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Introduction.

Let X  be a compact complex manifold of dimension tw o . B y  virture of a result
due to Kodaira, the second cohomology of X  carries a Hodge structure H 2 (X , C )=

(I) HP , q(X ), HP , g(X )=-Hq(X , Q ) , where S-21;, denotes a sheaf of holomorphic p-forms
P..7=2
on X, even if X  is non-KAhler. Let ex denote the tangent sheaf of X .  The contrac-
tion ex0Q1—)- .52 1-

x  induces a cup-product

Ho(X , S2 2
x )011 1 (X , x )  - 4  111 (X, S2,i),

and moreover we obtain an  in fin itesim a l p eriod  m ap  o f tw o  fo rm s o f  X

8 : IP (X , ex) Homc(H2,0(X), 1/ 1 ,1 (X)).

We say that the infinitesimal Torelli theorem holds for X  if the map 8 is injective.
An infinitesimal period map is closely related to a differential of a (global) period

map. In fact, the local Torelli theorem in the sense of Griffiths (3) is reduced to the
infinitesimal one.

The purpose of this paper is to study the infinitesimal Torelli problem of elliptic
surfaces. The Main Theorem of this paper is as follows.

Main Theorem. Let ço: X—>C be an ellip tic su rfa ce w ith  a base cu rv e C . A ssu m e
tha t: (i) th ere ex ist no m u ltip le fib res and the ex cep tiona l cu rves o f th e first k ind , and (ii)
the geom etric genus p g (X ) o f X  is  p o s it iv e . T h en  the in fin ites im a l T orelli th eorem  hold s
f o r  X  i f  one o f th e  fo llow in g  cond ition s is sa tisfied .

(A): T he fun ctiona l in va rian t J(X )  o f  X  is not constan t.
(B): J(X )  is constant, but not equal to 0 or 1, and the base cu rv e  is  a ra tiona l cu rve.
(C ): J(X ) is  constan t, bu t not equa l to 0 o r  1, and

X(X, 0 x)=P g (X )—  q (X )+1  3.

We shall give counter-examples of the infinitesimal Torelli theorem (Remark 6.2,

and §7).
*)

The global Torelli problem for general elliptic surface still remains open even if
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base curves of elliptic surfaces are projective lines.
In Appendix, w e  s h a l l  s tu d y  th e  g lo b a l Tore lli prob lem  f o r  "K odaira su rfa ce" .

By definition, Kodaira surface is an elliptic surface whose first Betti number is three,
and whose canonical bundle is trivial. Its second cohomology carries a polarized Hodge
structure induced by the cup-product. We can construct the coarse moduli space ,K
of Kodaira surface with a fixed degree, and we can define the period map associated with
this polarized Hodge structure 0 : c_1(—*DIT, where D denotes the period domain and r
is a discrete group. By the explicit calculation of this period map, we can prove that
every fibre of 0 consists of infinite numbers of points. Hence th e g loba l T orelli th eorem
does not hold  for K odaira su r fa ce , a lth ou gh  th e lo ca l T orelli th eorem  ho ld s fo r th em .

The plan of this paper is as follows. Section 2 is a review of the necessary back-
ground in Hodge theory. In section 3, we reduce Main Theorem to studying some pair-
ings. In section 4, we study the properties of the direct image sheaves ii"so* S2k.

After some remarks on deformation of elliptic surfaces in section 5, we complete the
proof of Main Theorem in section 6. Section 7 is a study of period maps of elliptic
bundles and we give conter-examples to the local Torelli theorem. Section 8 consists of
some Tables which summarize our results in this paper.

The author would like to express his hearty thanks to Professor K. Ueno for his many
suggestions and encouragements.

§ 1. Notations and Conventions.

In the present paper, we mean by a surface X  (resp. a curve C) a compact complex
manifold of dimension two (resp. of dimension one).

Let S7/,' denote the sheaf of germs of holomorphic p-forms on a compact complex

manifold Y . W e  use the following notations.

.IP(Y )=dintellk (Y , C).

hP, q( Y) = dimaig( 17 , o).
pg (x)=h2,0(x): the geometric genus of a surface X.
q(X )=h 0 , 1 (X ) : the irregularity of a surface X.
X (X  , x)=1—  q(X )+ p g (X ).

Let ça: X---)-C be a proper flat holomorphic map from a surface X  onto a curve C.
We call a surface X  an  e llip t ic  su r fa ce  with a base curve C, if a general fibres of ça are
nonsingular elliptic curves. We often call the morphism ça :X—>C above an elliptic
surface. If we do not mention otherwise, w e a lw a y s  a ssum e tha t an  e llip t ic  su r fa c e  is
r e la t iv e ly  m in im a l a n d  h a s n o  m u ltip le  s in g u la r  f ib r e .  We use freely the theorey of
elliptic surfaces due to Kodaira (cf. (9), (10), (11), (12)).

§ 2. Hodge structures of surfaces and the infinitesimal period map.

2.0 . Let X  be a surface which may be non-KM-11er. We first prove the following
theorem which is essentially due to Kodaira.

Theorem 2.1 . The second cohomology H 2 (X, R) of a surface X  carries a Hodge
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structure of weight 2, that is, H 2 (X , C )=  C )  HP , q(X ),
P + 9=2

where HP , a =H i ( X ,  D ) .

P r o o f  For every surface X, the Hodge spectral sequence

El;' g =Hq(X ,S 2 )   H P+q(X ,C )

degenerates at E l -terms (Kodaira (11), Theorem 3). Hence we have only to show that
HP , q=1-P , P. By the definition of the Hodge spectral sequence, it is sufficient to show
that H 2 , 0 = H 0 , 2 . Let us consider HP , a as the Dolbeault cohomology. Then we can
choose linearly independent holomorphic two forms ca l , WI , ..., G A  for basis of H 2 ' 0 where

Since the complex conjugate of holomorphic two forms are a-closed form of
the type (0, 2), it defines an element of 110 , 2 . Since we have h 2 '° =h°' 2 by Serre duality,
we have only to show that the forms (.7.h, ( 7 ) h  are Xcohomologically independent.
Put aic7)1±a2c72+...d— ahEA=4 where ai are constants and ç9 is a C°' differential form of
the type (0, 1). Since aç, is holomorphic and amaço=o, we have dw3o>=4A80.
Hence, by Stokes' formula, we conclude that -aço- 0 .  This implies that a i = 0 . Q.E.D.

