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On the infimum convolution inequality

by

R. Latała and J. O. Wojtaszczyk (Warszawa)

Abstract. We study the infimum convolution inequalities. Such an inequality was
first introduced by B. Maurey to give the optimal concentration of measure behaviour for
the product exponential measure. We show how IC inequalities are tied to concentration
and study the optimal cost functions for an arbitrary probability measure µ. In particular,
we prove an optimal IC inequality for product log-concave measures and for uniform
measures on the `np balls. Such an optimal inequality implies, for a given measure, the
central limit theorem of Klartag and the tail estimates of Paouris.

1. Introduction and notation. In the seminal paper [20], B. Maurey
introduced the so called property (τ) for a probability measure µ with a
cost function ϕ (see Definition 2.1 below) and established a very elegant and
simple proof of Talagrand’s two-level concentration for the product exponen-
tial distribution νn using (τ) for this distribution and an appropriate cost
function w.

It is natural to ask what other pairs (µ, ϕ) have property (τ). As any µ
satisfies (τ) with ϕ ≡ 0, one will rather ask how big a cost function one can
take. In this paper we study the probability measures µ that have property
(τ) with respect to the largest (up to a multiplicative factor) possible convex
cost function Λ?µ. This bound comes from checking property (τ) for linear
functions. We say a measure satisfies the infimum convolution inequality (IC
for short) if the pair (µ,Λ?µ) satisfies (τ).

It turns out that such an optimal infimum convolution inequality has
very strong consequences. It gives the best possible concentration behaviour,
governed by the so-called Lp-centroid bodies (Corollary 3.11). This, in turn,
implies in particular a weak-strong moment comparison (Proposition 3.15),
the central limit theorem of Klartag [14] and the tail estimates of Paouris [23]
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(Proposition 3.18). We believe that IC holds for any log-concave probability
measure, which is the main motivation for this paper.

Maurey’s inequality for the exponential measure is of this optimal type.
We transport this to any log-concave measure on the real line, and as the
inequality tensorizes, any product log-concave measure satisfies IC (Corol-
lary 2.19). However, the main challenge is to provide nonproduct examples
of measures satisfying IC. We show how such an optimal result can be ob-
tained from concentration inequalites, and follow on to prove IC for the
uniform measure on any `np ball for p ≥ 1 (Theorem 5.27).

With the techniques developed we also prove a few other results. We
give a proof of the Gaussian-type isoperimetry for uniform measures on `np
balls, where p ≥ 2 (Theorem 5.29), and provide a new concentration in-
equality for the exponential measure for sets lying far away from the origin
(Theorem 4.6).

Organization of the paper. This section, apart from the above introduc-
tion, defines the notation used throughout the paper. The second section is
devoted to studying the general properties of the inequality IC. In Subsec-
tion 2.1 we recall the definition of property (τ) and its ties to concentration
from [20]. In Subsection 2.2 we study the opposite implication: what addi-
tional assumptions one needs to infer (τ) from concentration inequalities.
In Subsection 2.3 we show that Λ?µ is indeed the largest possible cost func-
tion and define the inequality IC. In Subsection 2.4 we show that product
log-concave measures satisfy IC.

In the third section we give more attention to the concentration inequal-
ities tied to IC. In Subsection 3.1 we show the connection to Zp bodies.
In Subsection 3.2 we continue in this vein with the additional assumption
that our measure is α-regular. In Subsection 3.3 we show how IC implies a
comparison of weak and strong moments and the results of [14] and [23].

In the fourth section we give a modification of the two-level concentration
for the exponential measure, in which for sets lying far away from the origin
only an enlargement by tBn

1 is used. This will be used in the fifth section,
which focuses on the uniform measure on the Bn

p ball. In Subsection 5.1 we
define and study two rather standard transports of measure used further on.
In Subsection 5.2 we use these transports along with the concentration from
Section 4 and a Cheeger inequality from [24] to give a proof of IC for p ≤ 2.
In Subsection 5.3 we prove IC for p ≥ 2 and the Gaussian-type isoperimetric
inequality for p ≥ 2.

We conclude with a few possible extensions of the results of the paper in
the sixth section.

Notation. We denote by 〈·, ·〉 the standard scalar product on Rn. For
x ∈ Rn we put ‖x‖p = (

∑n
i=1 |xi|p)1/p for 1 ≤ p <∞ and ‖x‖∞ = maxi |xi|,
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we also use |x| for ‖x‖2. We write Bn
p for the unit ball in lnp , i.e. Bn

p =
{x ∈ Rn : ‖x‖p ≤ 1}.

We let ν denote the symmetric exponential distribution on R, i.e. the
probability measure with density 1

2 exp(−|x|). For p ≥ 1, νp is the probability
distribution on R with density (2γp)−1 exp(−|x|p), where γp = Γ (1+1/p), in
particular ν1 = ν. For a probability measure µ we write µn for the product
measure µ⊗n, thus νnp has the density (2γp)−n exp(−‖x‖pp).
B(Rn) will denote the family of Borel sets on Rn. The Lebesgue measure

of A ∈ B(Rn) is denoted by |A| or Λn(A). We choose numbers rp,n in such
a way that |rp,nBn

p | = 1 and denote by µp,n the uniform distribution on Bn
p .

The median of a function f with respect to a probability measure µ will be
denoted by Medµ f .

The letters c, C denote absolute numerical constants, which may change
from line to line; c(p), C(p) stand for constants dependent on p (or, formally,
a family of absolute constants indexed by p); these may also change from
line to line. For any sets of positive real numbers ai and bi, i ∈ I, by ai ∼ bi
we indicate that there exist absolute numerical constants c, C > 0 such that
cai < bi < Cai for any i ∈ I. Similarly, for collections of sets Ai and Bi the
notation Ai ∼ Bi means cAi ⊂ Bi ⊂ CAi for any i ∈ I, where again c, C > 0
are absolute numerical constants. By writing ∼p we mean that the constants
above may depend on p.

2. Infimum convolution inequality

2.1. Property (τ). The following property was introduced by B. Mau-
rey [20]:

Definition 2.1. Let µ be a probability measure on Rn and ϕ : Rn →
[0,∞] be a measurable function. We say that the pair (µ, ϕ) has property (τ)
if for any bounded measurable function f : Rn → R,

(1)
�

Rn
ef�ϕ dµ

�

Rn
e−f dµ ≤ 1,

where for two functions f and g on Rn,

f � g(x) := inf{f(x− y) + g(y) : y ∈ Rn}

denotes the infimum convolution of f and g.

The following two easy observations are almost immediate (cf. [20]):

Proposition 2.2 (Tensorization). If pairs (µi, ϕi), i = 1, . . . , k, have
property (τ) and ϕ(x1, . . . , xk) = ϕ1(x1) + · · · + ϕk(xk), then the couple
(
⊗k

i=1 µi, ϕ) also has property (τ).
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Proposition 2.3 (Transport of measure). Suppose that (µ, ϕ) has prop-
erty (τ) and T : Rn → Rm is such that

ψ(Tx− Ty) ≤ ϕ(x− y) for all x, y ∈ Rn.

Then the pair (µ ◦ T−1, ψ) has property (τ).

Maurey noticed that property (τ) implies µ(A+Bϕ(t)) ≥ 1−µ(A)−1e−t,
where

Bϕ(t) := {x ∈ Rn : ϕ(x) ≤ t}.
We will need a slight modification of this estimate.

Proposition 2.4. Property (τ) for (ϕ, µ) implies that for any Borel set
A and t ≥ 0,

(2) µ(A+Bϕ(t)) ≥ etµ(A)
(et − 1)µ(A) + 1

.

In particular , for all t > 0,

µ(A) > 0 ⇒ µ(A+Bϕ(t)) > min{et/2µ(A), 1/2},(3)

µ(A) ≥ 1/2 ⇒ 1− µ(A+Bϕ(t)) < e−t/2(1− µ(A)),(4)
µ(A) = ν(−∞, x] ⇒ µ(A+Bϕ(t)) ≥ ν(−∞, x+ t/2].(5)

Proof. Set f(x) = t1Rn\A. Then f(x) is nonnegative on Rn, so f � ϕ
is nonnegative (recall that by definition we consider only nonnegative cost
functions). For x 6∈ A+Bϕ(t) we have f �ϕ(x) = infy(f(y) +ϕ(x− y)) ≥ t,
since either y 6∈ A, and then f(y) = t, or y ∈ A, and then ϕ(x − y) ≥ t as
x 6∈ A+Bϕ(t).

Thus from property (τ) for f we have

1 ≥
�
ef�ϕ(x) dµ(x)

�
e−f(x) dµ(x)

≥ [µ(A+Bϕ(t)) + et(1− µ(A+Bϕ(t)))][µ(A) + e−t(1− µ(A))],

from which, extracting the condition upon µ(A+Bϕ(t)) by direct calculation,
we get (2).

Let ft(p) := etp/((et − 1)p + 1). Then ft is increasing in p and for p ≤
e−t/2/2,

(et − 1)p+ 1 ≤ et/2 + 1− 1
2(et/2 + e−t/2) < et/2,

hence ft(p) > min(et/2p, 1/2) and (3) follows. Moreover for p ≥ 1/2,

1− ft(p) =
1− p

(et − 1)p+ 1
≤ 1− p

(et + 1)/2
< e−t/2(1− p)

and we get (4).
Let F (x) = ν(−∞, x] and gt(p) = F (F−1(p) + t). Previous calculations

show that for t, p > 0, ft(p) ≥ gt/2(p) if F−1(p) + t/2 ≤ 0 or F−1(p) ≥ 0.
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Since gt+s = gt ◦ gs and ft+s = ft ◦ fs, we see that ft(p) ≥ gt/2(p) for all
t, p > 0, hence (2) implies (5).

The main theorem of [20] states that ν satisfies (τ) with a suitably chosen
cost function.

Theorem 2.5. Let w(x) = 1
36x

2 for |x| ≤ 4 and w(x) = 2
9(|x| − 2)

otherwise. Then the pair (νn,
∑n

i=1w(xi)) has property (τ).

Theorem 2.5 together with Proposition 2.4 immediately gives the follow-
ing two-level concentration:

(6) νn(A) = ν(−∞, x] ⇒ ∀t≥0 ν
n(A+ 6

√
2tBn

2 + 18tBn
1 ) ≥ ν(−∞, x+ t],

first established (with different universal, rather large constants) by Tala-
grand [26].

2.2. From concentration to property (τ). Proposition 2.4 shows that
property (τ) implies concentration. We will show a few results in the op-
posite direction: how to recover (τ) from concentration.

Corollary 2.6. Suppose that the cost function ϕ is radius-wise nonde-
creasing , µ is a Borel probability measure on Rn, and β > 0 is such that for
any t > 0 and A ∈ B(Rn),

(7) µ(A) = ν(−∞, x] ⇒ µ(A+ βBϕ(t)) ≥ ν(−∞, x+ max{t,
√
t}].

Then the pair
(
µ, 1

36ϕ
( ·
β

))
has property (τ). In particular if ϕ is convex ,

symmetric and ϕ(0) = 0 then (7) implies property (τ) for
(
µ, ϕ

( ·
36β

))
.

Proof. Fix f : Rn → R. For any measurable function h on Rk and t ∈ R
put

A(h, t) := {x ∈ Rk : h(x) < t}.

Let g be a nondecreasing right-continuous function on R such that µ(A(f, t))
= ν(A(g, t)). Then the distribution of g with respect to ν is the same as the
distribution of f with respect to µ and thus�

Rn
e−f(x) dµ(x) =

�

R
e−g(x) dν(x).

To finish the proof of the first assertion, by Theorem 2.5 it is enough to show
that �

Rn
e
f� 1

36
ϕ( ·

β
)
dµ ≤

�

R
eg�w dν,

where w is as in Theorem 2.5. We will establish a stronger property:

∀u µ

(
A

(
f �

1
36
ϕ

(
·
β

)
, u

))
≥ ν(A(g � w, u)).
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Since the set A(g � w, u) is a halfline, it is enough to prove that

(8) g(x1) + w(x2) < u ⇒ µ

(
A

(
f �

1
36
ϕ

(
·
β

)
, u

))
≥ ν(−∞, x1 + x2].

Fix x1 and x2 with g(x1) + w(x2) < u and take s1 > g(x1) and s2 = w(x2)
with s1 + s2 < u. Put A := A(f, s1). Then µ(A) = ν(A(g, s1)) ≥ ν(−∞, x1].
By the definition of w it easily follows that x2 ≤ max{6√s2, 9s2}, hence by
(7), µ(A+ βBϕ(36s2)) ≥ ν(−∞, x1 + x2]. Since

A+ βBϕ(36s2) = A(f, s1) +Bϕ( ·
β

)/36(s2) ⊂ A
(
f �

1
36
ϕ

(
·
β

)
, s1 + s2

)
,

we obtain the property (8).
The last part of the statement immediately follows since any symmetric

convex function ϕ is radius-wise nondecreasing and if additionally ϕ(0) = 0,
then ϕ(x/36) ≤ ϕ(x)/36 for any x.

