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Abstract

Inference of ancestral information in recently admixed populations, in which every indi-
vidual is composed of a mixed ancestry (e.g., African Americans in the US), is a challenging
problem. Several previous model-based approaches to admixture have been based on hidden
Markov models (HMMs) and Markov hidden Markov models (MHMMs). We present an aug-
mented form of these models that can be used to predict historical recombination events and
can model background LD more accurately. We also study some of the computational issues
that arise in using such Markovian models on realistic datasets. In particular, we present an
effective initialization procedure that when combined with expectation-maximization (EM)
algorithms for parameter estimation yields high accuracy at significantly decreased com-
putational cost relative to the Markov Chain Monte Carlo (MCMC) algorithms that have
generally been used in earlier studies. We present experiments exploring these modeling and
algorithmic issues in two scenarios—the inference of locus-specific ancestries in a population
that is assumed to originate from two unknown ancestral populations, and the inference of
allele frequencies in one ancestral population given those in another.

1 Introduction

Recent advances in genotyping and sequencing technologies have resulted in exciting discoveries
of links between genes and diseases via whole-genome association studies (Bonnen et al. 2006).
In these studies, cases and controls are collected and single nucleotide polymorphisms (SNPs)
are genotyped across the entire genome of these two populations. A discrepancy in the allele
distribution across the cases and the controls serves as evidence for an association between the
SNP and the condition studied.

One of the main caveats of such association studies is their sensitivity to confounding effects.
In particular, the ancestral background of the cases and the controls may affect the results. In
order to overcome this problem, one could infer the ancestral background of each individual using
the genotypes, and then apply a correction to the statistical tests based on this information (Price
et al. 2006).

The inference of ancestral information is a non-trivial problem, and the accuracy of existing
methods on this task is currently limited. Our focus in the current paper is on the setting
of recently admixed populations in which every individual is composed of a mixed ancestry
(e.g., African Americans in the US, Hispanic populations, and recently mixed populations in
large metropolitan areas such as New York or the San Francisco Bay Area). These populations
originate from two or more ancestral populations that were separated for a long time, and
then started mixing a small number of generations ago (e.g., 10-20 generations ago). Due to
recombination events, the genome of every such admixed individual is a mosaic of haplotypes
that originated from the original ancestral populations. Thus, in order to describe their overall
ancestry, we have to find the locus-specific ancestry for each individual, or the ancestral origin
of every locus in the genome of each of the individuals.

Given the genetic underpinnings of the ancestral origin problem it is natural to consider
inference methods based on probabilistic models. Indeed, most previous work has made use
of hidden Markov models (HMMs), where the states are the ancestral populations, the tran-
sitions roughly correspond to historical recombination events and the emission matrix models
population-specific allele frequencies (Pritchard et al. 2000; Falush et al. 2003; Patterson et al.
2004; Hoggart et al. 2004). Such Markovian models capture the linkage disequilibrum (LD)
among alleles that arises due to admixture, but they fail to account for within-population linkage
disequilibrium (the HMM assumes that alleles are independent once the ancestries are known).
It is possible, however, to augment the HMM to include additional Markovian dependencies
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among the observed alleles to attempt to account for the latter form of LD; such a model has
been referred to as a Markov Hidden Markov Model (MHMM) and has been implemented in
the program SABER (Tang et al. 2006).

In this paper, we consider an augmented form of the HMM/MHMM framework for modeling
admixture which includes explicit indicators for recombination events. Specifically, if a recombi-
nation event occurs between SNPs, then the ancestry of the SNPs are chosen independently; if
recombination does not occur, then the ancestries are set equal. These explicit indicators serve
several purposes. First, they make it possible to estimate the location of recombination events;
the set of events is generally a strict superset of the set of change-of-ancestry events that are
captured by the state sequence. The use of explicit indicators within an admixture model thus
makes it possible to use admixture data to make inferences regarding historical recombinations
and recombination rates. Second, recombination indicators can yield improvements in the esti-
mates of haplotype frequencies. Note in particular that the MHMM used in SABER conditions
on the ancestral state to decide whether to use pairwise or singleton allele probabilities (if the
state does not change, then the pairwise probabilities are used; otherwise singleton probabilities
are used). However, haplotypes are broken up by recombination, not only by change of ancestry,
and it would seem desirable to be able to condition on these more fine-grained events.

One of the goals of the paper is thus to investigate the role of recombination indicators
in HMM/MHMM models. Another goal of the paper is to consider more broadly whether the
HMM/MHMM modeling and inference framework provides a practical computational solution to
the problem of modeling of admixture and LD. In these models, inference of ancestry is tractable
once its parameters are determined, but the need to estimate various hyperparameters is a
challenging problem that has led researchers to Markov chain Monte Carlo (MCMC) sampling
procedures. These procedures have desirable theoretical properties in the limit of large numbers
of samples, but in practice they can be overly slow for realistic data sets.