Remark 2 . 2 .  For every surface X, there exists a decomposition

111 (X , C ) =11 0 (X , S2)(DH 1 (X ,  x),

and an inclusion Ho(X , S .21-
x ) C — * H 1 (X ,  x )  (Kodaira (11), Theorem 3). Moreover

Kodaira showed that if B l(X )  is even, h 1- 0 =k 0 l , if B I(X ) is odd, h1 , 0 =h 0 , 1 -1 .

2 . 1 .  Let X -*S  be a proper smooth surjective holomorphic map from a complex
manifold X  to a connected complex manifold S .  We assume that each fibre of ir is a
(connected) surface. We put

1 4 :  flat vector bundle associated with R 2 77-* Cx,

HP , / =  U  HP , q ( X i ) : Cc' subbundles of 1 4 ,
'Gs

FP = C) : C" subbundles of H .,
iap

H R2  : the canonical real structure of 1 4 ,

V: a  f la t  connection of H .

One can prove the following theorem in the same way as the case in which X  is
Kahler (cf. (2), (6)).

Theorem 2 . 3 .  L et be as abov e. T hen th e subbundles FP are holomorphic

subbundles of  H .  M o re o v e r th e da ta ,  S l  giv es th e  v a r ia t io n  o f  Hodge

s t r u c tu r e  o f  w eig h t tw o , th at is,

(i) FrC)Fi - r H , where—  denote the complex conjugation with respect to I I ,

(ii) [70(FP) C .  (FP- ') ® Q .
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Remark 2 .4 .  The definition of a variation of Hodge structure above is sufficient
for our purpose. See (4), (14).

2 .2 .  Let us recall the definition of the infinitesimal period map and its relation to
the differential of a period map.

Let X  be an n-dimentional complact complex manifold. Assume that the n-th
cohomology H"(X, C) carries a Hodge structure of weight n. Let ex denote the sheaf
of germs of holomorphic vector fields of X.
A contraction

(2.1) ex0S21, S2P,-1

induces a cup-product map

(2.2) HI(X, ex)®HP(X, Q )  — > HP+.(x, srx — ')

for each pair of integers (p, q), p+ q= n, p __(), q> O. By this cup-product (2.2), we can
consider a cohomology class y of H I(X , ex) as an element of Horn (HP'q(X), .11P + 1 4 - 3 -

(X ) ) .  Hence we can define a C-linear map

(2.3) 8: I -P (X , ex) - - - . .  ED Hom (H ,  HP+1 4- 1 ).
P+7=m

Definition 2 .5 .  We call a C-linear map 8 in (2.3) an infinitesimal period map of
holomorphic n-forms of X.

Let 7 T : X — *S  be a proper, smooth, surjective holomorphic map between complex
manifolds with connected fibres. A ssum e that th e n-th cohom ology H "(X t, C) o f each
fibre Xi(--=-7t - 1 (t)) ca rr ies  a H od ge  s tru c tu r e  o f w e igh t n . For each point o on S, we can
take a small open neighborhood U of o, and we can define the period map

(2.4) 4): U ---). D ,

where D denote a period domain in the sense of (4) (see also (14) ).
Then Griffiths (3) showed that the following diagram is commutative.

T 0 ( U)

P
1

1-1, (X 0 ,  ex )

--. T( ) (D)
t

.3 U
— , •  CI Hom (HP , q(X 0 ), HP+1 4- 1 (X0))

P+0=n

dO

where p denote the K oda ira -S p en cer  m ap at the poin t o.

From this fact, we can easily see the following theorem.

Theorem 2 .5 .  Let Tr: X—»,5. be as above. A n ssum e tha t the K oda ira -S p en cer map
is in jective at the point o. T hen  th e p er iod  m ap  0  in (2.4) is a local embedding at o if the
in fin itesim a l p eriod  m ap  o f Xo is  in jective.

§ 3. Reduction of Main Theorem.

3 .0 .  Let X  be a surface . By (2.3), we have the infinitesimal period map of two
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forms of X:

(3.1) 8: H 1 (X , ex) Horn (H 2 ,0 (X), 111 , 1 (X))C)Hom (// 1 ,1 (X ), H 0 , 2 (X ))

Taking the projection of the right hand side term to the first factor and dualizing this
map by Serre duality, we have a cup-product

(3.2) Ho(X , ( 4 ) 0 H 1(X, Di
x ) —+ H 1 (X , S21-

x 0 0 1 )

Note that this map is the cup-product in the sense of Godement (18).

Lemma 3.1. T he in fin ites im a l T orelli th eo rem  h o ld s fo r  a  su r fa ce X  if a n d  on ly
if a  cup -p rodu ct (3.2) is  su r je c t iv e .

P r o o f  The "if" part is obvious. For each element y E11 1-(X , x )  put 8(y)=

f2) E Hom (H 2 , 0 (X ) , H i , i(X))(DHom (H 1 ,1 (X ) , H 0 , 2 (X ) ) .  Then f2  is the dual
map of f i  by the Serre duality. H ence S(y)= 0 if and only if f i = 0 .  This implies
Lemma 3.1. Q.E.D.

From Lemma 3.1, Main Theorem is equivalent to the following theorem.

Theorem 3.2. Let so : X—»-C b ean  e llip tic su r fa ce  w ith  a base cu rv e  C o f genu s g .
A ssum e tha t th e con d ition s (i) and  (ii) in  M a in  T h eorem  h o l d .  T hen  th e  cup -p rodu ct
(3.2) i s  surjective i f  o n e  o f  th e  co n d it io n s  (A ), (B ), a n d  (C ) in  M a in  T h eo r em  is
sa tisfied .