The next proposition shows that inequalities (3) and (4) are strongly
related.

Proposition 2.7. The following two conditions are equivalent for any
Borel set K and γ > 1:

∀A∈B(Rn) µ(A) > 0 ⇒ µ(A+K) > min{γµ(A), 1/2},(9)

∀ eA∈B(Rn)
µ(Ã) ≥ 1/2 ⇒ 1− µ(Ã−K) <

1
γ

(1− µ(Ã)).(10)

Proof. (9)⇒(10). Suppose µ(Ã) ≥ 1/2 and 1−µ(Ã−K) ≥ γ−1(1−µ(Ã)).
Let A := Rn \ (Ã−K). Then (A+K) ∩ Ã = ∅, so µ(A+K) ≤ 1/2 and

µ(A+K) ≤ 1− µ(Ã) ≤ γ(1− µ(Ã−K)) = γµ(A),

and this contradicts (9).
(10)⇒(9). Fix A ⊂ Rn with µ(A) > 0 and µ(A+K) ≤ min{γµ(A), 1/2}.

Let Ã := Rn \ (A+K). Then µ(Ã) ≥ 1/2. Moreover, (Ã−K)∩A = ∅, thus

1− µ(Ã−K) ≥ µ(A) ≥ 1
γ
µ(A+K) =

1
γ

(1− µ(Ã)),

contradicting (10).

Corollary 2.8. Suppose that t > 0 and K is a symmetric convex set
in Rn such that

∀A∈B(Rn) µ(A) > 0 ⇒ µ(A+K) > min{etµ(A), 1/2}.

Then for any Borel set A,

µ(A) = ν(−∞, x] ⇒ µ(A+ 2K) > ν(−∞, x+ t].



Infimum convolution inequality 153

Proof. Fix A with µ(A) = ν(−∞, x]. Notice that A+ 2K = A+K +K
⊃ A + K. If x + t ≤ 0, then µ(A + K) > etµ(A) = ν(−∞, x + t]. If x ≥ 0,
Proposition 2.7 gives

µ(A+K) > 1− e−t(1− µ(A)) = ν(−∞, x+ t].

Finally, if x ≤ 0 ≤ x+ t, we get µ(A+K) ≥ 1/2 = ν(−∞, 0], hence by the
previous case,

µ(A+ 2K) = µ((A+K) +K) > ν(−∞, t] ≥ ν(−∞, x+ t].

Corollary 2.8 shows that if the cost function ϕ is symmetric and convex,
condition (7) (with β = 2γ) for t ≥ 1 is implied by the following:

∀A∈B(Rn) µ(A) > 0 ⇒ µ(A+ γBϕ(t)) > min{etµ(A), 1/2}.(11)

To treat the case t ≤ 1 we will need Cheeger’s version of the Poincaré
inequality.

We say that a probability measure µ on Rn satisfies Cheeger’s inequality
with constant κ if for any Borel set A,

(12) µ+(A) := lim inf
t→0+

µ(A+ tBn
2 )− µ(A)
t

≥ κmin{µ(A), 1− µ(A)}.

It is not hard to check (cf. [7, Theorem 2.1]) that Cheeger’s inequality implies

µ(A) = ν(−∞, x] ⇒ µ(A+ tBn
2 ) ≥ ν(−∞, x+ κt].

Finally, we may summarize this section with the following statement.

Proposition 2.9. Suppose that the cost function ϕ is convex , symmetric
with ϕ(0) = 0 and 1 ∧ ϕ(x) ≤ (α|x|)2 for all x. If the measure µ satisfies
Cheeger’s inequality (12) and the condition (11) is satisfied for all t ≥ 1 then
(µ, ϕ(·/C)) has property (τ) with the constant C = 36 max{2γ, α/κ}.

Proof. Notice that αBϕ(t) ⊃
√
tBn

2 for all t < 1, hence Cheeger’s in-
equality implies that condition (7) holds for t < 1 with β = α/κ. Therefore
(7) holds for all t ≥ 0 with β = max{2γ, α/κ} and the assertion follows by
Corollary 2.6.

2.3. Optimal cost functions. A natural question arises: what other pairs
(µ, ϕ) have property (τ)? First we have to choose the right cost function. To
do this let us recall the following definitions.

Definition 2.10. Let f : Rn → (−∞,∞]. The Legendre transform of f ,
denoted Lf , is defined by Lf(x) := supy∈Rn{〈x, y〉 − f(y)}.

The Legendre transform of any function is a convex function. If f is con-
vex and lower semicontinuous, then LLf = f , and otherwise LLf ≤ f .
In general, if f ≥ g, then Lf ≤ Lg. The Legendre transform satisfies
L(Cf)(x) = CLf(x/C), and if g(x) = f(x/C), then Lg(x) = Lf(Cx).
For these and other properties of L, see [19]. The Legendre transform has
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been previously used in the context of convex geometry (see for instance [2]
and [15]).

Definition 2.11. Let µ be a probability measure on Rn. We define

Mµ(v) :=
�

Rn
e〈v,x〉dµ(x), Λµ(v) := logMµ(v)

and
Λ?µ(v) := LΛµ(v) = sup

u∈Rn

{
〈v, u〉 − ln

�

Rn
e〈u,x〉 dµ(x)

}
.

The function Λ?µ plays a crucial role in the theory of large deviations (cf.
[10]).

It is a common phenomenon in many places of the theory that the “worst”
(in some sense) functions are linear functionals. Thus it is worth checking
what happens when we take f in the definition of property (τ) to be a linear
functional. This approach is at the heart of the following results.

Remark 2.12. Let µ be a symmetric probability measure on Rn and let
ϕ be a convex cost function such that (µ, ϕ) has property (τ). Then

ϕ(v) ≤ 2Λ?µ(v/2) ≤ Λ?µ(v).

Proof. Set f(x) = 〈x, v〉. Then
f � ϕ(x) = inf

y
{f(x− y) + ϕ(y)} = inf

y
{〈x− y, v〉+ ϕ(y)} = 〈x, v〉 − Lϕ(v).

Property (τ) yields

1 ≥
�
ef�ϕ dµ

�
e−f dµ = e−Lϕ(v)

�
e〈x,v〉 dµ

�
e−〈x,v〉 dµ = e−Lϕ(v)M2

µ(v),

where the last equality uses the fact that µ is symmetric. Thus by taking the
logarithm we get Lϕ(v) ≥ 2Λµ(v), and by applying the Legendre transform
we obtain ϕ(v) = LLϕ(v) ≤ 2Λ?µ(v/2). The inequality 2Λ?µ(v/2) ≤ Λ?µ(v)
follows by the convexity of Λ?µ.

The above remark motivates the following definition.

Definition 2.13. We say that a symmetric probability measure µ sat-
isfies the infimum convolution inequality with constant β ( IC(β) for short)
if the pair (µ,Λ?µ(·/β)) has property (τ).

Tensorization properties of (τ) and additive properties of Λ?µ imply the
tensorization of the IC inequality:

Proposition 2.14. If µi are symmetric probability measures on Rni , 1 ≤
i ≤ k, satisfying IC(βi), then µ =

⊗k
i=1 µi satisfies IC(β) with β = maxi βi.

Proof. By independence, we have Λµ(x1, . . . , xk) =
∑k

i=1 Λµi(xi) and
Λ?µ(x1, . . . , xk) =

∑k
i=1 Λ

?
µi(xi). Since IC(β) implies IC(β′) with any β′ ≥ β,

the result immediately follows by Proposition 2.2.
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In the next proposition we give an equivalent form of property IC.
Proposition 2.15. For v = (v0, v1, . . . , vn) in Rn+1 let ṽ = (v1, . . . , vn)

∈ Rn. A probability measure µ on Rn satisfies IC(β) if and only if for any
nonempty V ⊂ Rn+1 and any bounded measurable function f on Rn,

(13)
�

Rn
ef�ψV dµ

�

Rn
e−f dµ ≤ sup

v∈V

(
ev0

�

Rn
eβ〈x,ev〉 dµ(x)

)
,

where
ψV (x) := sup

v∈V
{v0 + 〈x, ṽ〉}.

Proof. If we put V = {(v0, ṽ) : v0 = −Λµ(βṽ)}, then the right-hand side
of (13) is equal to 1 and ψV (x) = Λ?µ(x/β), so if µ satisfies (13) for this V ,
it satisfies IC(β).

Conversely, suppose µ satisfies IC(β). Take an arbitrary nonempty set V .
If the right-hand side supremum is infinite, the inequality is obvious, so we
may assume it is equal to some s <∞. This means that for any (v0, ṽ) ∈ V
we have v0 + Λµ(βṽ) ≤ log s, that is, v0 ≤ log s− Λµ(βṽ). Thus

ψV (x) = sup
v∈V
{v0 + 〈x, ṽ〉} ≤ log s+ sup

v∈V
{〈x, ṽ〉 − Λµ(βṽ)}

≤ log s+ supev∈Rn
{〈x, ṽ〉 − Λµ(βṽ)} = log s+ Λ?µ(x/β),

which in turn means from IC(β) that the left-hand side is no larger than s.
The previous proposition easily implies that property IC is invariant un-

der linear transformations.
Proposition 2.16. Let L : Rn → Rk be a linear map and suppose that

a probability measure µ on Rn satisfies IC(β). Then the probability measure
µ ◦ L−1 satisfies IC(β).

Proof. For any set V ⊂ R×Rk and any function f : Rk → R put f̄(x) :=
f(L(x)) and V̄ := {(v0, L

?(ṽ)) : (v0, ṽ) ∈ V }, where L? is the Hermitian
conjugate of L. Then direct calculation shows ψV (L(x)) = ψV̄ (x) and f �

ψV (L(x)) ≤ f̄ � ψV̄ (x), thus�

Rk
ef�ψV d(µ ◦ L−1) ≤

�

Rn
ef̄�ψV̄ dµ

and �

Rk
e−f d(µ ◦ L−1) =

�

Rn
e−f̄ dµ

and finally

sup
v∈V

{
ev0

�

Rk
eβ〈x,ev〉 d(µ ◦ L−1)

}
= sup

v∈V̄

{
ev0

�

Rn
eβ〈x,ev〉 dµ},

which substituted into (13) gives the conclusion.



156 R. Latała and J. O. Wojtaszczyk

Proposition 2.17. For any x ∈ R,
1
5 min(x2, |x|) ≤ Λ?ν(x) ≤ min(x2, |x|),

in particular the measure ν satisfies IC(9).

Proof. Direct calculation shows that Λν(x) = − ln(1 − x2) for |x| < 1
and

Λ?ν(x) =
√

1 + x2 − 1− ln
(√

1 + x2 + 1
2

)
.

Since a/2 ≤ a− ln(1 +a/2) ≤ a for a ≥ 0, we get 1
2(
√

1 + x2− 1) ≤ Λ?ν(x) ≤√
1 + x2 − 1. Finally,

min(x, |x|2) ≥
√

1 + x2 − 1 =
x2

√
1 + x2 + 1

≥ 1√
2 + 1

min(|x|, x2).

The last statement follows from Theorem 2.5, since min((x/9)2, |x|/9) ≤
w(x).

2.4. Logarithmically concave product measures. A measure µ on Rn is
logarithmically concave (log-concave for short) if for all nonempty compact
sets A,B and t ∈ [0, 1],

µ(tA+ (1− t)B) ≥ µ(A)tµ(B)1−t.

By Borell’s theorem [8] a measure µ on Rn with a full-dimensional support
is logarithmically concave if and only if it is absolutely continuous with
respect to the Lebesgue measure and has a logarithmically concave density,
i.e. dµ(x) = eh(x)dx for some concave function h : Rn → [−∞,∞).

Note that if µ is a symmetric probability measure on Rn, then both Λµ
and Λ?µ are convex and symmetric, and Λµ(0) = Λ?µ(0) = 0.

Recall also that a probability measure µ on Rn is called isotropic if
�
〈u, x〉 dµ(x) = 0 and

�
〈u, x〉2 dµ(x) = |u|2 for all u ∈ Rn.

It is easy to check that for any measure µ with a full-dimensional support
there exists a linear map L such that µ ◦ L−1 is isotropic.

The next theorem (with a different universal, but rather large constant)
may be deduced from the results of Gozlan [11]. We give the following,
relatively short proof for the sake of completeness.

Theorem 2.18. Any symmetric log-concave measure on R satisfies
IC(48).

Proof. Let µ be a symmetric log-concave probability measure on R. We
may assume that µ is isotropic by Proposition 2.16. Denote the density of
µ by g(x) and let the tail function be µ[x,∞) = e−h(x). By the Hensley
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inequality [12] we obtain

g(0) = g(0)
( �

R
x2g(x) dx

)1/2
≥ 1

2
√

3
≥ 1

8
.

Let T : R → R be a function such that ν(−∞, x) = µ(−∞, Tx). Then
µ = ν ◦T−1, and T is odd and concave on [0,∞). In particular, |Tx−Ty| ≤
2|T (x− y)| for all x, y ∈ R.

Notice that T ′(0) = 1/(2g(0)) ≤ 4, thus by concavity of T , Tx ≤ 4x for
x ≥ 0. Moreover, for x ≥ 0, h(Tx) = x+ ln 2.