To tackle the computational problem, Sankararaman et al. (to appear) have recently pre-
sented a rather different, non-model-based approach to inferring locus-specific ancestries. This
method (referred to as “LAMP”) is based on running a window over the genome, computing
the local ancestry of each individual within each window based on a local-likelihood model,
and combining the results from the windows overlapping a given SNP using a majority vote.
Sankararaman et al. (to appear) have shown empirically that this approach provides estimates
of ancestry that significantly improve on the HMM-based methods. This improvement may be
due to the inadequacy of the Markovian assumptions, but it may also arise because the HMM
models are being initialized randomly and the MCMC procedures are not mixing on a practical
time scale.

To address this issue, note that practical applications of HMMs in other literatures, most
notably the speech and signal processing literatures (Huang et al. 2001), emphasize the critical
need for effective initialization of parameter estimation procedures for HMMs. Practical infer-
ence for HMM-based admixture models may also require effective initialization. Accordingly, we
investigate the possibility of using the solution from LAMP to initialize an HMM. Hill-climbing
in likelihood from the LAMP solution may provide an effective way to retain the advantages of
a model-based method while not sacrificing performance.

A final issue that we investigate concerns the modeling of background LD when the data are
a dense set of SNPs. As alluded to earlier, the HMM does not attempt to model background LD.
The MHMM models background LD via a simple first-order Markov chain that links neighboring
alleles. To evaluate the adequacy of this model of background LD, we compare the MHMM to
an alternative approach that prunes SNPs with a heuristic that discards highly-correlated SNPs
and then uses these SNPs as input to an HMM.
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Our experimental work focuses on the problem of inferring locus-specific ancestries in a
population that is assumed to originate from two unknown ancestral populations (Sankararaman
et al. to appear; Falush et al. 2003). We also consider a less-studied scenario in which we assume
that one of the ancestral populations is unknown, or its genotypes are not given, and we wish to
infer the allele frequencies in this population. This scenario may be appropriate in situations in
which it is difficult to obtain external estimates of the allele frequencies of one of the ancestral
populations. This is the case, for example, in many modern Caribbean populations (such as
Puerto Ricans), where the native American population has vanished.

2 Methods

In this section, we describe the augmented HMM that serves as the basis of our experiments.
We also describe an MHMM that incorporates a model of background LD along the lines of
SABER (Tang et al. 2006). We then describe various forms of inference algorithms for these
hidden Markov models, emphasizing the use of the EM procedure for parameter estimation.

2.1 Probabilistic Model

To simplify our presentation, let us assume that the number of populations that have been ad-
mixed is two (the notation is slightly more involved in the case of more than two populations but
no new ideas are needed). Also, again for simplicity of presentation, we restrict our attention to
haplotypes; genotypes can be handled in a straightforward manner as described in Appendix 4.1.

Let m denote the number of haplotypes, and let n denote the number of SNPs. Let X be the
observed binary matrix of SNPs; i.e., Xi,j is the jth SNP of the ith haplotype. Let ppp and qqq be
the vectors of the allele frequencies in the ancestral populations. Hence, pj is the probability to
obtain ‘1’ in the jth SNP in the first population and qj is the corresponding probability in the
second population. The matrix Z denotes the ancestry information of each haplotype at each
SNP: Zi,j ∈ {0, 1} holds the ancestry of haplotype i at the jth SNP (0 if SNP j of haplotype i

originated from the first population and 1 if it originated from the second). We use the matrix
W to denote recombination events. Specifically, Wi,j equals ‘1’ if at least one recombination
event occurred during the history of the admixture process in the ith haplotype in the interval
between the (j − 1)th SNP and the jth SNP, and ‘0’ otherwise. The (n− 1)-dimensional vector
θθθ denotes the probability of at least one such recombination event, with θj corresponding to the
interval between the (j − 1)th and the jth SNPs. The fraction of the first population in the
ancestral population, which we call the admixture fraction, is denoted by α. Finally, g denotes
the number of generations of the admixed process (in the sense that 1

g−1 models the average
length of ancestral chromosome blocks in the current admixed population).

Given the parameters g, α, ppp, qqq, and θθθ, we model a haplotype as being generated as follows:
recombination points are generated on each chromosome based on a Poisson process whose rate
parameter depends on g and the recombination rate r. This process corresponds to setting
some of the W ’s to 1. Then the ancestries of the resulting chromosomal blocks are determined
independently for each block with α being the probability to choose the first ancestry. We
assume that the mating is random across the populations. Given the ancestry at a particular
position, an allele is generated using the corresponding ancestral allele frequency. We assume
that the alleles are generated independently in a block.