3.1. Let so: X—o.0 be an elliptic surface with a base curve C and let g  denote a
coherent O x-sheaf. Since C is a curve, the Leray spectral sequence

(3.3) , Rgso,kg) .E r °

always degenerates at E 2-term s. Hence we have the following exact sequences

(3.4) 0  - - ±  1 1 1 (C ça *Q) 111(X  D ix) — * 1 -P(C  -R 14 0 *Q 1x)

(3.5) 0 H1(C, so* S4(3),(22
x ) •—■ Hi(X , Q;c0 S 4 r ) Ho(C, R 1so* (S21C)521))

Moreover we have an isomorphism

(3.6) Ho(C, so*S21)  Ho(X,

Lemma 3.3. A  cup-product IL  i n  (3.2) i s  com pa tib le  w i t h  th e  L era y  sp ectra l
sequence.

For a proof, see E.G.A. III (19), (12.2.6.1) and (12.2.6.2).
By Lemma 3.3, ti is surjective if and only if the following cup -products are surjective.

(3.7) :  H o(C , 941-2 1 )0 H 1 (C, yo* S21
x ) I/1(C, 994,0 ( 001D

(3.8) Ho(C, so*S21)0H 0 (C, RIsp* D ix ) Ho(C, Risaa lo s -21)).

Hence we can reduce the proof of Theorem 3.3 to a study of the cup-product pi and ts.2.
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§ 4. Properties of sheaves R'so* 12.y.

4 .0 . Let so: X --)-C b e a minimal elliptic surface without multiple fibres. The
following proposition is well-known. Proofs can be found in (10), (16).

Proposition 4.1. Let ç): X--+C be as above and let wsic denote the relative canonical

s h e af  T h e n  w e  have

(i) so*Ox'Oc,

(ii) Rlso* Ox is invertible sheaf on C,

(iii) deg Riso* Ox= —x(0x) --- —(1 — q(X )+ . pg (X )),

(iv) toxic —40*(f V ) ,  wheref denote the invertible sheaf R'so*Ox,

(v) --cux = s0* (Q 0 ,19 v).

Remark 4.1. The statements (i), (ii) and (iii) in Proposition 4.1 hold for an elliptic
surface without assumption on minimality and multiple fibres.

4.1. A canonical homomorphism.
Let so: X--0-C be a minimal elliptic surface without multiple fibres and let Q lx i c

denote the sheaf of relative one forms of X  over C .  Since a base curve is nonsingular,
we have an exact sequence

(4.1) SO*Oci Qx1 pix ic - 3 ' 0.

Since X  is  a surface, there exists a canonical homomorphism

(4.2) e a xi. 2x2 c o x .

Considering a sheaf q)*S-4  as a subsheaf of Qxi  b y  (4.1), from (4.2) we have a canonical

homomorphism

(4.3) c: S21.0y,*.W wx.

4.2. A fundamental exact sequence.
Let so: X--)-C be as in 4.1. The singular fibres of so were classified by Kodaira

(10). Let ai, az, a, denote supports of all singular fibres of so and we put

(4.4) 0'=so-1(a,), 0= E 0'.
i=1

If a singular fibre ei is of type i/b or type II, we put ë = . ? .  In other case, a singular
fibre 0' can be written in the form

(4.5) 0 i= E  Pl ik*O ik

where each irreducible component el is a nonsingular rational curve which intersects
each other transeversely. Then for a singular fibre ei in (4.5) we define a divisor 6' by

(4.6)
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Moreover we put

(4.7)

Now we shall determine the kernel and cokernel of the canonical homomorphism t in
(4.3).

Let 0 ',, ( re sp . k e d )  denote the underlying reduced subspace of Oi (resp. 0 ) .  If
p is a cusp of a singular fibre of type II, we can take a local coordinate (X , Y ) around
the point p, and a local parameter t around çø(p) such that Y2 +  X 3 = t .  We define a
ideal j p  o f Ox, p  by

j p = ( X 2 ,  Y)01, p .

Moreover for each poin tp  on X, we denote by m i, a ideal sheaf o f p .  Then we define an
ideal sheaf I  of X  whose stalk at each point p is given as follows.

Ox, p , if ço is smooth at p,
x(— (m i

k  —1) 0 ) 1„ if mi
k  2 ,  p E 01—(intersections)

(4.8)I =  m p 0,0 x(—(m i
k - 1 )  e — (m - 1 ) e ) ,  if e ik # and p E

n  ADO X,p if p is an ordinary double point of a singular fibre of type 14
,jp ® O X ,p  if p is a cusp of a singular fibre of type II.

Then we have the following lemma.

Lemma 4 . 2 .  L et u s  u s e  th e  sam e n o ta tion  a s  a b o v e .  T h e ca n on ica l homomor-
phism c in  (4.3) in du ces exact sequences

(4.9) 0  — ■  (so*S400(0))0p*S4 S2 C)so*(S-4) 10,(4 —> 0

(4.10) 0 —> W*QC0 0 (0) lOcoxic

where 0 (6 ) denotes an invertible sheaf associated with the divisor O.

P r o o f .  If the morphism ça is smooth at p, the canonical homomorphism is surject-

ive and its kernel is isomorphic to q)*S4Oço*S-4, p . Hence there is nothing to prove in
this case. Take a point p where ço is not smooth. Then we can choose a local coord-
inate (X , Y ) around p and a local parameter t around ço(p) such that

(i) X  = t, if pse i
k —(intersections),

(ii) Y"' ; =1, if p lies on a intersection of e i
k and O ,

(iii) X Y = t, if p is an ordinary double point of a singular fibre of type IL ,

(iv) Y2 ± X 3 = t ,  if p is a cusp of a singular fibre of type II.

Since the map t is locally given by

e0 9,*(0 - -+  ellio*(dt),

the image of the map t  is generated by the following element in each case.
(i) X ( '"  1 ) dXAdY , (ii) dXAdY and X"' Y("' dX A dY  , (iii) X dXAdY
and Y dXAdY , (iv) Y dXAdY and XI  dX A dY  . Moreover the kernel of the map t is
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generated by the following elements.