Define

h̃(x) :=

{
x2 for |x| ≤ 2/3,
max{4/9, h(|x|)} for |x| > 2/3.

We claim that (µ, h̃(·/48)) has property (τ). Notice that h̃((Tx−Ty)/48)
≤ h̃(T (|x− y|)/24) so by Proposition 2.3 it is enough to check that

(14) h̃

(
Tx

24

)
≤ w(x) for x ≥ 0,

where w(x) is as in Theorem 2.5. We have two cases.

(i) Tx ≤ 16; then

h̃

(
Tx

24

)
=
(
Tx

24

)2

≤ min
{

4
9
,

(
x

6

)2}
≤ w(x).

(ii) Tx ≥ 16; then x ≥ 4 and

h̃

(
Tx

24

)
= max

{
4
9
, h

(
Tx

24

)}
≤ max

{
4
9
,
h(Tx)

24

}
= max

{
4
9
,
x+ ln 2

24

}
≤ x

9
≤ w(x).

So (14) holds in both cases.
To conclude we need to show that Λ?µ(x) ≤ h̃(x). For |x| ≤ 2/3 this

follows from the more general Proposition 3.3 below. Notice that for any
t, x ≥ 0, Λµ(t) ≥ tx+ lnµ[x,∞) = tx− h(x), hence

Λ?µ(x) = Λ?µ(|x|) = sup
t≥0
{t|x| − Λµ(t)} ≤ h(|x|) ≤ h̃(x)

for |x| > 2/3.

Using Proposition 2.14 we get

Corollary 2.19. Any symmetric, log-concave product probability mea-
sure on Rn satisfies IC(48).

We expect that in fact a more general fact holds.
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Conjecture 1. Any symmetric log-concave probability measure satisfies
IC(C) with a uniform constant C.

3. Concentration inequalities. In this section we shall translate the
concentration obtained from IC into an alternative form, which in particular
will allow us to prove that IC implies several strong results, known by other
means to be true for any log-concave measure.

3.1. Lp-centroid bodies and related sets

Definition 3.1. Let µ be a probability measure on Rn. For p ≥ 1 we
define

Mp(µ) :=
{
v ∈ Rn :

�
|〈v, x〉|p dµ(x) ≤ 1

}
,

Zp(µ) := (Mp(µ))◦ =
{
x ∈ Rn : |〈v, x〉|p ≤

�
|〈v, y〉|p dµ(y) for all v ∈ Rn

}
and for p > 0 we put

Bp(µ) := {v ∈ Rn : Λ?µ(v) ≤ p}.

The sets Zp(µK) for p ≥ 1, when µK is the uniform distribution on the
convex body K, are called the Lp-centroid bodies of K. They were intro-
duced (under a different normalization) in [18]; their properties were also
investigated in [23].

Proposition 3.2. For any symmetric probability measure µ on Rn and
p ≥ 1,

Zp(µ) ⊂ 21/peBp(µ).

Proof. Let v ∈ Zp(µ). We need to show that Λ?µ(v/(21/pe)) ≤ p, that is,

〈u, v〉
21/pe

− Λµ(u) ≤ p for all u ∈ Rn.

Fix u ∈ Rn with
	
|〈u, x〉|p dµ(x) = βp. Then u/β ∈Mp(µ). We will consider

two cases.

(i) β ≤ 21/pep. Then, since Λµ(u) ≥
	
〈u, x〉 dµ(x) = 0,

〈u, v〉
21/pe

− Λµ(u) ≤ β

21/pe

〈
u

β
, v

〉
≤ p · 1.

(ii) β > 21/pep. We have
�
e〈u,x〉 dµ(x) ≥

�
|e〈u,x〉/p|pI{〈u,x〉≥0} dµ(x) ≥

� ∣∣∣∣〈u, x〉p
∣∣∣∣pI{〈u,x〉≥0} dµ(x)

≥ 1
2

� ∣∣∣∣〈u, x〉p
∣∣∣∣p dµ(x),
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thus �
e21/pep〈u,x〉/β dµ(x) ≥ 1

2

� ∣∣∣∣21/pe〈u, x〉
β

∣∣∣∣p dµ(x) = ep.

Hence Λµ(21/pepu/β) ≥ p and

Λµ(u) ≥ β

21/pep
Λµ(21/pepu/β) ≥ β

21/pe
.

Therefore
〈u, v〉
21/pe

− Λµ(u) ≤ β

21/pe

〈
u

β
, v

〉
− β

21/pe
≤ 0.

Proposition 3.3. If µ is a symmetric, isotropic probability measure
on Rn, then min{1, Λ?µ(u)} ≤ |u|2 for all u, in particular

√
pBn

2 ⊂ Bp(µ) for p ∈ (0, 1).

Proof. Using the symmetry and isotropy of µ, we get
�
e〈u,x〉 dµ(x) = 1 +

∞∑
k=1

1
(2k)!

�
〈u, x〉2k dµ(x) ≥ 1 +

∞∑
k=1

|u|2k

(2k)!
= cosh(|u|).

Hence for |u| < 1,

Λ?µ(u) ≤ L(ln cosh)(|u|) = 1
2 [(1 + |u|) ln(1 + |u|) + (1−|u|) ln(1−|u|)] ≤ |u|2,

where to get the last inequality we used ln(1 + x) ≤ x for x > −1.

3.2. α-regular measures. To establish inclusions opposite to those in the
previous subsection, we introduce the following property:

Definition 3.4. We say that a measure µ on Rn is α-regular if for any
p ≥ q ≥ 2 and v ∈ Rn,( �

|〈v, x〉|p dµ(x)
)1/p

≤ α p
q

( �
|〈v, x〉|q dµ(x)

)1/q
.

Proposition 3.5. If µ is α-regular for some α ≥ 1, then for any p ≥ 2,

Bp(µ) ⊂ 4eαZp(µ).

Proof. First we will show that

(15) u ∈Mp(µ) ⇒ Λµ

(
pu

2eα

)
≤ p.

Indeed, if we fix u ∈Mp(µ) and put ũ := pu
2eα , then( �

|〈ũ, x〉|k dµ(x)
)1/k

=
p

2eα

( �
|〈u, x〉|k dµ(x)

)1/k
≤


p

2eα
, k ≤ p,

k

2e
, k > p.
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Hence
�
e〈eu,x〉 dµ(x) ≤

�
e|〈eu,x〉| dµ(x) =

∞∑
k=0

1
k!

�
|〈ũ, x〉|k dµ(x)

≤
∑
k≤p

1
k!

∣∣∣∣ p2eα

∣∣∣∣k +
∑
k>p

1
k!

∣∣∣∣ k2e
∣∣∣∣k ≤ e p

2eα + 1 ≤ ep

and (15) follows.
Now, for any v /∈ 4eαZp(µ) we may find u ∈ Mp(µ) such that 〈v, u〉 >

4eα to obtain

Λ?µ(v) ≥
〈
v,

pu

2eα

〉
− Λµ

(
pu

2eα

)
>

p

2eα
4eα− p = p.

Proposition 3.6. If µ is symmetric, isotropic and α-regular for some
α ≥ 1, then

Λ?µ(u) ≥ min
{
|u|
2αe

,
|u|2

2α2e2

}
,

in particular

Bp(µ) ⊂ max{2αep, αe
√

2p}Bn
2 for all p > 0.

Proof. By the symmetry, isotropy and regularity of µ, we have
�
e〈u,x〉 dµ(x) =

∞∑
k=0

1
(2k)!

�
〈u, x〉2k dµ(x) ≤ 1 +

|u|2

2
+
∞∑
k=2

(αk|u|)2k

(2k)!

≤ 1 +
|u|2

2
+
∞∑
k=2

(
αe|u|

2

)2k

.

Hence if αe|u| ≤ 1,
�
e〈u,x〉 dµ(x) ≤ 1+

|u|2

2
+

4
3

(
αe|u|

2

)4

≤ 1+
α2e2|u|2

2
+

(αe|u|)4

8
≤ eα2e2|u|2/2,

so Λµ(u) ≤ α2e2|u|2/2 for αe|u| ≤ 1. Thus Λ?µ(u) ≥ min
{ |u|

2αe ,
|u|2

2α2e2

}
for

all u.

Remark 3.7. For p ≥ q, we always haveMp(µ) ⊂Mq(µ) and Zq(µ) ⊂
Zp(µ). If the measure µ is α-regular, then Mq(µ) ⊂ (αp/q)Mp(µ) and
Zp(µ) ⊂ (αp/q)Zq(µ) for p ≥ q ≥ 2. Moreover, for any symmetric measure
µ, Λ?µ(0) = 0, hence by the convexity of Λ?µ, Bq(µ) ⊂ Bp(µ) ⊂ (p/q)Bq(µ)
for all p ≥ q > 0.

Proposition 3.8. Symmetric log-concave measures are 1-regular.

Proof. If X is distributed according to a symmetric, log-concave measure
µ and u ∈ Rn, then the random variable S = 〈u,X〉 has a log-concave
symmetric distribution on the real line. We need to show that (E|S|p)1/p ≤
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(p/q)(E|S|q)1/q for p ≥ q ≥ 2. Barlow, Marshall and Proschan [3] (see also
proof of Remark 5 in [16]) showed that

(E|S|p)1/p ≤ (Γ (p+ 1))1/p

(Γ (q + 1))1/q
(E|S|q)1/q,

so it is enough to show that the function f(x) := 1
x(Γ (x + 1))1/x is non-

increasing on [2,∞). Binet’s form of the Stirling formula (cf. [1, Theorem
1.6.3]) gives

Γ (x+ 1) = xΓ (x) =
√

2π xx+1/2e−x+µ(x),

where µ(x) =
	∞
0 arctan(t/x)(e2πt − 1)−1 dt is a decreasing function. Thus

ln f(x) =
µ(x)
x

+
ln(2πx)

2x
− 1

is indeed nonincreasing on [2,∞).

Let us introduce the following notion:

Definition 3.9. We say that a measure µ satisfies the concentration
inequality with constant β (CI(β) for short) if

(16) ∀p≥2∀A∈B(Rn) µ(A) ≥ 1/2 ⇒ 1− µ(A+ βZp(µ)) ≤ e−p(1− µ(A)).

The next proposition shows that property (16) is in a sense optimal.

Proposition 3.10. Suppose that µ is an α-regular , symmetric probabil-
ity measure on Rn, and K is a convex set such that for any halfspace A,

µ(A) ≥ 1/2 ⇒ 1− µ(A+K) ≤ e−p/2.
Then K ⊃ c(α)Zp for p ≥ p(α), where c(α) and p(α) depend only on α.

Proof. Fix v ∈ Rn and set A = {x : 〈v, x〉 < 0}. Then A + K =
{x : 〈v, x〉 < a(v)}, where a(v) = supx∈K〈x, v〉. Let X be a random vari-
able with the same distribution as 〈v, x〉 under µ. Then

P(|X| ≥ a(v)) = 2P(X ≥ a(v)) = 2(1− µ(A+K)) ≤ e−p.
Regularity of µ implies ‖X‖p ≤ αp‖X‖q/q for any p ≥ q ≥ 2, where ‖X‖p =
(E|X|p)1/p. Hence by the Paley–Zygmund inequality (cf. [17, Lemma 0.2.1])
we obtain for q ≥ 2,

P(|X| ≥ ‖X‖q/2) = P(|X|q ≥ 2−qE|X|q) ≥ (1− 2−q)2‖X‖2qq /‖X‖
2q
2q

≥ 9
16(2α)−2q > (3α)−2q.

Thus if p ≥ p(α) = 4 ln(3α) and c(α) = (4α ln(3α))−1,

P(|X| ≥ c(α)‖X‖p) ≥ P(|X| ≥ 1
2‖X‖p/(2 ln(3α))) > (3α)−p/ln(3α) = e−p.

Hence c(α)‖X‖p = c(α)(
	
|〈v, x〉|pdµ(x))1/p ≤ a(v) and c(α)Zp(µ) ⊂ K.

Another motivation for the definition of CI is the following corollary:
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Corollary 3.11. Let µ be an α-regular symmetric and isotropic proba-
bility measure with α ≥ 1. Then

(i) If µ satisfies IC(β), then it satisfies CI(8eαβ).
(ii) If µ satisfies CI(β) and Cheeger’s inequality (12) with constant 1/γ,

then it satisfies IC(36 max{6eβ, γ}).
Proof. (i) Suppose that µ satisfies IC(β). By Remark 3.7, Proposition 2.4

and the definition of Bp(µ) we have

µ(A+ 2βBp(µ)) ≥ µ(A+ βB2p(µ)) ≥ 1− e−p(1− µ(A)),

so (i) follows immediately from Proposition 3.5.
(ii) On the other hand, if µ satisfies CI(β), then by Remark 3.7 and

Proposition 3.2 we have for µ(A) ≥ 1/2 and p ≥ 1,

e−p(1− µ(A)) > e−2p(1− µ(A)) ≥ 1− µ(A+ βZ2p(µ))

≥ 1− µ(A+ e21/2pβB2p(µ)) ≥ 1− µ(A+ 3eβBp(µ)).