We now describe the marginal and conditional distributions of the model. We assume a
uniform prior over the interval [0, 1] for each of the parameters α, ppp, qqq. The parameter g is
assumed to be distributed uniformly over the interval [gmin, gmax] for some gmax > gmin > 1.
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Given the ancestry and given the allele frequencies of a specific SNP j in haplotype i, Xi,j is a
Bernoulli random variable with distribution:

Pr(Xi,j = 1|Zi,j , pj , qj) =

{

pj Zi,j = 0
qj Zi,j = 1

. (1)

The distribution of the ancestry of a specific SNP depends on the occurrence of a recombina-
tion event. On the occurrence of a recombination between SNPs j and j − 1 of haplotype i, the
ancestry Zi,j is chosen with probability α to be 0 and 1 otherwise. If there was no recombination,
the ancestry stays the same as that at the previous SNP:

Pr(Zi,j |Zi,j−1, Wi,j , α) =

{

δ(Zi,j , Zi,j−1) Wi,j = 0

(1 − α)Zi,jα(1−Zi,j) Wi,j = 1
.

where δ(x, y) = 1, iff x = y.
Since we assume that the recombination process is a Poisson process, the variables Wi,j

and Wi,k are independent for k 6= j and the probability for a specific location between SNPs
j − 1 and j to have at least one recombination depends solely on θj . For j > 1, we have
Pr(Wi,j = 1|θj) = θj and θj = 1 − e−(g−1)ljrj , where lj is the distance between the (j − 1)th
SNP and the jth SNP and rj is the recombination rate in that region. In our specific problem,
θj is a deterministic function of g. In other situations, it may be more appropriate for g to
parameterize a prior over θj .

Marginalizing over the recombination indicator Wi,j we obtain the mixture distribution that
is used as a transition matrix by programs such as STRUCTURE (Falush et al. 2003) and
SABER (Tang et al. 2006).

2.2 Modelling Background LD

The HMM framework assumes that alleles are conditionally independent given the states and
thus is not able to capture within-population LD. The MHMM model implemented in SABER (Tang
et al. 2006) attempts to capture such background LD by allowing additional dependencies di-
rectly between the observable XXXi variables. The form of these dependencies differ depending on
the ancestries Zi,j−1 and Zi,j . In particular, if these ancestries are the same, then a pairwise
emission probability is used. If these ancestries are different, then a singleton emission probabil-
ity is used. SABER estimates the pairwise probabilities using ancestral haplotypes (which are
assumed to be available).

Given that our model makes use of explicit recombination indicators Wi,j , we can condition
on these variables instead of the ancestry variables Zi,j . Formally, we define the following
transition matrix for j > 1:

Pr(Xi,j = 1|Wi,j , Zi,j , Xi,j−1, pj , qj , pj−1,j , qj−1,j)

=

{

Pr(Xi,j = 1|Zi,j , pj , qj), if Wi,j = 1
Pr(Xi,j = 1|Zi,j , Xi,j−1, pj−1,j , qj−1,j), otherwise

(2)

The transition matrix is defined so that if Wi,j = 1 (i.e., a recombination has occurred between
SNPs j−1 and j), then the allele seen at position j is independent of the allele at position j−1.
If Wi,j = 0, the SNPs at position j − 1 and j belong to the same ancestral haplotype, and the
emission probability of the allele at position j depends on the allele at j − 1. Here pj−1,j and
qj−1,j are the pairwise (conditional) SNP frequencies at positions j − 1 and j in the haplotypes
from the two respective populations.
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Why do we condition on recombination events instead of ancestries (as in SABER)? Note
that the conditioning in SABER ignores recombinations that do not change the ancestries. Such
recombinations are expected to be common when the admixture fraction α << 1

2 . In that case,
assuming random mating, an expected fraction α2 + (1− α)2 of recombinations will not lead to
a change in the ancestry. Ignoring such events can be problematic. Consider a scenario where
the haplotype frequencies are estimated from an ancestral population. Assume that 00 and
11 are the only haplotypes present in this ancestral population. In the admixed population, a
new haplotype, say 01, may arise due to a recombination event that is not accompanied by a
change in the ancestry. By ignoring the recombination event and assuming that the two loci
share a haplotype, the MHMM would assign a small probability (indeed, a zero probability in
our example) to the new haplotype 01. On the other hand, in a model that conditions on the
recombination indicators Wi,j , the new haplotype is assigned a frequency that is the product of
the allele frequencies at the two loci.

2.3 Inference Problems

In this section, we focus on two inferential problems that can be framed within the HMM/MHMM
formalism. In both problems, we seek the maximum a posteriori (MAP) estimates of a sub-
set of the variables in the model and we find parameter estimates via the EM algorithm. For
simplicity, we assume that the number of generations g is constant and known, and therefore θθθ

is known. This is often the case for admixed populations. The two problems that we consider
are: (1) The admixture fraction is known, the allele frequencies are unknown, and the goal is to
find the local ancestries for each SNP in each haplotype. The optimization problem is to find
(W, Z) such that Pr(W, Z|X, α, g) is maximized. We refer to this problem as the local ancestries

inference problem. (2) The allele frequencies are known for one of the ancestral populations,
and the goal is to find the allele frequencies of the other as well as the admixture fraction. Here,
the local ancestries are missing variables. The optimization problem is to find (q, α) such that
Pr(qqq, α|X,ppp) is maximized. We refer to this problem as the ancestral allele frequencies inference

problem.