(i) P * ( d i ) OP*(dt), ( H )

X(mi Y ®9D
v)*(dt) * (di), (iii) and (iv) p*(dt)Op*(c/t).

X (* ; - 1 ) , - 1 ) on ; - 1 ) 
Hence we can easily see that the sequence (4.9) is exact at the point p .  Hence the
sequence (4.9) is exact. Tensoring the dual sheaf of p*S4 to (4.9), we obtain an exact
sequence (4 .1 0 ). Q.E.D.

4.3. Let us use the same notation as in 4.0, 4.1 and 4 .2 .  From (4.6), (4.7) and (4.8),
we get an exact sequence

(4.11) 0 —■ I 0(—DO T — + 0

where T denote a torsion sheaf on X whose supports lies on the intersections of singular
fibres. Now we shall prove the following proposition.

Proposition 4.3. L et p : X--)-C b e a  m in im a l e l l ip t i c  s u r fa c e  w ith ou t m u ltip le
sin gu la r fib res and  let u s u se th e sam e notation as a b o v e .  T h en

(i) o J  O (—  E  a i )
i=1

(ii) R l i o * /  R Iso *exC )T i, where T1 is a torsion sheat on C

(iii) p* 0(0) Oc

(iv) R 1p* O(6) 0( E  a i )O f .
i=1

P r o o f  Since p* / is invertible and p* (0(— E  a ,))C I 0x, the assertion (i) is ob-i=
v io u s . Since the supports of the sheaf T  in (4.11) are 0-dimentional, from (4.11) we
get an exact sequence

(4.12) T*T RiT s 0 *0  (_ ()) 0.

Since C is a curve, every coherent sheaf is decomposed into a locally free part and a tor-
sion part uniquely. Hence we can conclude from (4.12) that locally free part of Rlp * /
and RIp * O (-0 )  are isomorphic to each other. Then we shall prove the locally free
part of RIp * O (-6 )  is isomorphic to Rlp * O x . Since the problem is local, we can
assume that a divisor in (4.4) consists of only one singular fibre, that is e=e,. If a
singular fibre 0  is  one of the types i Ih, II, III and  IV , th e multiplicity of each
irreducible component is equal to one. This implies that the linear system lejis empty.
Hence in this case there is nothing to prove. If a singular fibre e is one of the type It,
II*, III* and IV*, we claim the following.

C la im . T h er e  ex is t  a  s eq u en ce  {ek} 'h. ° o f  d iv is o r s  w h ich  sa t is f i e s  th e f o l l o w in g
cond ition s;

(a) 60= 0 , g s= 6 , w h er e  e is  on e o f th e typ es I t , I I*  , I I I *  , and IV*.

(b) F o r  ea ch  in te g e r  k, 15k5s, D k = -6 k - 6 k - i  is an irredu cib le n on sin gu la r ra -
tiona l cu rve.

(c) F or ea ch  in teger  k,15_k5_s, deg (0,9k( —01,--ilDk)) = ( - 07 k-1) .D k  —1.
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We assume that the cliam holds. Let us consider the following exact sequence for each
integer

(4.13) 0 0(—ek) 0(—ek_o op k ( —ohlp h ) o

By the condition (b) and (c), we have Rlio * Opk (—Ok_1lDk)=0. Taking the direct ima-
ges of the exact sequence (4.13), we have

9,74,0Dh(-0k_liph) R o ( —e) —÷ R iv * o(— oh_o 0.

Since the first term of above sequence is a torsion sheaf, the locally free part of R 1 99* 0

(— el) and R 1 io* O(-6,k_1) are isomorphic to each other. By induction with respect to
k , we conclude that the locally free part of RliO 4,0 (-0k) is isomorphic to R IN O x . The
proof of the claim is reduced to a calculations of the intersection numbers of divisors.
One can find easily a sequence of divisors satisfying (a), (b) and (c). Hence the proof
is left for readers. The proof of the assertion (iii) and (iv) is essentially same as in (i)
and (ii). Hence we omit it.

4.4. Let X -+C be a minimal elliptic surface without multiple fibres. From
the exact sequence (4.10), using (iv) in Proposition 4.1 and Proposition 4.3, we have the
following exact sequence.

(4.14)
0  - - . g '  o ( —  a i)o f v

' R lw *()(0 )0 s4 g 4  RIso*Q1 g s  o c e r i  — >  O.

Let J (X ) denote the fu n c t io n a l inv ariant of  an elliptic surface it): X — C  (Kodaira
(10), p. 572). If the functional invariant J (X ) is not constant, the moduli of general
fibres changes corresponding to its values, and the elliptic surface has at least one singular
fibre. I f  th e  functional invariant is constant, the moduli of general fibres does not
change. From the exact sequence (4.14), we have the following proposition.

Proposition 4.4. L et 99: X—)-C be as a b o v e . T h en  w e  have th e fo llow in gs .
(I) I f th e fu n ction a l in va rian t J(X )  is n ot constant, then

(4.15) W*121"="14,

(4.16) R1so*S21 O ceT a, w h er e  T 2  denote a torsion s h e a f

(II) I f th e fu n ction a l in va rian t J(X )  is  constant, th en
(4.17) 0 ,S4 99,421, 0(— E ai)(14v  — *  0  (exact)

(4.18) 0 S400( E ai)Of  --+ 12 199,421---* Oceri 0  (exact).

( I I I )  If J (X ) is constant, but not equal to 0 or 1, we have r-=-2X(0 x), and

(4.19) 0(— 0(21).
i=1

P r o o f  The proof of (4.15) can be found in (5), Lemma 5.2. Hence we omit it.
From (4.15), we conclude that the cokernel ga is a torsion sheaf. This implies (4.16).
If J (X ) is constant, the rank of the sheaf so* (21

x  is two. Hence the cokernel of g3 is a
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torsion sheaf. Since the sheaf Riço* O(g) is locally free (Proposition 4.3), g3 is a zero
m ap . T h is implies that (4.17) and (4.18). The proof of (III) is an easy execrise.
Hence we om it it. Q.E.D.