By Proposition 2.7 this implies property (11) with γ = 3eβ. Additionally Λ?µ
is convex, symmetric and Λ?µ(0) = 0. Finally, from Proposition 3.3 we have
min{1, Λ?µ(u)} ≤ |u|2. Thus, Proposition 2.9 yields (ii).

By Proposition 2.7, in Definition 3.9 we could use the equivalent condition
µ(A + βZp(µ)) ≥ min{epµ(A), 1/2}. The next proposition shows that for
log-concave measures these conditions are satisfied for large p and for small
sets.

Proposition 3.12. Let µ be a symmetric log-concave probability measure
on Rn and c ∈ (0, 1]. Then

µ

(
A+

40
c
Zp(µ)

)
≥ 1

2
min{epµ(A), 1}

for p ≥ cn or for µ(A) ≤ e−cn.
Proof. Using a standard volumetric estimate for any r > 0 we may choose

S ⊂ Mr(µ) with #S ≤ 5n such that Mr(µ) ⊂
⋃
u∈S

(
u + 1

2Mr(µ)
)
. Then

for t > 0,
x /∈ tZr(µ) ⇒ max

u∈S
〈u, x〉 ≥ t/2

and by the Chebyshev inequality,

µ(Rn \ tZr(µ)) ≤
∑
u∈S

µ

{
x : 〈u, x〉 ≥ t

2

}
≤
∑
u∈S

(
2
t

)r �
〈u, x〉r+ dµ

≤ 1
2

5n
(

2
t

)r
.

Let µ(A) = e−q. We will consider two cases.
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(i) p ≥ max{q, cn}. Then by Remark 3.7,

µ(30c−1Zp(µ)) > µ(30Zmax{p,n}) ≥ 1− 1
2e
−max{p,n} ≥ 1− µ(A),

so A ∩ 30c−1Zp(µ) 6= ∅, hence 0 ∈ A+ 30c−1Zp(µ) and

µ(A+ 40c−1Zp(µ)) ≥ µ(10c−1Zp(µ)) ≥ 1/2.

(ii) q ≥ max{p, cn}. Let q̃ := max{q, n} and

Ã := A ∩ 30c−1Zq(µ).

As in (i), we have µ(30c−1Zq(µ)) > 1 − e−eq/2, thus µ(Ã) ≥ µ(A)/2. More-
over, (

1− p

q

)
Ã ⊂ A− p

q
30c−1Zq(µ) ⊂ A+ 30c−1Zp(µ)

and

µ(A+ 40c−1Zp(µ)) ≥ µ
((

1− p

q

)
Ã+

p

q
10c−1Zq(µ)

)
≥ µ

((
1− p

q

)
Ã+

p

q
10Zeq(µ)

)
≥ µ(Ã)1−p/qµ(10Zeq)p/q

≥
(

1
2
µ(A)

)1−p/q(1
2

)p/q
≥ 1

2
µ(A)µ(A)−p/q

=
1
2
e−pµ(A).

We conclude this part with a proof that for log-concave probability mea-
sures, IC and CI are equivalent and (with the additional assumption of
isotropy) imply the Cheeger and Poincaré inequalities. We begin by deriving
from CI a concentration of Lipschitz functions for isotropic measures.

Proposition 3.13. If µ is a log-concave isotropic probability measure
on Rn satisfying CI(C) and f is a 1-Lipschitz function (with respect to the
standard Euclidean norm) then

(17) µ({x ∈ Rn : |f(x)−Medµ f(x)| > t}) ≤ e1−t/C1 ,

where C1 = 4Ce2. Moreover ,

µ({x ∈ Rn : |f(x)− Eµf(x)| > t}) ≤ e1−t/C2 ,

where C2 = 8Ce3.

Proof. Let At = {x ∈ Rn : f(x) − Medµ f > t} and A = {x : f(x) ≤
Medµ f}. We have µ(A) ≥ 1/2, and thus by CI(C), 1 − µ(A + CZp(µ)) ≤
e−p(1 − µ(A)) ≤ e−p/2. Assume p ≥ 1. Then by Propositions 3.2 and 3.6
we have Zp(µ) ⊂ 2eBp(µ) ⊂ 4e2pBn

2 . Take t = 4Ce2p (this entails t ≥
4Ce2 = C1). Then as f is 1-Lipschitz, At ∩ (A + tBn

2 ) = ∅, thus µ(At) ≤
1− µ(A+ tBn

2 ) ≤ 1− µ(A+CZp) ≤ e−t/C1/2. Similarly one proves that for



164 R. Latała and J. O. Wojtaszczyk

t > C1 we have µ({x : f(x)−Medµ f(x) < −t}) ≤ e−t/C1/2, thus (17) holds
for t ≥ C1. If t ≤ C1, then obviously µ(At) ≤ 1 ≤ e1−t/C1 .

By integration by parts we get |Eµf − Medµ f | ≤
	∞
0 µ({x : |f(x) −

Medµ f | ≥ t)dt ≤ eC1, thus considering t ≥ 2eC1 and t < 2eC1 we get
the second assertion.

The property (17) is called exponential concentration of Lipschitz func-
tions. Theorem 1.5 of [21] states in particular that under convexity assump-
tions (satisfied by any log-concave measure) exponential concentration is
equivalent to Cheeger’s inequality (12) and the Poincaré inequality. Thus we
have the following corollary:

Corollary 3.14. Let µ be a log-concave probability measure on Rn.
Then:

(i) If µ satisfies IC(C), then it satisfies CI(C ′) with C ′ ' C.
(ii) If µ satisfies CI(C ′), then it satisfies IC(C) with C ' C ′.
(iii) If µ satisfies either IC(C) or CI(C) and is in addition isotropic,

then it satisfies Cheeger’s inequality with constant κ ' C.

Proof. Any probability measure can be transported by an affine map onto
an isotropic measure, so let L be an affine map such that µ◦L−1 is isotropic.
Also note that Zp(µ ◦ L−1) = L(Zp(µ)), thus CI(C) is affine invariant, and
by Proposition 2.16, IC(C) is affine invariant. Thus in (i) and (ii) we may
assume µ is isotropic. Also note that by Proposition 3.8, µ is 1-regular.

Thus (i) is a direct consequence of Corollary 3.11. For (iii) we may, by (i),
assume µ satisfies CI(C). Then by Proposition 3.13 we have exponential
concentration of Lipschitz functions, and the conclusion follows from Theo-
rem 1.5 of [21]. For (ii) we can use Corollary 3.11 again, as by (iii) we know
µ satisfies Cheeger’s inequality.

Thus Conjecture 1 (see end of Section 2) is equivalent to the statement
that any log-concave measure satisfies CI(C). Moreover, it would imply the
following conjecture of Kannan, Lovász and Simonovits:

Conjecture 2 (Kannan–Lovász–Simonovits [13]). There exists an ab-
solute constant C such that any symmetric isotropic log-concave probability
measure satisfies Cheeger’s inequality with constant 1/C.

3.3. Comparison of weak and strong moments. In this subsection we use
standard techniques to derive a concentration of norms from the concentra-
tion of measure. We also show several consequences of the CI property.

Proposition 3.15. Suppose that a probability measure µ on Rn is α-
regular and satisfies CI(β). Then for any norm ‖ · ‖ on Rn and p ≥ 2,
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| ‖x‖ −Medµ(‖x‖)|p dµ

)1/p
≤ 2αβ sup

‖u‖∗≤1

( �
|〈u, x〉|p dµ

)1/p
,

where ‖ · ‖∗ denotes the norm dual to ‖ · ‖.

Proof. For p ≥ 2 we define

mp := sup
‖u‖∗≤1

( �
|〈u, x〉|p dµ

)1/p
.

Let M := Medµ(‖x‖), A := {x : ‖x‖ ≤ M} and Ã := {x : ‖x‖ ≥ M}. Then
µ(A), µ(Ã) ≥ 1/2, so by CI(β) and Remark 3.7,

∀t≥p 1− µ
(
A+ β

αt

p
Zp(µ)

)
≤ 1

2e
−t, 1− µ

(
Ã+ β

αt

p
Zp(µ)

)
≤ 1

2e
−t.

Let y ∈ Zp. Then there exists u ∈ Rn with ‖u‖∗ ≤ 1 such that

‖y‖ = 〈u, y〉 ≤
( �
|〈u, x〉|p dµ(x)

)1/p
≤ mp,

hence ‖x‖ ≤M + tmp for x ∈ A+ tZp(µ). Thus for t ≥ p,

µ

{
x : ‖x‖ ≥M +

αβt

p
mp

}
≤ 1− µ

(
A+ β

αt

p
Zp(µ)

)
≤ 1

2e
−t.

In a similar way we show ‖x‖ ≥M−tmp for x ∈ Ã+tZp(µ) and µ{x : ‖x‖ ≤
M − αβtmp/p} ≤ e−t/2, therefore

µ

{
x : | ‖x‖ −M | ≥ αβt

p
mp

}
≤ e−t for t ≥ p.

Now integrating by parts gives( �
| ‖x‖ −M |p dµ

)1/p

≤ αβmp

p

[
p+

(
p

∞�

p

tp−1µ

{
x : | ‖x‖ −M | ≥ αβt

p
mp

}
dt

)1/p]

≤ αβmp

p

[
p+

(
p

∞�

p

tp−1e−t dt
)1/p]

≤ αβmp

(
1 +

Γ (p+ 1)1/p

p

)
≤ 2αβmp.

Remark 3.16. Under the assumptions of Proposition 3.15, by the trian-
gle inequality for γ = 4αβ we get
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(18) ∀p≥q≥2

( � ∣∣∣‖x‖ − ( � ‖x‖q dµ)1/q∣∣∣pdµ)1/p

≤ γ sup
‖u‖?≤1

( �
|〈u, x〉|p dµ

)1/p
.

This motivates the following definition.

Definition 3.17. We say that a probability measure µ on Rn has com-
parable weak and strong moments with constant γ (CWSM(γ) for short) if
(18) holds for any norm ‖ · ‖ on Rn.

Conjecture 3. Every symmetric log-concave probability measure on Rn

satisfies CWSM(C).

Proposition 3.18. Let µ be an isotropic probability measure on Rn sat-
isfying CWSM(γ). Then

(i)
	
| ‖x‖2 −

√
n|2 dµ(x) ≤ γ2,

(ii) if µ is also α-regular , then for all p > 2,( �
‖x‖p2 dµ

)1/p
≤
√
n+

γα

2
p.

Proof. Notice that
	
‖x‖22 dµ = n and ‖u‖?2 = ‖u‖2. Hence (i) follows

directly from (18) with p = q = 2. Moreover, (18) with q = 2 implies( �
‖x‖p2 dµ

)1/p
≤
√
n+ γ sup

‖u‖2≤1

( �
|〈u, x〉|p dµ

)1/p
≤
√
n+

γα

2
p

by the α-regularity and isotropy of µ.

Remark 3.19. Property (i) plays a crucial role in Klartag’s proof of the
central limit theorem for convex bodies [14]. Paouris [23] showed that mo-
ments of the Euclidean norm for symmetric isotropic log-concave measures
are bounded by C(p+

√
n). Thus Conjecture 3 would imply both Klartag’s

CLT (with the optimal speed of convergence) and Paouris concentration.

We conclude this section with the estimate that shows comparability of
weak and strong moments for any probability measure and p > n/C.

Proposition 3.20. For any p ≥ 1 we have( �
| ‖x‖ −Medµ(‖x‖)|p dµ

)1/p
≤
( �
‖x‖p dµ

)1/p

≤ 2 · 5n/p sup
‖u‖∗≤1

( �
|〈u, x〉|p dµ

)1/p
.

Proof. As in the proof of Proposition 3.12 we can find u1, . . . , uN with
‖ui‖? ≤ 1, N ≤ 5n such that ‖x‖ ≤ 2 maxi≤N 〈ui, x〉 for all x. Then�

‖x‖p dµ ≤ 2p
�∑
i≤N
|〈ui, x〉|p dµ ≤ 2p5n sup

‖u‖∗≤1

�
|〈u, x〉|p dµ.
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Moreover,�

{‖x‖≥M}

(‖x‖−M)p dµ(x) ≤
�

{‖x‖≥M}

(‖x‖p−Mp) dµ(x) ≤
�
‖x‖p dµ(x)− 1

2M
p

and �

{‖x‖<M}

(M − ‖x‖)p dµ(x) ≤Mpµ{x : ‖x‖ < M} ≤ 1
2M

p.

4. Modified Talagrand concentration for exponential measure.
In this section we show that for a set lying far from the origin, Talagrand’s
two-level concentration for the exponential measure may be somewhat im-
proved, namely (for sufficiently large t) it is enough to enlarge the set by
tBn

1 instead of tBn
1 +
√
tBn

2 .
We will need this result for sets which are far away from the origin in the

Euclidean norm. The first lemma, however, will consider sets which are far
away from the origin in one coordinate direction. The proof is an application
of the Brunn–Minkowski inequality for the Lebesgue measure.