2.3.1 Local Ancestries Problem

To compute the local ancestries, we would like to compute the MAP estimates of Z and W by
solving the following optimization problem:

arg max
Z,W

log[Pr(W, Z|X, α,θθθ)]. (3)

In each iteration of EM, the updates to Z and W are computed by a Viterbi algorithm with
the emission probabilities Pr(Xi,j |Zi,j , pj , qj) replaced by an integral over pj , qj . The E-step

involves computing the posterior probabilities of pj , qj ; i.e., Pr(pj , qj |X.,j , Z
(t)
.,j ). This can be done

easily using Bayes’ theorem. The M-step involves solving m separate optimization problems in
ZZZi,WWW i, i ∈ {1, . . . , m} where ZZZi denotes the vector of ancestries for the ith haplotype and WWW i

denotes the corresponding vector of recombination events:

{log[Pr(Zi,1|α)] + I1,i(Zi,1)} +
n

∑

j=2

{Ij,i(Zi,j) + fi,j−1,j(Zi,j−1, Zi,j , Wi,j)} (4)

where fi,j−1,j(Zi,j−1, Zi,j , Wi,j) ≡ log[Pr(Zi,j |Zi,j−1, Wi,j , α)] + log[Pr(Wi,j |θj)] corresponding to
log transition probabilities and
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Ij,i(Zi,j) ≡
∑m

i=1

∑n
j=1

∫

{log[Pr(Xi,j |Zi,j , pj , qj)] Pr(pj , qj |X.,j , Z
(t)
.,j )dpjdqj} are expectations of

the log emission probabilities.
Generally, the values of Ij,i(z) can be tabulated for each i, j, z by computing the integral over

a grid on the {pj , qj}. For our setting, we have a uniform prior over pj and qj which permits
the integral to be evaluated analytically as shown in Appendix 4.2. We can maximize (4) by
dynamic programming. The values obtained for Z, W are then used to recompute the integrals
Ij,i(Zi,j) and the procedure is iterated.

2.3.2 Ancestral Allele Frequencies Problem

To compute the ancestral allele frequencies, we compute the MAP estimates of qqq and α:

arg max
qqq,α

log Pr(qqq, α|X,ppp,θθθ) = arg max
qqq,α

log Pr(X|ppp,qqq, α,θθθ)

since we have a uniform prior on qqq and α. We assume g and ppp to be known. Let qqq(t), α(t)

denote the current estimates of qqq, α. The EM algorithm produces new estimates qqq(t+1), α(t+1)

that improve the objective function:

q
(t+1)
j =

∑m
i=1 Xi,jdi,j(1)
∑m

i=1 di,j(1)
, α(t+1) =

∑m
i=1(di,1(0) +

∑n
j=2 ci,j(1, 0))

m +
∑m

i=1

∑n
j=2

∑

z∈{0,1} ci,j(1, z)

Here ci,k(w, z) ≡ Pr(Wi,k = w, Zi,k = z|XXXi, qqq
(t), α(t), ppp,θθθ) and di,j(z) ≡ Pr(Zi,j = z|XXXi, qqq

(t), α(t), ppp,θθθ)
are the posterior probabilities of (W, Z) and Z at the jth SNP of haplotype i respectively and
are computed by an application of the forward-backward algorithm in the E-step.

These updates have an intuitive interpretation. At each position j, the new value of qj is
the fraction of SNPs that are 1 out of all SNPs belonging to the second population (weighted
by their posterior probabilities). The update for α is the fraction of ancestries chosen from the
first population whenever a new haplotype is chosen (weighted by their posterior probabilities).

3 Experiments

We have implemented the HMM and the EM algorithm that we have described in a program
that we term “SWITCH.” We have also implemented a program that we refer to as “SWITCH-
MHMM” that is based on the MHMM. In this section, we describe experiments aimed at eval-
uating these procedures.

These experiments were run on datasets generated from HapMap data (http://www.hapmap.org).
We used SNPs found in the Affymetrix 500K GeneChip Assay R© (http://www.affymetrix.com/products
/arrays/specific/500k.affx) from chromosome 1 for each of the HapMap populations; i.e., Yorubans
(YRI), Japanese (JPT), Han Chinese (CHB), and western Europeans (CEU). For a pair of pop-
ulations, we simulated admixture by picking individuals from two ancestral populations in the
ratio α : 1− α. In each generation, individuals mate randomly and produce offspring. The rate
of the recombination process is set to 10−8 per base pair per generation (Nachman and Crowell
2000). The mixing process is repeated for g generations. We generated datasets consisting of
admixtures of YRI-CEU, CEU-JPT and JPT-CHB populations. We set g to 7 and α to 0.20
since these roughly correspond to the admixing process in African-American populations as es-
timated in (Patterson et al. 2004; Falush et al. 2003; Tian et al. 2006). For each of the problems,
we use only genotype data. Since the HMM underlying SWITCH assumes that the SNPs are
conditionally independent given the states, in the input to SWITCH we greedily remove SNPs

7



that have a high correlation coefficient, r2 > 0.1, with any other SNP. We refer to this usage of
SWITCH as “uSWITCH.” (When the entire set of SNPs is used, we refer to the usage simply as
SWITCH). Ancestry estimates at the discarded SNPs were filled in from the highly-correlated
SNP that was retained.