§ 5. Remarks on deformations of elliptic surfaces.

5.0. Let X  be a compact complex m anifold. By deformations of X  we mean a
triple (a ', T, 7r) where

(i) a '  and T  are analytic sets,

(ii) 7r is locally trivial (in the sense of Kuranishi (8)) and proper homolophic
map ir: X - * T , such that for some point of o on T , the fibre 1T- 1 (o) is biholo-
morphic to X.

Kuranishi (7) proved that for any compact complex manifold, the versal deformation
always exists. This versal family is called Kuranishi family, and its base space T  is
called the Kuranishi space.

Kas (5) proved the followings. (theorem 6.2, (5))

Theorem 5.1. Let 97: X—>-C b e an e llip t ic  surface sa t is fy in g  th e  fo l low in g  co n -
ditions.

(i) E very fibre of 97 is irredu cib le.

(ii) g =g ( C ) .  2.

(iii) 4(1 — q(X )+ p g (X ) )  2 g -2 .

(iv) T he fun ctiona l in varian t j ( X )  is not constant.

Then the K uranishi space is sm ooth , and the num ber o f m odu li p (X ) is  d e fin ed . M o re -
o v e r  w e  have

p(X )=dim  c1/1 (X, ex)=11(1 —  q(X )- p g (X ))± 3 g -3 .

Remark 5.2. By using the Tyurina's theorem of simultaneous Brieskorn resolu-
tion of rational double points (15), we can show that the assumption (i) in Theorem 5.1
is not needed.

Moreover Kas (5) found the first example of a surface which has an obstruction to
deformations, that is, an elliptic surface with a constant functional invariant.

Theorem 5.3. L e t 97: X---0-C b e  an e l l ip t i c  surface w i th  a constant fu n c t io n a l
invariant j ( X ) .  A ssum e that:

(i) j ( X ) # 0 ,1 .

(ii) 12(1—q(X)d-p g (X ))>  2 +
2

2 g  

(iii) the cu r v e  C  is  su ffic ien tly  g en era l.

Then the redu ced  structure of the K uranishi spa ce T  of X  is sm ooth  and

dim T =3(1 — q(X )+ p g (X ) )± 4 g -3 ,

while we have dim c H I(X , ex )--=11(1—q(X)+ p g (X))+ 4 g -3 .
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§ 6. Proof of Main Theorem.

6 .0 . In this section we complete the proof of Main T heorem . B y the reduction
of Main Teorem in §3, Main Theorem is equivalent to Theorem 3.2, and then we have
only to prove that the cup-products p,i and p 2  are surjective.

6 .1 . Let so: X—)-C be a minimal elliptic surface without multiple singular fibres.
Assume that the geometric genus p (X ) of X is positive. We put

N=x(X, Ox)=1—q(X)H-p g (X ),
g=the genus of  a base curve C.

When a base curve Gis a rational curve, the geometric genus of X is positive if and only
if N  is greater than one. (Note that for any elliptic surface, N is non-negative.) I f  C
is a rational curve and N =2, a surface X is  a K -3  surface and the canonical bundle of
X is trivial. Hence the cup-product (3.2) is clearly surjective. By this reason, we omit
this case in the following proof. Hence we assum e that i f  c is a rational curve, N  is
greater than two.

6.2 . The case (A) of Main Theorem.
Let so: X.-.0 be as ab o v e . Assume that the functional invariant J (X ) o f X  is

not constant. From (4.15), (4.16) and (v) in Propositon 4.1, we have isomorphisms:

(6.1) Ho(C, so* Q1) Ho(C, OC)fv),

(6.2) Hi(C, 40 *(S40Q 2x)) 0160S260,f v )

(6.3) I/0(C, R 1 so* S4) H°(C, 0c)EDH0 (C, T),

(6.4) H0(C, Rlso* (S2 C)S22x )) Ho(C, 0 0 1 9 v)0311/0 (C, TC)0019 v).

For an elliptic surface with non-constant functional invariant, the number
N-=X(X, Ox) is alw ays positive (K odaira (10)). By this reason and the assumption
in 6.1, the degree of the invertible sheaf S4C)19 v is greater than zero. Hence we have

Hl(C, S-4.0S-4 of v) = O.

From this fact, we conclude that the cup-product pd in (3.7) is automatically sur-
jective.

Next, we consider the cup-product /52 in  (3.8). From (6.1), (6.3) and (6.4) the
cup-product /1 2  is reduced to the following pairings.

Ho(C, S-4 -019 v)(D H °(C, c) H°(C, S4®19 v)

Ho(C , s-4-0/v)0H0(c, T ) Ho(C, TO,S4(Di V).

The first pairing is clearly surjective. Since T  is  a torsion sheaf of a curve C,
the second pairing is also surjective. This implies that tc2 is surjective.

6.3 . The case (B) and (C) of Main Theorem.
Let so: X - C  be as in 6.1 and let us assume that the functional invariant J (X )
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of X is constant, but not equal to 0 or 1.
From the exact sequences (4.17) and (4.18), using the isomophism (4.19), we have

the following exact sequences.

(6.5) 0 -- . w *S-21 --01--+  0

(6.6) 0 --)- .54  ---± RiwS2 1
xO c e T

Since the degree of the invertible sheaf !  is equal to —N<O, from (6.5), we have
an exact sequence

(6.7) 0 I/1(C, HI(C, ço*S21) I/1(C, f ) 0.

Moreover, from the exact sequence (6.6), we obtain exact sequences;

(6.8) Ho (C, Q Ø f  v)H ow., _.>. Ho (C, o c . r )

- 1-11(C, S401 v) -=0 (deg f v --N >0 )

(6.9) 0 H o w , (Q)20(f v)2) Ho (C, R1v,*(s2)os4-®! v)

- Ho (C, s-401v )+H o(c , T1Os4Ofv) 0.