Lemma 4.1. If u ≥ t > 0 then for any i ∈ {1, . . . , n} we have

|(A+ tBn
1 ) ∩ nBn

1 ∩ {x : |xi| ≥ u− t}| ≥ et/2|A ∩ nBn
1 ∩ {x : |xi| ≥ u}|.

Proof. Obviously we may assume that i = 1 and u ≤ n. Let A1 :=
A ∩ nBn

1 ∩ {x : x1 ≥ u} and B := {x ∈ Bn
1 : x1 ≥

∑
i≥2 |xi|}. From the

definition of B and A1 we have A1 − tB ⊂ nBn
1 . On the other hand, B =

{x : |x1 − 1/2|+
∑

i≥2 |xi| ≤ 1/2}, so |B| = 2−n|Bn
1 | = (2r1,n)−n. Thus

|(A1 + tBn
1 ) ∩ nBn

1 | ≥ |(A1 − tB) ∩ nBn
1 | = |A1 − tB|.

Now set

s :=
2|A1|1/nr1,n

t+ 2|A1|1/nr1,n
.

Then we easily check that |tB/(1−s)| = |A1/s|. As A1 ⊂ {x ∈ nBn
1 : x1 ≥ t}

we get |A1|1/n ≤ (n− t)/r1,n and s ≤ 2(n− t)/(2n− t). Now we can use the
Brunn–Minkowski inequality to obtain

|A1 − tB| =
∣∣∣∣s A1

s
+ (1− s) −t

1− s
B

∣∣∣∣ ≥ ∣∣∣∣A1

s

∣∣∣∣s∣∣∣∣ −t1− s
B

∣∣∣∣1−s =
∣∣∣∣A1

s

∣∣∣∣
= s−n|A1| ≥

(
2n− t
2n− 2t

)n
|A1| =

(
1

1− t
2n−t

)n
|A1|

≥ etn/(2n−t)|A1| ≥ et/2|A1|.
Notice that A1 + tBn

1 ⊂ {x : x1 ≥ u− t}, so we obtain

|(A+ tBn
1 ) ∩ nBn

1 ∩ {x : x1 ≥ u− t}| ≥ et/2|A ∩ nBn
1 ∩ {x : x1 ≥ u}|;
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in the same way we show

|(A+ tBn
1 ) ∩ nBn

1 ∩ {x : x1 ≤ −u+ t}| ≥ et/2|A ∩ nBn
1 ∩ {x : x1 ≤ −u}|.

Remark 4.2. A similar result (although with a constant multiplicative
factor) can be obtained using the same technique and more calculations for
n1/pBn

p instead of nBn
1 for p ∈ [1, 2].

Lemma 4.3. If u ≥ t > 0 then for any i ∈ {1, . . . , n} we have

νn((A+ tBn
1 ) ∩ {x : |xi| ≥ u− t}) ≥ et/2νn(A ∩ {x : |xi| ≥ u}).

Proof. Take an arbitrary k ∈ N. Let P : Rn+k → Rn be the projec-
tion onto first n coordinates. Let %k be the uniform probability measure on
(n+ k)Bn+k

1 , and ν̃k the measure defined by ν̃k(A) = %k(P−1(A)). Take an
arbitrary set A ⊂ Rn. Notice that for any set C ⊂ Rn we have

C ∩ {x : |xi| ≥ s} = P (P−1(C) ∩ {x : |xi| ≥ s})

and also P−1(A) +Bn+k
1 ⊂ P−1(A+Bn

1 ). From Lemma 4.1 we have

%k((P−1(A) + tBn+k
1 )∩ {x : |xi| ≥ u− t}) ≥ et/2%k(P−1(A)∩ {x : |xi| ≥ u}),

and thus

ν̃k((A+ tBn
1 ) ∩ {x : |xi| ≥ u− t}) ≥ et/2ν̃k(A ∩ {x : |xi| ≥ u}).

When k →∞, we have ν̃k(C)→ νn(C) for any set C ∈ B(Rn). Thus by
going to the limit we get the assertion.

To pass from sets with one coordinate large to sets far away from the
origin in the Euclidean norm we will, instead of considering the measure of
a set, consider the integral of the square of the Euclidean norm over the set.
Splitting our set into subsets on which the square of the norm is roughly
constant we will be able to tie the two quantities, while applying integration
by parts we are able to estimate the integral.

Proposition 4.4. For any t > 0 and any n ∈ N we have
�

A+tBn1

|x|2 dνn(x) ≥ et/2
�

A

(|x| − t
√
n)2

+ dν
n(x).

Proof. Let At = A+ tBn
1 . By Lemma 4.3 we get, for any s ≥ 0 and any i,

�

At

I{|xi|≥s} dν
n(x) ≥ et/2

�

A

I{|xi|≥s+t} dν
n(x).
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Thus
�

At

x2
i dν

n(x) =
�

At

∞�

0

2sI{|xi|≥s} ds dν
n(x) =

∞�

0

2s
�

At

I{|xi|≥s} dν
n(x) ds

≥ et/2
∞�

0

2s
�

A

I{|xi|≥s+t} dν
n(x) ds

= et/2
�

A

∞�

0

2sI{|xi|≥s+t} ds dν
n(x) = et/2

�

A

(|xi| − t)2
+ dν

n(x).

To get the assertion it is enough to sum over all i and notice that the function
f(y) := (

√
y − t)2

+ is convex on [0,∞), hence
n∑
i=1

(|xi| − t)2
+ =

n∑
i=1

f(x2
i ) ≥ nf

(
1
n

n∑
i=1

x2
i

)
= (|x| − t

√
n)2

+.

Lemma 4.5. Suppose that A ⊂ {x ∈ Rn : |x| ≥ 5t
√
n}. Then

νn(A+ tBn
1 ) ≥ 1

8e
t/2νn(A).

Proof. Let

Ak := A ∩ {x : 5t
√
n+ 2t(k − 1) ≤ |x| < 5t

√
n+ 2tk}, k = 1, 2, . . . .

Then Ak + tBn
1 ⊂ {x : 5t

√
n+ t(2k − 3) ≤ |x| < 5t

√
n+ t(2k + 1)}, hence

νn(A+ tBn
1 ) ≥ 1

2

∑
k≥1

ν(Ak + tBn
1 ).

From Proposition 4.4 applied for Ak we have

(5t
√
n+ t(2k + 1))2νn(Ak + tBn

1 ) ≥
�

Ak+tBn1

|x|2 dνn(x)

≥ et/2
�

Ak

(|x| − t
√
n)2

+ dν
n(x) ≥ et/2(4t

√
n+ 2t(k − 1))2νn(Ak).

Thus

νn(Ak + tBn
1 ) ≥

(
4t
√
n+ 2t(k − 1)

5t
√
n+ t(2k + 1)

)2

et/2νn(Ak) ≥ 1
4e
t/2νn(Ak)

and
νn(A+ tBn

1 ) ≥ 1
2

∑
k≥1

1
4
et/2νn(Ak) =

1
8
et/2νn(A).

The final step is to make the distance from the origin that is required for
the argument to work independent of t. We do this by increasing our set A
“step by step”, by increments of 10Bn

1 at a time, and checking the effects of
each enlargement. At each step either a large part of our set gets pushed close
to the origin (where we will be able to deal with it using different methods)
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or it stays outside, but increases its volume. It may be useful to note that
in this part we strongly use the fact that we are considering enlargements
by tBn

1 only, and not by the standard tBn
1 +
√
tBn

2 , as the second set is not
linear in t (thus a composition of two enlargements with coefficient t does
not yield an enlargement with coefficient 2t).

Theorem 4.6. For any A ∈ B(Rn) and any t ≥ 10, either

νn((A+ tBn
1 ) ∩ 50

√
nBn

2 ) ≥ 1
2ν

n(A)

or

(19) νn(A+ tBn
1 ) ≥ et/10νn(A).

In particular , (19) holds if A ∩ (50
√
nBn

2 + tBn
1 ) = ∅.

Proof. Let Ak denote A+10kBn
1 for k = 0, 1, . . . . If for any 0 ≤ k ≤ t/10

we have νn(Ak ∩ 50
√
nBn

2 ) ≥ νn(A)/2, the assertion is proved. So assume
otherwise. Let A′k := Ak \ 50

√
nBn

2 . From Lemma 4.5 we have

νn(Ak+1) ≥ νn(A′k + 10Bn
1 ) ≥ 1

8e
5νn(A′k) ≥ 1

16e
5νn(Ak) ≥ e2νn(Ak).

By a simple induction we get νn(Ak) ≥ e2kνn(A) for any k ≤ t/10. Thus

νn(A+ tBn
1 ) ≥ νn(Abt/10c) ≥ e2bt/10cνn(A) ≥ et/10νn(A).

5. Uniform measure on Bn
p . In this section we will prove the infimum

convolution property IC(C) forBn
p balls. Recall that νnp is a product measure,

while µp,n denotes the uniform measure on rp,nBn
p . We have

r−np,n = |Bn
p | =

2nΓ (1 + 1/p)n

Γ (1 + n/p)
∼ (2Γ (1 + 1/p))n(ep)n/p

nn/p(
√
n/p+ 1)

,

where the last part follows from Stirling’s formula. Thus rp,n ∼ n1/p.
For νnp we have IC(48) by Corollary 2.19. Let us first try to understand

what sort of concentration this implies, that is, how the function Λ? behaves
for νnp .

Proposition 5.1. For any p ≥ 1 and t ∈ R we have

Bt(νp) ∼ {x : fp(|x|) ≤ t} and Λ?νp(t/C) ≤ fp(|t|) ≤ Λ?νp(Ct),

where fp(t) = t2 for t < 1 and fp(t) = tp for t ≥ 1.

Proof. We shall use the facts proved in Section 3 to approximate Bt(νp).
Note that νp is log-concave (as its density is log-concave) and symmetric. It
is 1-regular from Proposition 3.8. Also

σ2
p :=

�

R
x2 dνp(x) =

1
2γp

�

R
x2e−|x|

p
dx =

Γ (1 + 3/p)
3Γ (1 + 1/p)

∼ 1
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for p ∈ [1,∞). The measure ν̃p with density σpdνp(σpx) is isotropic, hence
Propositions 3.3 and 3.6 yield Bt(ν̃p) ∼

√
tB1

2 = [−
√
t,
√
t] for t ≤ 1. Thus,

as Bt(νp) = σpBt(ν̃p), we get Bt(νp) ∼ [−
√
t,
√
t] for t ≤ 1.

For t ≥ 1 we have

Mt(νp) =
{
u ∈ R :

1
2γp

�

R
|u|t|x|te−|x|p dx ≤ 1

}

=
{
u ∈ R : |u| ≤ t

√
(t+ 1)Γ (1 + 1/p)

Γ
(
1 + t+1

p

) }
∼ {u ∈ R : |u| ≤ t−1/p}.

Thus Zt(νp) ∼ [−t1/p, t1/p] for |t| ≥ 1, so by Propositions 3.2 and 3.5,
Bt(νp) ∼ [−t1/p, t1/p]. Hence, for all t ≥ 0 we have {x : fp(|x|) ≤ t} ∼
{x : Λ?νp(x) ≤ t}, so Λ?νp(t/C) ≤ fp(t) ≤ Λ?νp(Ct). As Λ

?
νp is symmetric, the

proof is finished.

Corollary 5.2. For any t > 0 and n ∈ N we have

Bt(νnp ) ∼

{√
tBn

2 + t1/pBn
p for p ∈ [1, 2],√

tBn
2 ∩ t1/pBn

p for p ≥ 2.

Proof. By Proposition 5.1,

Bt(νnp ) =
{
x ∈ Rn :

∑
Λ?νp(xi) ≤ t

}
∼
{
x ∈ Rn :

∑
fp(|xi|) ≤ t

}
.

Simple calculations show that {x ∈ Rn :
∑
fp(|xi|) ≤ t} ∼ t1/2Bn

2 + t1/pBn
p

for p ∈ [1, 2] and {x ∈ Rn :
∑
fp(|xi|) ≤ t} ∼ t1/2Bn

2 ∩ t1/pBn
p for p ≥ 2.

Proposition 5.3. For any t ∈ [0, n], p ≥ 1 and n ∈ N we have Bt(µp,n)
∼ Bt(νnp ).

Proof. For t < 1 we use Propositions 3.3 and 3.6. Both µp,n and νnp are
symmetric, log-concave measures, and both can be rescaled as in the proof
of Proposition 5.1 to be isotropic, thus Bt(µp,n) ∼

√
tBn

2 ∼ Bt(νnp ).
Lemma 6 from [4] gives (after rescaling by rp,n)

(20)
( �
|〈a, x〉|t dµp,n(x)

)1/t
∼ rp,n

(max{n, t})1/p

( �
|〈a, x〉|t dνnp (x)

)1/t

for any p, t ≥ 1 and a ∈ Rn. Note that as rp,n ∼ n1/p, this simply means the
equivalence of tth moments of µp,n and νp,n for t ∈ [0, n]. ThusMt(µp,n) ∼
Mt(νp,n) for t ≤ n and therefore Bt(µp,n) ∼ Bt(νp,n).