The remainder of this section is organized as follows. In Section 3.1 we compare the perfor-
mance of various methods on the local ancestries problem. The role of the inference algorithms
and background LD models are discussed in Sections 3.2 and 3.3 respectively. The performance
of methods on the problems of predicting recombination events and the ancestral allele frequen-
cies problem are discussed in Sections 3.4 and 3.5 respectively.

3.1 Local Ancestries Problem

We first compare the estimates of the ancestries obtained from SWITCH to the estimates ob-
tained from SABER and LAMP. In these experiments, the methods are given g and α. We
consider two settings depending on whether the ancestral frequencies, (ppp,qqq), are available. Even
when the frequencies of the ancestral populations are available, it is still advantageous to use the
data to update the frequency estimates, which may have drifted from the ancestral frequencies.

When they are available, uSWITCH uses a maximum-likelihood classification based on these
frequencies as initialization. We refer to this variation of uSWITCH as uSWITCH-ANC. SABER
also requires the ancestral allele frequencies. The version of LAMP that uses ancestral frequen-
cies is termed LAMP-ANC.

When the ancestral allele frequencies are not known, LAMP can still be used, as can
uSWITCH. For the latter, we use the estimates of ancestries from LAMP to initialize the EM
algorithm.

For each individual i and SNP j, each method finds an estimate â
p
ij ∈ {0, 0.5, 1} for the

true ancestry a
p
ij . We measure the accuracy of a method as the fraction of triplets (i, j, p) for

which a
p
ij = â

p
ij . The first half of Table 1 compares the accuracies of SABER, LAMP-ANC and

uSWITCH-ANC on 100 random datasets of YRI-CEU, CEU-JPT and JPT-CHB. uSWITCH-
ANC improves significantly over LAMP-ANC and SABER on the YRI-CEU dataset. On the
CEU-JPT, uSWITCH-ANC and LAMP-ANC have comparable performance, and both methods
are more accurate than SABER. All methods perform poorly on the JPT-CHB dataset due
to the closeness of the two populations. The second half of Table 1 compares the accuracies of
uSWITCH and LAMP. On the YRI-CEU data, uSWITCH, with an accuracy of 96.0%, improves
significantly over LAMP, which has an accuracy of 94.0% (Wilcoxon paired signed rank test p-
value of 3.89 × 10−18). Interestingly, uSWITCH improves significantly over LAMP-ANC even
though the latter uses the ancestral allele frequencies. On the CEU-JPT and the JPT-CHB
datasets, uSWITCH seems to have slightly higher accuracies than LAMP. We believe that using
more informative priors on the variables ppp,qqq, should yield further improvements by improving
the estimation of low-frequency alleles. These results indicate that the HMM is most useful when
the mixing populations can be easily distinguished as is the case with the YRI-CEU admixture.

Although the versions of uSWITCH have a factor of 5−10 increase in running time compared
to LAMP, they still run under an hour on large datasets making them feasible for genome-scale
problems.

3.2 Role of the Inference algorithm

To understand the impact of the inference algorithm and the initialization, we compared uSWITCH
to STRUCTURE. While the model used in uSWITCH is the same as the model used in STRUC-
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TURE when the recombination indicators W are integrated out, the inference algorithms differ.
uSWITCH obtains the posterior mode of the ancestries Z using an EM algorithm with LAMP
providing the initialization. STRUCTURE computes the posterior marginals of each Zi,j using
an MCMC algorithm to integrate out the unknown parameters. To evaluate the output from
STRUCTURE, we threshold the posterior mean to obtain the actual ancestry estimates; that
is, position i, j is assigned 0, 1 or 2 alleles from one of the populations depending on whether
the posterior marginal E(Zi,j |X) lies in [0, 0.5), [0.5, 1.5) or (1.5, 2). We compared the ancestry
estimates produced by the two methods on the YRI-CEU dataset. STRUCTURE was run for
10000 burn-in and 50000 MCMC iterations (see below for further discussion of this choice). The
linkage model was used. STRUCTURE was run on non-overlapping sets of 4000 SNPs covering
36000 of the 38000 initial SNPs due to numerical instabilities when larger number of SNPs were
used.