As we see in 6.2, we have HI(C, S-4 0 0 ® / 9 v )= 0 .  Hence, from (6.5), we have an
isomorphism

(6.10) HI(C, w * (Q ic )0 S 2 C ® /  v)--- H 1 (C,

From (6.7), (6.8), (6.9) and (6.10), the cup-product pi and /1,2 are reduced to the
following pairings;

(6 .1 1 ) pi : I / 1 ( C ,  )C )H o(C , 00/v) HI(C,

(6.12) /1 1
2 : Ho(C, S-403)f v)®Ho(c, s-4 0 fv ) H o w , (Q4)20(fv)2)

(6.13) iz 2, :  H°(C , Ocer 1)0Ho(C , .Q® !v)

Ho(C , S-40 f v)t@Ho(C, T  10001 v ).

The pairings /Li and ,c4  are clearly surjective. Hence the proof o f (B) and (C) of

Theorem 3.2 (or, equivalently, Main Theorem) is reduced to showing the pairing /.4
is surjective.

If a base curve C is a rational curve, the pairing /..4  is surjective. In fact, the

degree of the sheaf 0 0 / 9 v is positive. This implies the case (B) of Main Theorem.
If the genus of a base curve C is greater than zero, we apply the following lemma due

to Mumford (cf. (13), Theorem 6).

Lemma 6 .1 .  Let C be a nonsingular complete curve of genus g and L is an inver-
tiblesheaf on C such that deg L 2 g + 1 .  Then the natural pairing

110 (C, L )OH 0 (C, L) H°(C, L2)

is surjective.
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From this lemma, we conclude that the pairing l4 is surjective if

deg .f4-01v 2g+ 1 .

Since deg f v =N, the pairing p, 2
1. is surjective if N is greater than two. This implies

the case (C) of Main Theorem.

Remark 6.2. T here ex ist a  coun ter-exam ple to th e  in fin ite s im a l Torelli p rob lem .
Let C be an elliptic curve and let Pe and Ps be two distinct points on C. There exists
a branched double covering s r : C--->C whose branched points are P1 and P 2 .  Let E
be an elliptic curve. Then there are natural involtions;

L I :  e e
L 2 : E E.

Put X =C x  E .  Then we have an involution =(ti, es): X -->X . The minimal
resolution X  of the quotient variety X /(1,t) has a natural elliptic fibration over C:

X/(1, e)

         

■•••■-■

    

The general fibre of ço is a fixed elliptic curve E  and it has exactly two singular
fibres of the type I :  on the branched points. Hence this elliptic surface has a
constant functional invariant and N =X (X , x )=1.

We can apply the same argument as in 6.3 and the infinitesimal Torelli theorem
holds for X  if and only if the cup-product 14 in (6.12) is surjective.

But, since deg f  v =N=-1 and ,52,1 is trivial, we have deg S-2 0/ v =1. Hence, by
Riemann-Roch theorem, we have

dim c ilo(C , 1.4 v)= 1, dim cHo(C, (N)20( f  v)s) _2 .

This implies the cup-product /4 in (6.12) is not surjective.

§ 7. The infinitesimal period map of elliptic bundles.
(Counter-examples to the Local Torelli theorem).

7.0. Let ço: X—>-C be an elliptic bundle with a base curve C, that is, a fibre
bundle over a curve C whose typical fibre and structure group is an elliptic curve E.
The following theorem is due to Kodaira (10).

Theorem 7.1. L et w: X—)-C b e  a n  e l l ip t i c  s u r fa c e  w ith o u t  m u lt ip le  s in gu la r
f ib r e s  a n d  th e  ex cep tion a l cu rv es o f  th e  f i r s t  k in d . T h en  th e  fo l lo w in g  cond ition s a re
equivalent.

(a) 9o: X—*C is an  ellip tic bund le.
(b) x(X , 0 x)=-0

(c) R 1 so*Ox=0c.

(d) 9 2x--= So* DC-
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L e t X  be a  relatively minimal surface. Assume that the first Betti number
/3 1 (X ) of X  is odd and greater than o n e . By the classification of surfaces (Kodaira
(12), p790, Table I), X  is an elliptic surface induced by the algebraic reduction. More-
over this elliptic surface is obtained from an elliptic bundle by means of a finite number
of logarithmic transformations.

In other word, if the first Betti number B 1 ( X )  o f X  is odd and greater than one
and its elliptic fibration has no multiple fibre, then it is an elliptic bundle.

7 .1 .  Now we shall study the infinitesimal period map of elliptic bundles. (cf.
Theorem 2.1.)

Let ço: X--)-C be an elliptic bundle. Assume that the geometric genus p g (X )  is
positive. Since ço is smooth, we have an exact sequence

(7.1) 0 ço*S4 — > D i
x 1 2 1  /c0

and an isomorphism

By Theorem 7.1, we have tox ic= O x . Hence, from (7.1) and this, we get the fol-
lowing exact sequences.

(7.2) 0 ,54 99 01, — * O c 0.

(7.3) 0 S-4 Oc 0.

Lemma 7 .2 .  Let X—>-C be as above. Then

R i N n ix So*S4,
(ii) the exact sequences (7.2) and (7.3) split if and only if B I(X ) is even.

P ro o f .  The assertion (i) is easy. Hence we omit the proof. From (7.2), we have
an long exact sequence

(7.4) 0 Ho(C, .54 ) Ho(C, ço*S21
x ) r  H ° (C , O c )  ---± Hl(C,

The splitting of the exact sequence (7.2) is equivalent to the surjectivity of the map
r. Using the Leray spectral sequence and (c) o f Theorem 7.1 , we have h1 , 0 (X)=--
dim cH ° (C, N.Q 1x ) , h ° ''(X )=q (X )=g (C )±1 . By Remark 2.2, ./31 (X )  is even if and

only if h 1 , 0 (X)----h 0 , 1 (X ) .  From (7.4), the map r is surjective if and only if h 1 , 0 (X )=g(C )

+1 =h 0 , 1 (X ) .  Q.E.D.