Remark 5.4. It is not hard to verify that Bt(µp,n) ∼ rp,nBn
p for t ≥ n.

5.1. Transports of measure. We are now going to investigate two trans-
ports of measure. They will combine to transport a measure with known
concentration properties (νn or νn2 , that is, the exponential or Gaussian
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measure) to the uniform measure µp,n. We will investigate the contractive
properties of these transports with respect to various norms. Our motivation
is the following:

Remark 5.5. Let U : Rn → Rn be a map such that

‖U(x)− U(y)‖pp ≥ δ‖x− y‖qq for all x ∈ Rn, y ∈ A.
Then

U(A+ t1/qBn
q ) ⊃ U(Rn

)
∩ (U(A) + δ1/pt1/pBn

p ).

Analogously , if

‖U(x)− U(y)‖pp ≤ δ‖x− y‖qq for all x ∈ Rn, y ∈ A,
then

U(A+ t1/qBn
q ) ⊂ U(A) + δ1/pt1/pBn

p .

Proof. We prove the first statement; the proof of the second is almost
identical. Suppose U(x) ∈ U(A) + δ1/pt1/pBn

p . Then there exists y ∈ A such
that ‖U(x)−U(y)‖pp ≤ δt. From the assumption we have t ≥ ‖x−y‖qq, which
means x ∈ A+ t1/qBn

q , and U(x) ∈ U(A+ t1/qBn
q ).

The first transport we introduce is the radial transport Tp,n which trans-
forms the product measure νnp onto µp,n, the uniform measure on rp,nB

n
p .

We will show this transport is Lipschitz with respect to the `p norm and
Lipschitz on a large set with respect to the `2 norm for p ≤ 2.

Definition 5.6. For p ∈ [1,∞) and n ∈ N let fp,n : [0,∞)→ [0,∞) be
given by the equation

(21)
s�

0

e−r
p
rn−1 dr = (2γp)n

fp,n(s)�

0

rn−1 dr

and Tp,n(x) := xfp,n(‖x‖p)/‖x‖p for x ∈ Rn.

Let us first show the following simple estimate.

Lemma 5.7. For any q > 0 and 0 ≤ u ≤ q/2,

q

u�

0

e−ttq−1 dt ≤ e−uuq
(

1 + 2
u

q

)
.

Proof. Let

f(u) := e−uuq
(

1 + 2
u

q

)
− q

u�

0

e−ttq−1 dt.

Then f(0) = 0 and f ′(u) = e−uuq(1− 2u/q + 2/q) ≥ 0 for 0 ≤ u ≤ q/2.

Now we are ready to state the basic properties of Tp,n.
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Proposition 5.8.

(i) The map Tp,n transports the probability measure νnp onto the measure
µp,n.

(ii) For all t > 0 we have e−t
p/nt ≤ 2γpfp,n(t) ≤ t and f ′p,n(t) ≤

(2γp)−1 ≤ 1.
(iii) For any t > 0, 0 ≤ fp,n(t)/t− f ′p,n(t) ≤ min{1, 2ptp/n}.
(iv) The function t 7→ fp,n(t)/t is decreasing on (0,∞) and for any

s, t > 0,

|t−1fp,n(t)− s−1fp,n(s)| ≤ (st)−1|s− t|fp,n(s ∧ t) ≤ |s− t|
max{s, t}

.

Obviously properties of Tp,n are strongly tied to properties of fp,n. Esti-
mate (ii) means that up to t = n1/p the map Tp,n is basically a homothety.
Bounds (iii) and (iv) will be used when studying the Lipschitz properties
of Tp,n. The fact that fp,n(t)/t is decreasing means that points farther away
from the origin are contracted more. Thus we can decompose Tp,n(x)−Tp,n(y)
by first rescaling both points by fp,n(‖x‖)/‖x‖, and then estimating the ad-
ditional error by the inequality in the second part of (iv).

Proof. The definition of Tp,n directly implies (i). Differentiation of (21)
gives

(22) e−s
p
sn−1 = (2γp)nfn−1

p,n (s)f ′p,n(s).

By (21),

e−t
p
tn ≤ n

t�

0

e−r
p
rn−1 dr = (2γp)nfnp,n(t) ≤ n

t�

0

rn−1 dr = tn,

which, when the nth root is taken, gives the first part of (ii).
For the second part of (ii) we use (22) and the estimate above to get

f ′p,n(s) = e−s
p
(2γp)−n

(
s

fp,n(s)

)n−1

≤ e−sp(2γp)−n(es
p/n2γp)n−1

= e−s
p/n(2γp)−1 ≤ (2γp)−1 ≤ 1.

To show (iii) first notice that by (22) and (ii),

tf ′p,n(t)
fp,n(t)

=
(

t

fp,n(t)

)n
e−t

p
(2γp)−n ≤ (et

p/n2γp)ne−t
p
(2γp)−n = 1,

thus fp,n(t)/t − f ′p,n(t) ≥ 0. Moreover by (ii), fp,n(t)/t − f ′p,n(t) ≤ fp,n(t)/t
≤ 1, so we may assume that 2ptp/n ≤ 1. By (21) and Lemma 5.7 we obtain

(2γp)nfnp,n(t) =
n

p

tp�

0

e−uun/p−1du ≤ e−tptn
(

1 + 2
ptp

n

)
.
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Thus using again (22) and (ii) we get

fp,n(t)
t
− f ′p,n(t) =

fp,n(t)
t

(
1− e−t

p
tn

(2γp)nfnp,n(t)

)
≤ 1−

(
1 + 2

ptp

n

)−1

≤ 2ptp

n
.

By (iii) we get (fp,n(t)/t)′ ≤ 0, which proves the first part of (iv). For
the second part suppose that s > t > 0. Then

0 ≤ fp,n(t)
t
− fp,n(s)

s
≤ fp,n(t)

t
− fp,n(t)

s
=
s− t
st

fp,n(t) ≤ s− t
s

.

The next two propositions apply the idea given in Proposition 5.8. The
first of them may also be deduced (with a different constant) from the more
general fact proved in [22].

Proposition 5.9. For any x, y ∈ Rn we have ‖Tp,nx − Tp,ny‖p ≤
2‖x− y‖p.

Proof. Assume s := ‖x‖p ≥ t := ‖y‖p. We apply Proposition 5.8 to get

‖Tp,nx− Tp,ny‖p =
(∑

i

|(Tp,nx)i − (Tp,ny)i|p
)1/p

=
(∑

i

∣∣∣∣fp,n(t)
t

(xi − yi) +
(
fp,n(s)
s
− fp,n(t)

t

)
xi

∣∣∣∣p)1/p

≤
(∑

i

(
|xi − yi|+

|s− t|
s
|xi|
)p)1/p

≤
(∑

i

|xi − yi|p
)1/p

+
|s− t|
s

(∑
i

|xi|p
)1/p

= ‖x− y‖p +
| ‖x‖p − ‖y‖p|
‖x‖p

‖x‖p ≤ 2‖x− y‖p.

Proposition 5.10. Let u ≥ 0, p ∈ [1, 2] and x ∈ Rn be such that
‖x‖2n−1/2 ≤ u‖x‖pn−1/p. Then

‖Tp,nx− Tp,ny‖2 ≤ (1 + u)‖x− y‖2 for all y ∈ Rn.

Proof. Let s = ‖x‖p and t = ‖y‖p. We use Proposition 5.8 as in the proof
of Proposition 5.9, and the Hölder inequality, to obtain

‖Tp,nx− Tp,ny‖2 ≤
(∑

i

(
|xi − yi|+

|s− t|
s
|xi|
)2)1/2

≤ ‖x− y‖2 +
|s− t|
s
‖x‖2 ≤ ‖x− y‖2 +

‖x− y‖p
‖x‖p

‖x‖2

≤ ‖x− y‖2 +
‖x‖2
‖x‖p

n1/p−1/2‖x− y‖2 ≤ (1 + u)‖x− y‖2.
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The second transport we will use is a simple product transport which
transports the measure νnp onto νnq . We shall be particularly interested in
the cases p = 1 and p = 2, but most of the results can be stated in the more
general setting.

Definition 5.11. For 1 ≤ p, q <∞ we define the map wp,q : R→ R by

(23)
1
γp

∞�

x

e−t
p
dt =

1
γq

∞�

wp,q(x)

e−t
q
dt.

We write vp for wp,1. We also define Wn
p,q : Rn → Rn by

Wn
p,q(x1, . . . , xn) = (wp,q(x1), . . . , wp,q(xn)).

Note that w−1
p,q = wq,p and (Wn

p,q)
−1 = Wn

q,p. Differentiating equality (23)
we get

(24) w′p,q(x) =
γq
γp
e−x

p+wqp,q(x).

AsWp,q is a product transport, we will spend most of our time estimating
the properties of the one-dimensional version wp,q. We will prove that wp,q
behaves very much like xp/q for large x, and is more or less linear for small |x|.
We begin with the bound for q = 1.

Lemma 5.12. For p ≥ 1 we have

(i) vp(x) ≥ xp + ln(pγpxp−1) and v′p(x) ≥ pxp−1 for x ≥ 0,
(ii) vp(x) ≤ e+ xp + ln(pγpxp−1) and v′p(x) ≤ eepxp−1 for x ≥ 1,
(iii) |vp(x)− vp(y)| ≥ 21−p|x− y|p.

Proof. Note that γ1 = 1. For x ≥ 0, we have

(25) e−vp(x) =
1
γp

∞�

x

e−t
p
dt ≤ 1

pγpxp−1

∞�

x

ptp−1e−t
p
dt =

e−x
p

pγpxp−1

and for x ≥ 1, since (1 + r/p)p ≤ er ≤ 1 + er for r ∈ [0, 1], we get

e−vp(x) dt ≥ 1
γp

x+x1−p/p�

x

e−t
p
dt ≥ 1

pγpxp−1
e−(x+x1−p/p)p ≥ e−e e−x

p

pγpxp−1
.

Notice that by (24), v′p(x) = e−x
p+vp(x)/γp, hence we may estimate v′p using

the just derived bounds on vp.
The lower bound on v′p yields |vp(x)− vp(y)| ≥ |x− y|p for x, y ≥ 0. The

same estimate holds for x, y ≤ 0, since vp is odd. Finally, for x ≥ 0 ≥ y we
have

|vp(x)− vp(y)| = |vp(x)|+ |vp(y)| ≥ |x|p + |y|p ≥ 21−p|x− y|p.
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The previous lemma shows that for x ≥ 1, vp and xp have comparable
derivatives. One could hope that wp,q and xp/q behave in the same fashion.
Unfortunately things are not so bright for the case of q = 2: while it is true
that wp,2 is larger than xp/2, things start getting messy around x = 1 when
one considers the derivative. The following estimates are not optimal, but
strong enough for our purposes.

Lemma 5.13.

(i) For p ≥ q ≥ 1, |wp,q(x)| ≥ |x|p/q and w′p,q(x) ≥ γq/γp ≥ 1/2.
(ii) For p ≥ 2, w′p,2(x) ≥ 1

8

√
p |x|p/2−1.

Proof. Since the function wp,q is odd, we may and will assume that x ≥ 0.
(i) By the monotonicity of up/q−1 on [0,∞), we have

1
γp

∞�

x

e−t
p
dt =

1
γq

∞�

wp,q(x)

e−t
q
dt =

	∞
wp,q(x) e

−tq dt
	∞
0 e−tq dt

=

	∞
wp,q(x)q/p u

p/q−1e−u
p
du

	∞
0 up/q−1e−up du

≥

	∞
wp,q(x)q/p e

−up du
	∞
0 e−up du

=
1
γp

∞�

wp,q(x)q/p

e−u
p
du,

thus wp,q(x)q/p ≥ x and wp,q(x) ≥ xp/q. Formula (24) gives w′p,q(x) ≥
γq/γp ≥ 1/2.

(ii) We begin with the following Gaussian tail estimate for z > 0:

(26)
∞�

z

e−t
2
dt ≥ 1

2
√
z2 + 1

e−z
2
.

We have equality when z → ∞, and direct calculation shows the derivative
of the left-hand side is no larger than the derivative of the right-hand side.

Let κ := 4
√
π. We will now show that for all x > 0 and p ≥ 2,

(27) wp,2(x) ≥ up(x) := max
{√

π x/2,
√

(xp + ln(
√
p xp/2−1/κ))+

}
.

Suppose on the contrary that wp,2(x) < up(x) for some p ≥ 2 and x > 0.
Note that by (i) we have w′p,2 ≥ γ2/γp ≥ γ2 =

√
π/2. Thus up(x) is equal to

the second part of the maximum. This in particular implies that x ≥ 2/3,
since for x < 2/3 we have

xp + ln(
√
p xp/2−1/κ) ≤ 4

9
+
(
p

2
− 1
)

ln
2
3

+
√
p

κ
− 1 ≤ 0.
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Therefore up(x) ≥
√
π x/2 ≥ 1/

√
3. Now by (25), (23) and (26),

√
π

1
pxp−1

e−x
p ≥ γ2

γp

1
pxp−1

e−x
p ≥ γ2

γp

∞�

x

e−t
p
dt =

∞�

wp,2(x)

e−t
2
dt

>

∞�

up(x)

e−t
2
dt ≥ 1

2
√
u2
p(x) + 1

e−u
2
p(x) ≥ 1

4up(x)
e−u

2
p(x)

=
1

4up(x)
e−(xp+ln(

√
p xp/2−1/κ)) =

√
π

√
p up(x)

x1−p/2e−x
p
.