On the YRI-CEU dataset, uSWITCH achieved an accuracy of 97% while STRUCTURE
achieved an accuracy of 84%. To isolate the reason for this difference, we evaluated MCMC
algorithms which differ from STRUCTURE in varying degrees. First, we ran MCMC from a
random starting point for 1000 iterations with 100 iterations of burn-in and used the posterior
mean as the ancestry estimates. This yielded estimates with an accuracy of 91.13%. When the
LAMP estimates were used as a starting point, the accuracy was 94.9%. This suggests that the
chain has not mixed in our STRUCTURE runs. To test this suggestion formally, we simulated
five such chains each from different random starting points. We then computed a multivariate
potential scale reduction factor (PSRF) (Brooks, Stephen P. and Gelman, Andrew 1998) for
random sets of 100 p’s and q’s and found it to be consistently large (> 1.2). When the Markov
chain is unable to converge quickly, the initialization influences the ancestry estimates. Given
that the MCMC algorithms do not converge even after being run for several days (in particular,
the STRUCTURE runs required a little less than three days while the other MCMC runs took
about a day to run), good initialization becomes essential.

Two other differences between STRUCTURE and the MCMC algorithm that we imple-
mented are that the latter discards correlated SNPs and fixes the hyperparameters. We modified
the MCMC runs to retain the correlated SNPs and the accuracy falls to 74.9%. We conclude
that the pruning of highly correlated SNPs can have a large impact on the accuracy of models
that do not attempt to account for background LD. Another approach to this problem is to
attempt to account for background LD via the MHMM approach; we discuss this approach in
the following section.

3.3 Modelling background LD

As discussed earlier, we refer to our implementation of an MHMM model based on the re-
combination indicators Wi,j as SWITCH-MHMM. We also implemented a version of the model
based on the ancestries Zi,j instead of the recombination indicators. We refer to this model as
“MHMM”; it is the same as the model underlying SABER. (Our implementation differs from
SABER in the inference procedures that we used; in particular, the ancestry estimates were
computed by a Viterbi algorithm.)

In the first scenario that we studied, both the MHMM and the SWITCH-MHMM were given
the ancestral haplotypes. The ancestral haplotypes were used to estimate the pairwise SNP
emission probabilities. The single SNP frequencies were estimated using LAMP-ANC. In this
experiment, SWITCH-MHMM achieved an accuracy of 91.9%, while the MHMM yielded an
accuracy of 88.9%. This demonstrates that improvements can be obtained by conditioning on
recombination indicators instead of conditioning on ancestral states.
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In a second scenario, the pairwise SNP emission probabilities were estimated directly from
the admixed data. In this case, the accuracies of SWITCH-MHMM and MHMM were both
95.7%. It is interesting to note that these accuracies are higher than in the case that ancestral
haplotypes were used to estimate parameters. This is presumably due to the fact that the esti-
mates of haplotype frequencies are more accurate when estimated from the admixed population
itself. Finally, we also measured the accuracy of ancestry estimates from SWITCH (i.e., when
the entire set of SNPs was taken as input) and observed that the accuracy drops to 93.1%.
This improvement in accuracies when background LD is taken into account has been observed
before (Tang et al. 2006). However, the accuracy of uSWITCH is higher than SWITCH-HMM.
Thus, the heuristic of removing highly correlated SNPs and then running SWITCH appears to be
competitive, in practice, to the methods based on explicit (but simplified) models of background
LD.

3.4 Predicting Recombinations

Another advantage of the use of the recombination indicators W is that they open the possibility
of inference of historic recombinations created by the mixing process after the initial admixture
event. While a change in the ancestry between two SNPs implies a recombination event, many
recombination events do not result in a change in the ancestry. When α is small, this happens
quite often. To study this issue, we measured the accuracy of uSWITCH in predicting such
recombinations. If a predicted recombination falls within 5 Kbases of the SNPs flanking a true
recombination, it is called a true positive. If multiple recombinations are predicted within this
window, only one is counted as a true positive. False positives and false negatives are defined
similarly. The precision and recall of the predictions are then computed as Precision = TP

TP+FP

and Recall = TP
TP+FN

. We combine these numbers by taking a harmonic mean, reporting

F − score = 2Precision×Recall
Precision+Recall

.
As a baseline, we use a null model that predicts recombinations based on the exponentially-

distributed lengths of the haplotypes. The total number of recombinations in the null model is
set to the number of predicted recombinations and the precision and recall of the predictions
are computed similarly.

On the YRI-CEU dataset, uSWITCH attains an F − score of 70.8 while the null model
attained an F-score of 52.8. uSWITCH was found to be consistently more accurate than the
null model on the CEU-JPT and JPT-CHB datasets as well (data not shown).

We now consider models that attempt to account for background LD. For the MHMM model,
since the model does not explicitly represent recombinations, the recombinations are inferred
(naively) based on a change in the ancestry labels. The results are shown in Table 2. When we
use the ancestral haplotypes to estimate parameters, the MHMM and SWITCH-MHMM achieve
F − scores of 35.0 and 41.5 respectively. Using the admixed data to estimate parameters, the
two models achieve F −scores of 78.0 and 79.3 respectively. We see that the explicit W variables
allow more accurate prediction of recombinations in the admixed genomes. When we restrict
attention to breakpoints (recombinations that change the ancestry), the difference between the
models is diminished though the relative performance is the same.