Let yo: X—)-C be an elliptic bundle. By (d) of Proposition 7.1, we have an isomor-
phism

50*S22x =DC.
By this and (i) o f Lemma 7.2, the cup-products / L i  and in (3.7) and (3.8) are

reduced to the following pairings;

(7.5) p . i :  Ho(C, ço * S 2 ) 0 H 0 (C, .S4) Ho(C, so * S-2;c0S 4).

(7.6) /12 : H I (C, ÇO*S2jx) 0 /M C , S2 16) H1(C, ço*,54054).
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From the isomorphism above, we have p g (X )= g (C ) .  Since we assume that the
geometric genus p g (x) is positive, the genus g(C ) is greater than zero.

If a base curve C is an elliptic curve, then .(4 - is isomorphic to the structure sheaf
O c .  Hence the cup-products in  (7 .5 ) and (7.6) are always surjective. Hence th e
in fin ites im a l T ore lli th eo rem  h o ld s  in  th is  case.

Now w e assum e tha t g(C ) is grea ter than  o n e .  From the exact sequence (7.2), we
get an exact sequence

(7 .7 ) 0 EP(C, S-216 0 S ) El°(C, Sa*S2 10Qt) H°(C, Q ic) 0,

and an isomorphism

(7.8) Nwygs-2b Hi(C, Ob.

By the isomorphism (7.8) and a  natura l surjection H l(C , sp * S2) 111(C, Oc), we can
easily see that the cup-production in (7.6) is reduced to a pairing

H i(C , 0 c )0 H 0(C, Hl(C, ,Qt).

Since this pairing is perfect and Hi(C, .f2 )-- C, it is surjective. Hence the cup-product
in (7.6) is always surjective.

Next we consider the cup-product p.d. in (7.5). From the exact sequence (7.4),
we have the following exact sequence and isomorphism.

(7.8) 0 Ho(C, Qt) Ho(C, N.Q 1
x ) " C ,  c ) 0, if B i(X ) is even.

(7. 9 ) H °(C, S4) ='// ° (C, NO ) , if B l (X ) is odd.

From these facts, we can reduce the cup-product it i  in  (7.5) to the following
pairings.

The case in which B i(X ) is even.

(7 .1 0 ) Ho(C, Q)®Ho(C, .54) Ho(C, .S4-0S4 ).

(7 .1 1 ) Ho(C, 0c)01/ 0(C, S4) Ho(C,

The case in which B i(X ) is odd.

(7 .1 2 ) H o(C , f2 )0 H 0(C, Ho(C, (4® S4-) Ho(C, so* (S4)Ø .(4).

The p a i r in g  (7.11) i s  c l e a r l y  s u r je c t iv e .  A n d  th e  p a i r in g  (7.10) is  su r je c t iv e
g (C )= 2  o r  i f  g (C )> 2  an d  C  is  n on -h yp er e llip tic . (Noether).

The pairing (7.12) is equal to (7.10) and the image of this pairing is contained in
th e proper subspace H o(C , S40(4 ) of Ho(C, so,(Q1)(3).S4).

We summarize our results.

Theorem 7.3. Let so: X -0-C  be an  e l l ip t i c  b u n d le .  A ssum e th a t the g en u s  o f  a
base cu rv e is  grea ter  th an  o n e .  Then

(i) i f I li(X ) is even , the in fin ites im a l T orelli th eo rem  h o ld s fo r  X , If and  on ly
if g (C )= 2  or g (C )> 2  and  C  is n on -h yp ere llip tic ,
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(ii) i f  B 1(X )  i s  o d d ,  t h e  in fin ite s im a l T o r e ll i  th eo r em  d o es  n o t h o ld  fo r  X .
M oreover th e in fin ites im a l p er iod  m ap  ha s a  k ern el w hose d im en sion  is  eq u a l
to or grea ter  th an  g(C).

Remark 7.4. If a base curve C is an elliptic curve, the infinitesimal Torelli the-
orem always holds. In fact, i f  B 1 ( X )  is  e v en , X  is  a c o m p lex  to r u s .  A n d  if  B 1(X )

is  o d d , X  is  a  K odaira s u r f a c e .  In each case, X  has the trivial canonical bundle.

Remark 7.5. Maehara (17) showed that an elliptic bundle with odd IP (X ) has
the smooth Kuranishi space of dimension 4 g (C )-2 = d im 1 / 1.(X, ex ). Hence the period
map is not a local embedding, if a genus of a base curve is greater than one. In this
sense, a n  e ll ip t ic  b u n d le  w ith  o d d  B 1 ( X )  w h o s e  ba se cu r v e  h a s  a  g en u s  g(C) 2 is  a
counter-exam ple to L oca l T orelli th eo rem  in  th e sen se o f Grijiths(3).

Remark 7.6. If an elliptic surface has a multiple fibre, the infinitesimal Torelli
theorem does not hold. (cf. Chakiris (1))

§ 8. Tables.

Let so: X--)-C be a minimal elliptic surface without multiple fibres. Our results in
this paper are summarized in the following Tables.

Put N=1—q(X)H-p g (X ) and let 8 denote the infinitesimal period map (3.1).

(I) N 1 .

(a )  g(C)=0.

N p g (X ) J(X ) dim c l-R X , ex) S X

1 0 10 X rational

2 1 20 0 K-3

3 N - 1

not const. 11N -3 0

const. *0, 1 11N-3 0

= 0 ,1 . ? ?

( b )  g ( C ) 1 .

N p g (X ) j(X ) dim c iii(X , ex) S

1 or 2 N-I-g 1
not const. 11N +3g-3 0

const. ? (?)*

3 N -Fg-1

not const. 11N+3g--3 0

const. *0, 1. 11N +4g-3 0

= 0 ,1 . ? ?
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(II) N = 0 .  (p g (X )=g(C ))

K (C ) B1(X ) dim c H l (X , ex) C 5 X

0
2 4 X elliptic ruled

1 4 X Hopf

1
4 4 0 complex torus

3 2 0 Kodaira

2
2g+2 4 g-2

g(C) =2 or
non-hyperelliptic O

g(C)>2 and
hyperelliptic X

2g+1 4 g-2 X

O.. .injective. X .. .n o t  injective.
(?)*. There exists a counter-example to the infinitesimal Torelli theorem
(cf. Remark 6.2).