After simplifying this gives up(x) >
√
p xp/2. Hence

pxp < u2
p(x) = xp +

1
2

ln(pxp) + ln
1
κx
≤ p

2
xp +

1
2
pxp = pxp,

which is impossible. This contradiction shows that (27) holds.
Thus we have wp,2(x) ≥ up(x) and by (24) we obtain

w′p,2(x) ≥ γ2

γp
e−x

p+u2
p(x) ≥

√
π

2
1
κ

√
p xp/2−1 =

1
8
√
p xp/2−1.

Remark 5.14. By taking

up(x) = max
{√

π x/2,
√

(xp + ln(pxp/2−1/(κ ln p)))+

}
for sufficiently large κ and estimating carefully one may arrive at the bound
w′p,2(x) ≥ C−1pxp/2−1/ln p. One cannot, however, obtain a bound of the
order of pxp/2−1.

Proposition 5.15. For p ≥ q ≥ 1 we have

(i) νnp (Wn
q,p(A)) = νnq (A) for A ∈ B(Rn),

(ii) |wq,p(x)− wq,p(y)| ≤ 2|x− y| for x, y ∈ R,
(iii) for x, y ∈ Rn and r ≥ 1,

‖Wn
q,p(x)−Wn

q,p(y)‖r ≤ 2‖x− y‖r,
(iv) for x, y ∈ R,

|w1,p(x)− w1,p(y)| ≤ 2 min(|x− y|, |x− y|1/p) ≤ 2|x− y|1/q,
(v) ‖Wn

1,p(x)−Wn
1,p(y)‖qq ≤ 2q‖x− y‖1 for x, y ∈ Rn.

Proof. Property (i) follows from the definition of wq,p and Wn
q,p. Since

wq,p = w−1
p,q we get (ii) by Lemma 5.13(i). Property (iii) is a direct conse-

quence of (ii).
By Lemma 5.12(iii),

|w1,p(x)− w1,p(y)| = |v−1
p (x)− v−1

p (y)| ≤ 21−1/p|x− y|1/p.
The above inequality together with (ii) gives (iv), and (iv) yields (v).
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Let us summarize the facts proved so far. We have IC for the measure νnp
for any p, thus if the radial transport Tp,n were Lipschitz with respect to the
second and pth norms, we could transport IC to µp,n. However, while Tp,n
is Lipschitz with respect to the pth norm, it is Lipschitz only for points not
very far from the origin in the second norm (Proposition 5.10 proves this for
p ≤ 2, a similar problem occurs when p ≥ 2). Thus we will have to deal with
the point farther away from the origin separately.

For p ≤ 2 we shall use the results from Section 4. We can, fortunately,
transport them easily to νnp , as the product transport Wn

1,p is Lipschitz with
respect to any norm (in particular the second norm), and also contracts the
first norm to the pth norm.

For larger p it turns out it will suffice to combine the transports we
already have. While Tp,n is not Lipschitz in the second norm far away from
zero, it turns out that Wn

1,p contracts the points far away from zero strongly
enough to compensate for this, and the composition is Lipschitz. To check
this we will bound the norm of the derivative matrix, using the estimates for
the derivatives of the transports given above.

To this end we define the following transport from the exponential mea-
sure νn to µp,n for p ≥ 2:

Definition 5.16. For n ∈ N and 2 ≤ p < ∞ we define the map
Sp,n : Rn → Rn by Sp,n(x) := Tp,n(Wn

1,p(x)).

This transport satisfies the following bound:

Proposition 5.17. We have ‖Sp,n(x) − Sp,n(y)‖2 ≤ 4‖x − y‖2 for all
x, y ∈ Rn and p ≥ 2.

Proof. It is enough to show that ‖DSp,n(x)‖ ≤ 4, where DSp,n is the
derivative matrix, and the norm is the operator norm from `n2 into `n2 .

Let s = ‖Wn
1,p(x)‖p. By direct calculation we get

(28)
(∂Sp,n)j
∂xi

(x) =
δijfp,n(s)w′1,p(xi)

s
+ α(s)w1,p(xj)β(xi),

where

α(s) := s−p−1(sf ′p,n(s)− fp,n(s)), β(t) := |w1,p(t)|p−1sgn(w1,p(t))w′1,p(t).

Thus we can bound

‖DSp,n(x)‖ ≤ fp,n(s)
s

max
i
|w′1,p(xi)|+ |α(s)| ‖Wn

1,p(x)‖2
( n∑
i=1

β2(xi)
)1/2

.

Since w1,p = w−1
p,1, Proposition 5.13(i) implies |w′1,p(xj)| ≤ 2, while by

Proposition 5.8 we have fp,n(s)/s ≤ 1. Thus the first summand can be
bounded by 2.
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For the second summand note that by Proposition 5.8(iii),

(29) |α(s)| = s−p|f ′p,n(s)− fp,n(s)/s| ≤ s−p min{1, 2psp/n}.

Moreover, ‖Wn
1,p(x)‖2 ≤ n1/2−1/ps by the Hölder inequality and

|β(t)| = |w1,p(t)|p−1|w′1,p(t)| =
|w1,p(t)|p−1

v′p(w1,p(t))
≤ 1
p

by Lemma 5.12. Thus

‖DSp,n(x)‖ ≤ 2 + s−p min{1, 2psp/n}n1/2−1/psn1/2/p

≤ 2 + 2sn−1/p min{ns−p, 1} ≤ 4.

Recall our aim is to transport the enlargement by tBn
1 +
√
tBn

2 to the
enlargement by t1/pBn

p ∩
√
tBn

2 . This means that any vector in either the tBn
1

ball or
√
tBn

2 ball should be mapped by Sp,n both into
√
tBn

2 and t1/pBn
p . We

know that Bn
2 map to Bn

2 from the above proposition. Both Bn
2 and Bn

1 map
to Bn

p when transported by Wn
p , and Tp,n is Lipschitz with respect to the

pth norm, thus it remains to check what happens to vectors from tBn
1 with

respect to the second norm. Here direct derivation would be more involved,
thus we will change one coordinate at a time and track the changes in the
second norm:

Proposition 5.18. For any y, z ∈ Rn and p ≥ 2 we have

‖Sp,n(y)− Sp,n(z)‖2 ≤ ‖Wn
1,p(y)−Wn

1,p(z)‖2 + 2n−1/2‖y − z‖1.
Proof. Let ui(t) = (y1, y2, . . . , yi−1, t, zi+1, zi+2, . . . , zn) for i = 1, . . . , n.

Note that ui(yi) = ui+1(zi+1), u1(z1) = z and un(yn) = y, hence

Sp,n(z)− Sp,n(y) =
n∑
i=1

(Sp,n(ui(zi))− Sp,n(ui(yi))).

Let si(t) := ‖w1,p(ui(t))‖p. By vector-valued integration and (28) we get

Sp,n(ui(zi))− Sp,n(ui(yi)) =
zi�

yi

∂Sp,n
∂xi

(ui(t)) dt = ai + bi,

where

ai :=
zi�

yi

fp,n(si(t))
si(t)

w′1,p(t)ei dt, bi :=
zi�

yi

α(si(t))β(t)Wn
1,p(ui(t)) dt.

As in the proof of Proposition 5.17 we show that

‖α(si(t))β(t)Wn
1,p(ui(t))‖2 ≤ 2n−1/2si(t)n−1/p min{nsi(t)−p, 1} ≤ 2n−1/2,

thus ∥∥∥ n∑
i=1

bi

∥∥∥
2
≤

n∑
i=1

‖bi‖2 ≤ 2n−1/2
n∑
i=1

|yi − zi| = 2n−1/2‖y − z‖1.
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To deal with the sum of ai’s we notice that, since fp,n(s)/s ≤ 1 and
w′1,p(x) ≥ 0,∣∣∣〈∑

j

aj , ei

〉∣∣∣ = |〈ai, ei〉| =
∣∣∣∣zi�
yi

fp,n(si(t))
si(t)

w′1,p(t) dt
∣∣∣∣

≤
∣∣∣ zi�
yi

w′1,p(t) dt
∣∣∣ = |w1,p(zi)− w1,p(yi)|.

Thus∥∥∥∑
i

ai

∥∥∥
2
≤
∥∥∥∑

i

(w1,p(zi)− w1,p(yi))ei
∥∥∥

2
= ‖Wn

1,p(z)−Wn
1,p(y)‖2.

Having these facts, we can put them together in the following corollary:

Corollary 5.19. If x − y ∈ tBn
1 + t1/2Bn

2 for some t > 0, then for all
p ≥ 2, Sp,n(x)− Sp,n(y) ∈ 8(t1/2Bn

2 ∩ t1/pBn
p ).

Proof. Fix x, y with x− y ∈ tBn
1 + t1/2Bn

2 . By Proposition 5.15(iv),

‖Wn
1,p(x)−Wn

1,p(y)‖pp =
∑
i

|w1,p(xi)− w1,p(yi)|p

≤ 2p
∑
i

min(|xi − yi|p, |xi − yi|)

≤ 2p
∑
i

min(|xi − yi|2, |xi − yi|) ≤ 2p+2t.

Thus by Proposition 5.9,

‖Sp,n(x)− Sp,n(y)‖p ≤ 2‖Wn
1,p(x)−Wn

1,p(y)‖p ≤ 8t1/p.

By Hölder’s inequality, ‖Sp,n(x)−Sp,n(y)‖2 ≤ n1/2−1/p‖Sp,n(x)−Sp,n(y)‖p ≤
8t1/2 for t ≥ n.

Assume now that t ≤ n. Let z be such that x− z ∈ t1/2Bn
2 and z − y ∈

tBn
1 . Then Sp,n(x)− Sp,n(z) ∈ 4t1/2Bn

2 by Proposition 5.17, and ‖Wn
1,p(z)−

Wn
1,p(y)‖2 ≤ 2

√
t by Proposition 5.15(v). Thus by Proposition 5.18,

‖Sp,n(y)− Sp,n(z)‖2 ≤ 2t1/2 + 2n−1/2t ≤ 4t1/2.

Hence Sp,n(x)− Sp,n(y) ∈ 8t1/2Bn
2 .

The last function we define transports the Gaussian measure νn2 to µp,n
for p ≥ 2.

Definition 5.20. For n ∈ N and 2 ≤ p < ∞ we define S̃p,n : Rn → Rn

by S̃p,n(x) := Tp,n(Wn
2,p(x)).

We argue in much the same way as in the proof of Proposition 5.17,
estimating the norm of the derivative matrix:
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Proposition 5.21. We have ‖S̃p,n(x) − S̃p,n(y)‖2 ≤ 14‖x − y‖2 for all
x, y ∈ Rn and p ≥ 2.

Proof. We need to show that ‖DS̃p,n(x)‖ ≤ 14. Direct calculation gives

(30)
(∂S̃p,n)j
∂xi

(x) =
δijfp,n(s̃)w′2,p(xi)

s̃
+ α(s̃)w2,p(xj)β̃(xi),

where s̃ = ‖Wn
2,p(x)‖p and

α(s) := s−p−1(sf ′p,n(s)− fp,n(s)), β̃(t) := |w2,p(t)|p−1sgn(w2,p(t))w′2,p(t).

Thus we can bound

‖DS̃p,n(x)‖ ≤ fp,n(s̃)
s̃

max
i
|w′2,p(xi)|(31)

+ |α(s̃)| ‖Wn
2,p(x)‖2

( n∑
i=1

β̃2(xi)
)1/2

.

The first summand is bounded by 2 as in the proof of Proposition 5.17. Since
w2,p = w−1

p,2 we get by Lemma 5.13(ii),

|β̃(x)| = |w2,p(x)|p−1|w′2,p(x)| = |w2,p(x)|p−1

w′p,2(w2,p(x))
≤ 8
√
p
|w2,p(x)|p/2,

hence ( n∑
i=1

β̃2(xi)
)1/2

≤ 8
√
p
s̃p/2.

Using (29) and ‖Wn
2,p(x)‖2 ≤ n1/2−1/ps̃ we bound the second summand in

(31) by

s̃−p min
{

1,
2ps̃p

n

}
n1/2−1/ps̃

8
√
p
s̃p/2 = 8p−1/p min{u−1/2, 2u1/2}u1/p

≤ 8
√

2 ≤ 12,

where u := ps̃p/n.

5.2. Applying ν1 results: p ≤ 2. In this subsection we need to put care-
fully together Theorem 4.6, which for a set far away from the origin allows
us to either increase its mass or push it closer to the origin by adding a tBn

1

ball, with the transport Tp,n, which is Lipschitz close to the origin, and thus
will allow us to transport concentration inequalities from νnp to µp,n for sets
close to the origin.

