknown, and
this is an essential direction for future research.
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Appendix

Model for genotype data
It is straightforward to extend the model to handle genotype
data. Since the SNPs are assumed to be independent, we can
model the SNP at each position as a random variable that de-
pends on the alleles in the corresponding haplotypes. We intro-
duce random variables Yi,j ∈ {0, 1, 2}, i ∈ {1, . . . , (m/2)} (assum-
ing that m is even) representing the jth SNP of the ith genotype.
The value of this SNP depends on the values of the jth alleles in
haplotypes 2i � 1 and 2i:

Pr�Yi,j |X2i−1,j, X2i,j� = ��Yi,j = X2i−1,j + X2i,j�.

We now replace all X variables in previous equations with Y, and
instead of Equation 1 we use

Pr�Yi,j = N |Z2i−1,j, Z2i,j, pj, qj�,

which can be calculated for each N ∈ {0, 1, 2}.

Analytical computation of Ij,i
In this section, we show how the integrals Ij,I (Zi,j) can be ana-
lytically evaluated. Recall the definition of Ij,i:

Ij,i�Zi,j� = � �log�Pr�Xi,j |Zi,j, pj, qj�� Pr�pj, qj |X.,j, Z.,j
�t�� dpj dqj�.

(5)

We define the following quantities:

�j,1
�t� = �

i=1

m

Xi,j Zi,j
�t� �j,0

�t� = �
i=1

m

�1 − Xi,j�Zi,j
�t�

�j,1
�t� = �

i=1

m

Xi,j�1 − Zi,j
�t�� �j,0

�t� = �
i=1

m

�1 − Xi,j��1 − Zi,j
�t��.

(6)

The log likelihood in Equation 5 can be written as

Pr�Xi,j |Zi,j, pj, qj� = �qj
Xi,j�1 − qj�

1−Xi,j�Zi,j � �pj
Xi,j�1 − pj�

1−Xi,j�1−Zi,j.

Using the above expression, we can now write the posterior:

Pr�pj, qj |X.,j, Z.,j
�t�� � Pr�X.,j |pj, qj, Z.,j

�t�� Pr�pj� Pr�qj�

� 	
i=1

m

Pr�Xi,j |pj, qj, Zi,j
�t�� Pr�pj� Pr�qj�

� qj
�j,1

�t�
�1 − qj�

�j,0
�t�

pj
�j,1
�t�

�1 − pj�
�j,0
�t�

=
qj

�j,1
�t�

�1 − qj�
�j,0

�t�
pj

�j,1
�t�

�1 − pj�
�j,0
�t�

B��j,1
�t� , �j,0

�t� �B��j,1
�t� , �j,0

�t� �
.

Here B(a, b) denotes the beta function ∫10 xa(1 � x)b dx.
Substituting the above expression into Equation 5, we ob-

tain

Ij,i�Zi,j� = XiZiJ��j,1
�t� , �j,0

�t� � + �1 − Xi�ZiJ��j,0
�t� , �j,1

�t� �

+ Xi�1 − Zi�J��j,1
�t� , �j,0

�t� � + �1 − Xi��1 − Zi�J��j,0
�t� , �j,1

�t� �,

where

J�a, b� = �0

1
log xxa�1 − x�b dx.

Notice that in our setting a and b are non-negative integers.
So we can compute J(a, b) by performing a binomial expansion
on (1 � x)b and integrating each term:

J�a, b� = �0

1
log xxa��

r=0

b �b
r ��−1�rxr� dx

= �
r=0

b �b
r ��−1�r �0

1
dx log xxa+r

= �
r=0

b �b
r ��−1�r+1 1

�a + r + 1�2
.
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