As discussed in the previous section, SWITCH-MHMM (and the other models that incorpo-
rate background LD) has lower accuracy than uSWITCH which ignores background LD and uses
a heuristic to prune correlated SNPs. However, SWITCH-MHMM predicts recombinations more
accurately (while uSWITCH is more accurate in predicting breakpoints). This result suggests
that models that incorporate background LD (albeit imperfectly) may be useful in inferring
recombinations in admixed genomes.
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3.5 Ancestral Allele Frequencies Problem

We now turn to the problem of inferring ancestral allele frequencies. To obtain a benchmark, we
implemented a naive algorithm. The naive algorithm is given the true value of α (which is not

available to the model). The idea behind the naive algorithm is as follows. For a position j with
minor allele frequency fj , and allele frequencies pj and qj in the two populations, if the number
of individuals is large, fj can be written as fj = (1 − α)pj + αqj . So we compute the allele

frequency qj at position j as qj = max (min(
fj−(1−α)pj

α
, 1), 0). We used two different estimates

of α, yielding algorithms that we refer to as “Naive1” and “Naive2.” Naive1 uses the value of
α = 0.20 which is the admixture fraction in the first generation of admixture. Naive2 uses an α

measured from each dataset.
We calculated the L1 error (the sum of the absolute values of the errors) between the esti-

mated q̂qq and the true qqq. The L1 error averaged over 100 datasets of YRI-CEU, CEU-JPT and
JPT-CHB is shown in Table 3. We see that uSWITCH reduces the L1 error by about 30% in the
YRI-CEU and the CEU-JPT datasets while there is no significant difference for the JPT-CHB
dataset.

We also compared the ancestry estimates from uSWITCH with those from STRUCTURE on
single instances of YRI-CEU, CEU-JPT and JPT-CHB datasets (the running time of STRUC-
TURE prohibited multiple runs). The L1 errors for uSWITCH are 7.1%, 8.3%, and 12.7% on
the respective datasets. STRUCTURE obtains errors of 25.8%, 29.0%, and 25.2% respectively.

4 Conclusions

Markovian models such as HMMs and MHMMs are a natural approach to admixture that aim
to strike a balance between predictive performance and inferential complexity. We have explored
several variations on the HMM/MHMM theme with the aim of identifying combinations of model
specification, inference procedure and data preprocessing that are most effective in realizing this
balance.

We have found that explicit indicators of recombination events can be useful. These indica-
tors allow us to provide a more fine-grained version of the MHMM that allows new haplotypes to
emerge when recombinations occur, and not only when ancestral state changes. We found that
this approach yielded better estimates when haplotype emission probabilities are inferred from
ancestral populations. Also, by making the recombination events explicit in our model, we are
able to infer historic recombinations. While being interesting in and of themselves, these pre-
dictions may be helpful in allowing admixture data to be used in the inference of recombination
hotspots.

HMM and MHMM models require the estimation of model hyperparameters. One approach
to estimating these hyperparameters is to use MCMC algorithms, but these algorithms can be
impractical on realistic datasets. We have shown that an EM-based approach starting with
an accurate initialization (the non-model-based procedure LAMP) yielded high accuracy at
reasonable cost. Indeed, this approach yielded the best results of any algorithm that we studied.

Our conclusions regarding background LD are mixed. If an MHMM model is to be used to
attempt to capture background LD, then we recommend conditioning on explicit recombination
indicators. On the other hand, we found that a heuristic approach, in which highly-correlated
SNPs are discarded before running an HMM, yielded higher accuracy than the MHMM. One
possible direction for future research is to consider richer MHMM models than the pairwise
model considered here and in SABER.
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An important caveat of our work is that we have not studied the robustness of our methods
to factors such as variable recombination rates, continuous gene-flow models, and non-random
mating. The extent to which the Markovian models that we have studied here are robust to
such factors is currently unknown and this is an essential direction for future research.
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Method YRI-CEU CEU-JPT JPT-CHB

uSWITCH-ANC 97.6±0.3 94.5±0.8 66.4±2.7
LAMP-ANC 94.9±0.6 93.7±0.7 69.9±2.1
SABER 89.4±0.8 85.2±1.2 68.2±1.9

uSWITCH 96.0± 0.6 83.2±5.6 51.4±2.8
LAMP 94.0±0.8 82.9±5.5 50.6±2.5

Table 1: Accuracies of ancestry estimates averaged over 100 datasets. The methods are compared
under two settings. When the ancestral allele frequencies are known, the methods compared
are LAMP-ANC, uSWITCH-ANC, and SABER. When the ancestral allele frequencies are not
known, the methods compared are uSWITCH and LAMP.