We start with the version of Theorem 4.6 for νp, which is a direct trans-
portation of the ν1 case.

Lemma 5.22. For any A ∈ B(Rn), p ∈ [1, 2] and t ≥ 1,

• νnp (A+ 20t1/pBn
p ) ≥ etνnp (A) or

• νnp ((A+ 20t1/pBn
p ) ∩ 100

√
nBn

2 ) ≥ 1
2ν

n
p (A).
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Proof. We will use the transportWn
1,p from νn to νnp . Proposition 5.15(v)

gives ‖Wn
1,p(x) −Wn

1,p(y)‖pp ≤ 2p‖x − y‖1. By Remark 5.5 this means that
A+2(10t)1/pBn

p ⊃Wn
1,p(W

n
p,1(A)+10tBn

1 ). Fix t ≥ 1 and apply Theorem 4.6
to Wn

p,1(A) and 10t. If the second case of Theorem 4.6 occurs, we have

νnp (A+ 20t1/pBn
p ) ≥ νnp (Wn

1,p(W
n
p,1(A) + 10tBn

1 )) = νn(Wn
p,1(A) + 10tBn

1 )

≥ etνn(Wn
p,1(A)) = etνnp (A).

If the first case occurs, then due to Proposition 5.15(iii) we have ‖Wn
1,p(x)‖2

≤ 2‖x‖2, so 2αBn
2 ⊃Wn

1,p(αB
n
2 ) for any α > 0. Thus

νnp ((A+ 20t1/pBn
p )∩100

√
nBn

2 ) ≥ νnp (Wn
1,p(W

n
p,1(A) + 10tBn

1 ) ∩ 100
√
nBn

2 )

= νnp (Wn
1,p((W

n
p,1(A) + 10tBn

1 ) ∩Wn
p,1(100

√
nBn

2 )))

≥ νnp (Wn
1,p((W

n
p,1(A) + 10tBn

1 ) ∩ 50
√
nBn

2 ))

= νn((Wn
p,1(A) + 10tBn

1 ) ∩ 50
√
nBn

2 )

≥ 1
2ν

n(Wn
p,1(A)) = 1

2ν
n
p (A).

Now recall what IC (or rather, CI) implies for νnp .

Lemma 5.23. There exists a constant C such that for any p ∈ [1, 2], t > 0
and n ∈ N we have

νnp (A+ C(t1/pBn
p + t1/2Bn

2 )) ≥ min{1/2, etνnp (A)}.

Proof. Corollary 5.2 gives Bs(νnp ) ⊂ C(s1/pBn
p + s1/2Bn

2 ) for s > 0. By
Corollary 2.19, νnp satisfies IC(48), which, due to Proposition 2.4, implies
νnp (A+ 48B2t(νnp )) ≥ min{1/2, etνnp (A)} for any Borel set A. Thus we have

νnp (A+ 96C(t1/pBn
p + t1/2Bn

2 )) ≥ min{1/2, etνnp (A)}.

For technical reasons we will need to discard the set of points where the
pth norm is small to use Proposition 5.10. The following proposition uses a
simple argument to ensure that this set is small (of the order of c−n).

Proposition 5.24. For any α > 1 there exists a constant c(α) such that
for any n ∈ N and p ≥ 1 we have

νnp ({x : ‖x‖p < c(α)n1/p}) < α−n.

Proof. We have

νnp ({x : ‖x‖p < c(α)n1/p}) =
n

Γ (1 + n/p)

c(α)n1/p�

0

e−r
p
rn−1 dr

≤ n

Γ (1 + n/p)

c(α)n1/p�

0

rn−1 =
c(α)nnn/p

Γ (1 + n/p)
≤ (Cc(α))n,
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where in the last step we use the Stirling approximation and C as always
denotes a universal constant. Thus it is enough to take c(α) < (Cα)−1.

Theorem 5.25. There exists a universal constant C such that µp,n sat-
isfies CI(C) and IC(C) for any p ∈ [1, 2] and n ∈ N.

Proof. By Propositions 2.7, 3.12, 3.5 and 5.3 it is enough to show
(32) µp,n(A+ C(t1/pBn

p + t1/2Bn
2 )) ≥ min{1/2, etµp,n(A)}

for 1 ≤ t ≤ n and µp,n(A) ≥ e−n.
Recall that Tp,n denotes the map transporting νnp to µp,n. Apply Lem-

ma 5.22 to T−1
p,n(A) and t. If the first case of Lemma 5.2 occurs, we have

νnp (T−1
p,n(A) + 20t1/pBn

p ) ≥ etνnp (T−1
p,n(A)) = etµp,n(A).

Proposition 5.9 gives ‖Tp,nx− Tp,ny‖p ≤ 2‖x− y‖p, thus by Remark 5.5,

µp,n(A+ 40t1/pBn
p ) = νnp (T−1

p,n(A+ 40t1/pBn
p ))

≥ νnp (T−1
p,n(A) + 20t1/pBn

p ) ≥ etµp,n(A)

and we obtain (32) in this case.
Hence we may assume that the second case of Lemma 5.22 holds, that

is,
νnp (A′) ≥ 1

2ν
n
p (T−1

p,n(A)) = 1
2µp,n(A),

where
A′ := (T−1

p,n(A) + 20t1/pBn
p ) ∩ 100

√
nBn

2 .

In particular, νnp (A′) ≥ e−n/2. Let

A′′ := A′ ∩ {x : ‖x‖p ≥ c̃n1/p},
where c̃ = c(4e) is a constant given by Proposition 5.24 for α = 4e. Then

νnp (A′′) ≥ νnp (A′)− (4e)−n ≥ 1
2ν

n
p (A′) ≥ 1

4µp,n(A).

We apply Lemma 5.23 for A′′ and 4t to get
µp,n(Tp,n(A′′+ 4C(t1/pBn

p + t1/2Bn
2 ))) ≥ νnp (A′′+C((4t)1/pBn

p + (4t)1/2Bn
2 ))

≥ min{1/2, e4tνnp (A′′)} ≥ min{1/2, e4tµp,n(A)/4} ≥ min{1/2, etµp,n(A)}.
Proposition 5.9 and Remark 5.5 imply
Tp,n(A′′ + 4Ct1/2Bn

2 + 4Ct1/pBn
p ) ⊂ Tp,n(A′′ + 4Ct1/2Bn

2 ) + 8Ct1/pBn
p .

Moreover, for x ∈ A′′ we have ‖x‖2 ≤ 100
√
n and ‖x‖p ≥ c̃n1/p. Thus

n−1/2‖x‖2 ≤ 100c̃−1n−1/p‖x‖p, so we can use Proposition 5.10 along with
Remark 5.5 to get

Tp,n(A′′ + 4Ct1/2Bn
2 ) ⊂ Tp,n(A′′) + C̃t1/2Bn

2 .

Proposition 5.9, Remark 5.5 and the definitions of A′ and A′′ yield
Tp,n(A′′) ⊂ Tp,n(A′) ⊂ Tp,n(T−1

p,n(A) + 20t1/pBn
p ) ⊂ A+ 40t1/pBn

p .
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Putting the four estimates together, we can write

µp,n(A+ (40 + 8C)t1/pBn
p + C̃t1/2Bn

2 )

≥ µp,n(Tp,n(A′′) + C̃t1/2Bn
2 + 8Ct1/pBn

p )

≥ µp,n(Tp,n(A′′ + 4Ct1/2Bn
2 ) + 8Ct1/pBn

p )

≥ µp,n(Tp,n(A′′ + 4C(t1/pBn
p + t1/2Bn

2 ))) ≥ min{1/2, etµp,n(A)},
which gives (32) in the second case and ends the proof of CI. IC follows
directly from Corollary 3.14.

5.3. The easy case: p ≥ 2. This case will follow easily from the exponen-
tial case and the facts from Subsection 5.1.

Theorem 5.26. There exists a universal constant C such that for any
A ⊂ Rn, any t, n ≥ 1 and p ≥ 2 we have

µp,n(A+ C(t1/pBn
p ∩ t1/2Bn

2 )) ≥ min{1/2, etµp(A)}.

Proof. In this case we will again use the transport Sp,n. Assume A ⊂
rp,nB

n
p and let Ã := S−1

p,n(A). By Talagrand’s inequality (6) we have νn(Ã+
CtBn

1 +
√
CtBn

2 ) ≥ min{etνn(Ã), 1/2}. However, by Corollary 5.19,

Sp,n(Ã+ CtBn
1 +
√
CtBn

2 ) ⊂ Sp,n(Ã) + 8C(
√
tBn

2 ∩ t1/pBn
p ).

Thus, as Sp,n(Ã) = A and Sp,n transports the measure νn to µp,n, we get
the assertion.

By Propositions 2.7, 3.12, 3.5 and 5.3 and Corollary 3.14, Theorem 5.26
along with Theorem 5.25 yields the following.

Theorem 5.27. There exists an absolute constant C such that for any
n ∈ N and any p ∈ [1,∞) the measure µp,n satisfies CI(C) and IC(C).

By Corollary 3.14 we get Cheeger’s concentration inequality for µp,n.
However, arguing this way we loose control of the constant. We can ob-
tain a more precise result by using—as previously—the transport from the
exponential measure νn.

Proposition 5.28. For any p ≥ 2 and n ≥ 1 the measure µp,n satisfies
Cheeger’s inequality (12) with constant 1/20.

Proof. By [6] Cheeger’s inequality holds for νn with constant κ =
1/(2
√

6), thus by Proposition 5.17, µp,n satisfies (12) with constant κ/4 ≥
1/20.

We can also show a stronger result, namely a Gaussian-type isoperimetric
inequality for µp,n with p ≥ 2. The isoperimetric estimates for p ≤ 2 were
found by Sodin [24].
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Theorem 5.29. Let Φ(x) = (2π)−1/2
	∞
x exp(−y2/2)dy be the Gaussian

distribution function, A ∈ B(Rn) and p ≥ 2. Then

µp,n(A) = Φ(x) ⇒ µp,n(A+ 20tBn
2 ) ≥ Φ(x+ t) for all t > 0.

In particular , there exists a universal constant C such that

µ+
p,n(A) ≥ 1

C
min

{
µp,n(A)

√
ln

1
µp,n(A)

, (1− µp,n(A))

√
ln

1
1− µp,n(A)

}
.

Proof. By Proposition 5.21, S̃p,n(
√

2 ·) is 14
√

2-Lipschitz and transports
the canonical Gaussian measure on Rn onto µp,n. Hence the first part of
the theorem follows by the Gaussian isoperimetric inequality of Borell [9]
and Sudakov–Tsirel’son [25]. The last estimate follows immediately from a
standard estimate of the Gaussian isoperimetric function.

6. Concluding remarks

1. With the notion of the IC property one may associate IC-domination of
symmetric probability measures µ, µ̃ on Rn: we say that µ is IC-dominated
by µ̃ with constant β if (µ,Λ?eµ(·/β)) has property (τ). IC-domination has
the tensorization property: if µi are IC(β)-dominated by µ̃i, 1 ≤ i ≤ n,
then

⊗
µi is IC(β)-dominated by

⊗
µ̃i. An easy modification of the proof of

Corollary 3.11 shows that if µ is IC(β)-dominated by an α-regular measure µ̃,
then

∀p≥2∀A∈B(Rn) µ(A) ≥ 1/2 ⇒ 1− µ(A+ c(α)βZp(µ̃)) ≤ e−p(1− µ(A)).

Following the proof of Proposition 3.15 we also get, for all p ≥ 2,( �
| ‖x‖ −Medµ(‖x‖)|p dµ

)1/p
≤ c̃(α)β sup

‖u‖∗≤1

( �
|〈u, x〉|p dµ̃

)1/p
.

2. One may consider convex versions of properties CI and IC. We say that
a symmetric probability measure µ satisfies the convex infimum convolution
inequality with constant β if the pair (µ,Λ?µ(·/β)) has convex property (τ), i.e.
the inequality (1) holds for all convex functions f and with ϕ(x) = Λ?µ(x/β).
Analogously µ satisfies the convex concentration inequality with constant β
if (16) holds for all convex Borel sets A. We do not know if convex IC implies
convex CI, but for α-regular measures it implies a weaker version of convex
CI, namely

µ(A) ≥ 1/2 ⇒ µ(A+ c1(α)βZp(µ̃)) ≥ 1− 2e−p,

and this property yields CWSM(c2(α)β).
From the results of [20] one may easily deduce that the uniform distri-

bution on {−1, 1}n satisfies convex IC(C) with a universal constant C.
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3. Property IC may also be investigated for nonsymmetric measures.
However, in this case the natural choice of the cost function is Λ?eµ(x/β),
where µ̃ is the convolution of µ and the symmetric image of µ.

4. We do not know if the infimum convolution property (at least for
α-regular measures) implies Cheeger’s inequality. If so, we would have equiv-
alence of IC and CI + Cheeger. By Corollary 3.14 this is the case for log-
concave measures.

Acknowledgements. We would like to thank the anonymous referee for
pointing out to us the connection between CI property and recent results of
E. Milman.
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