Model Recombinations Breakpoints
F-score Precision/Recall F-score Precision/Recall

MHMM (anc) 35.0 21.5/95.1 12.2 6.5/99.9
SWITCH-MHMM(anc) 41.5 26.5/95.2 23.4 13.3/98.3
MHMM 78.0 87.0/70.0 49.5 33.5/94.8
SWITCH-MHMM 79.3 85.0/74.3 49.8 33.8/94.8
uSWITCH 74.5 88.7/64.2 53.7 33.8/92.5

Table 2: Accuracies of the different models on the prediction of recombinations and breakpoints.
(anc) denotes the ancestral haplotypes were used to estimate parameters.

Method YRI-CEU CEU-JPT JPT-CHB

uSWITCH 7.7±0.5 8.5±0.6 11.7±1.3
Naive1 11.8±0.5 12.2±0.5 12.5±0.5
Naive2 11.8±1.2 12.3±1.2 12.6±1.2

Table 3: Average L1 error in the estimates of qqq. The methods compared are uSWITCH (which
estimates q and α jointly) and two naive algorithms that are given the true α = 0.20 and α

estimated from the data respectively.
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Appendix

4.1 Model for Genotype Data

It is straightforward to extend the model to handle genotype data. Since the SNPs are assumed
to be independent, we can model the SNP at each position as a random variable that depends on
the alleles in the corresponding haplotypes. We introduce random variables Yi,j ∈ {0, 1, 2}, i ∈
{1, . . . , m

2 } (assuming that m is even) representing the j- th SNP of the i-th genotype. The
value of this SNP depends on the values of the j-th alleles in haplotypes 2i − 1 and 2i:

Pr(Yi,j |X2i−1,j , X2i,j) = δ(Yi,j = X2i−1,j + X2i,j).

We now replace all X variables in previous equations with Y , and instead of Equation (1) we
use Pr(Yi,j = N |Z2i−1,j , Z2i,j , pj , qj), which can be calculated for each N ∈ {0, 1, 2}.

4.2 Analytical Computation of Ij,i

In this section, we show how the integrals Ij,i(Zi,j) introduced in Section 2.3.1 can be analytically
evaluated. Recall the definition of Ij,i:

Ij,i(Zi,j) =

∫

{

log[Pr(Xi,j |Zi,j , pj , qj)] Pr(pj , qj |X.,j , Z
(t)
.,j )dpjdqj

}

. (5)

We define the following quantities:

π
(t)
j,1 =

m
∑

i=1

Xi,jZ
(t)
i,j π

(t)
j,0 =

m
∑

i=1

(1 − Xi,j)Z
(t)
i,j

ξ
(t)
j,1 =

m
∑

i=1

Xi,j(1 − Z
(t)
i,j ) ξ

(t)
j,0 =

m
∑

i=1

(1 − Xi,j)(1 − Z
(t)
i,j ).

(6)

The log likelihood in Equation (5) can be written as

Pr(Xi,j |Zi,j , pj , qj) = (q
Xi,j

j (1 − qj)
1−Xi,j )Zi,j

· (p
Xi,j

j (1 − pj)
1−Xi,j )1−Zi,j .

Using the above expression, we can now write the posterior:

Pr(pj , qj |X.,j , Z
(t)
.,j ) ∝ Pr(X.,j |pj , qj , Z

(t)
.,j ) Pr(pj) Pr(qj)

∝
m
∏

i=1

Pr(Xi,j |pj , qj , Z
(t)
i,j ) Pr(pj) Pr(qj)

∝ q
π

(t)
j,1

j (1 − qj)
π

(t)
j,0p

ξ
(t)
j,1

j (1 − pj)
ξ
(t)
j,0

=
q
π

(t)
j,1

j (1 − qj)
π

(t)
j,0p

ξ
(t)
j,1

j (1 − pj)
ξ
(t)
j,0

B(π
(t)
j,1, π

(t)
j,0)B(ξ

(t)
j,1, ξ

(t)
j,0)

.

Here B(a, b) denotes the beta function
∫ 1
0 xa(1 − x)b

dx.
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Substituting the above expression into Equation (5) we obtain:

Ij,i(Zi,j) = XiZiJ(π
(t)
j,1, π

(t)
j,0)

+ (1 − Xi)ZiJ(π
(t)
j,0, π

(t)
j,1)

+ Xi(1 − Zi)J(ξ
(t)
j,1, ξ

(t)
j,0)

+ (1 − Xi)(1 − Zi)J(ξ
(t)
j,0, ξ

(t)
j,1),

where J(a, b) =
∫ 1
0 log xxa(1 − x)b

dx.
Notice that in our setting a and b are non-negative integers. So we can compute J(a, b) by

performing a Binomial expansion on (1 − x)b and integrating each term:

J(a, b) =

∫ 1

0
log xxa

{

b
∑

r=0

(

b

r

)

(−1)r
xr

}

dx

=
b

∑

r=0

(

b

r

)

(−1)r

∫ 1

0
dx log xxa+r

=
b

∑

r=0

(

b

r

)

(−1)r+1 1

(a + r + 1)2
.
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