Appendix. The global Torelli problem of Kodaira surfaces.

10.0. The coarse moduli space of Kodaira surfaces.

Definition 10.1. Let X  be a relatively minimal surface. Then X  is called
K odaira surface if B I(X ) is equal to three and the canonical bundle of X is trivial.

Theorem 10.2. (Kodaira(11), T heorem  19) L et X  be a  K odaira s u r f a c e .  Then
X  h a s  a n  u n iq u e  s t r u c tu r e  o f  a n  e l l ip t i c  su r fa c e  ço: X — C  over a n  e l l ip t i c  cu r v e  C.
It is ob ta in ed  a s a  qu o tien t m an ifo ld  o f C 2 b y  an  a ffin e tran sform ation  grou p  gen era ted
b y  th e fo llow in g  e lem en ts .

,g i: (Z 1 , Z 2) (Z1, Z2+ w + — f ))

(10.1) g2: (Z i, Z 2) — 4• (Z1,
,  c o + - 1   )k

8- 3: (Z1, Z2) (Z1-1-1, Z2H-Zi)
g4: (Z1, Z2) (Z i±co, Z2 - '1 - 1 Z1)

Here, we denote by (Z 1 , Z2) a global coordinate of C 2 , by k  a positive integer, by co and r
elements of upper half plane H =  {el im e> 0} .

Definition 10.3. Let P(-r, w,  k) denote a group generated by elements in (10.1)
and we put

X (r,,,,,k)=C 2 1.F(T , w ,  k).

We call a K o d aira  surface above "K o d a ira  surface of type (r,c0,k)". The integer k
is called a degree of a K odaira  surface.

Now we shall prove the following theorem.

Theorem 10.4. Let k b e  a  p o s i t iv e  in t e g e r .  T he coa rse m odu li spa ce o f  .Kodaira

su r fa ce  o f d eg ree  k  is rep resen ted  b y the quotien t ana lytic spa ce
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H x H/( 01  Zi x SL(2, Z).

P r o o f  W e put f k = UF(r, w,  k). Then rk  acts o n  C 2 X H 2 in  th e  obvious

manner. Since this action is properly discontinuous, free from fixed points, and trivial
on the factor H 2 , we have a smooth fibration of Kodaira surface of degree k;

(10.2) 7r: C 2 X H 2 /Fk - >  H .

It is easy to see that at each point of H 2 this family is complete and effectively parame-
trized. Hence we must only prove the following lemma.

Lemma 10.5. Let (r,co) and (r', co') be tw o points on H 2 . K odaira surfaces of

type (r, w , k ) and (r', co' , k ) are  m utually  isom orphic to each other if  and only  if  there

ex ist an integer m  and an elem ent 
( a  b

d

)  of S L (2,Z ) such that
c  

act,' (10.3) w— cco'±d•

A proof is straightforward. Hence we omit it.

10.1. Explicit calculation of period map of Kodaira surfaces.
We first recall the following theorem due to Maehara (17).

Theorem 10.6. Let y;, : X—)-C be a K odaira surface of  degree k. W e have a co-

homological relation

(10.4) H2(X  , Z)=.11 1 (C , Z )0H 1 (E , Z)EDZIkZ

w here E  denote a regular f ibre.

Let P  denote the cup-product on 112 (X, Z ) .  Then, by the index theorem, the
symmetric bilinear form P defines a polarization in the sense of (14). By the Theorem
10.6, we can choose a base of H 2 (X , Z)/(torsion)

A2, A3, A4,

such that

0 0 0 1
0 0 —1 0

(10.5) (P(A A ) ) = 0 —1 0 0
1.\ 1 0 0 0

We put H z2 =H 2 (X , Z)/(torsion). Then H 2z  is  a free Z-module of rank four.
Moreover we put HI = H z2 O R , 1/ c2 =H z2 0 C .  We define the orthogonal group with
respect to a polarization P by

0(1/ 2
R , P)=, {a E GL(I/1)1' a P a=P}

Moreover, we put SO(P)= {a EO(H 2R , P)1det (a) = +1 }  .  Then we can easily see
the followings.
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(I) SO(P)=S00(P)n S0 0 (P) 1 0  0  0

0 - 1  0  0

0 0 1  0

0 0 0 - 1

where S 0 0 (P) denote the identity component of SO(P).

(II) There exists an isomorphism of Lie groups:

f :  SL(2, R) x SL(2, R ) --+  S0 0 (P).

( I I I )  SO(P, H ) = {a G SL(H)It a P  a = P }  is isomorphic to SL(2, Z) x SL(2, Z).
The classifying space of polarized Hodge structures { I l l ,  FP, P } with the Hodge

numbers h 2 , 0 = h 0 , 2 = 1 , h 1 ,1 = 2  is given by

D T I ;  A2; Aa; A4]EP 3(C), A1 A4- A2 A3=0

—A1 A4-FA2 -A3-F-A3 A2- A4 -Al>01

Then D has the two connected components D+ and D -  which is given by

D+(resp. D - ) =  {[Ai; Az; A3; A4] ED,1m(A2/A1)>0 (resp. <0)1.

Then we can easily see that the Lie group S 0 0 (P) acts transitively on D ±, and D ± is a
symmetric bounded domain of type IV . Moreover there is an isomorphism (10.6)

(10.6) 0 :  H X H D+
(T 40)1 [1 ;  ; rto].

Note that this isomorphism is equivariant for the group isomorphism f  in  (II) with
respect to the natural action of SL(2, R) x SL(2, R) to H  xHH.

Let us consider the complex analytic family of K odaira  surfaces of degree k in
(10.2). Since the base space H  xH  is simply connected, we can trivialize the local
system R 27r* Z .  I f  w e ch oo se a  su ita b le  tr iv ia liz a tion , the p er iod  m ap  a sso cia ted  w ith
th e va ria tion  o f H od ge stru ctu res o f K od a ira  su r fa ce s  is  g iv en  b y  th e  m ap  0  in  (10.6).

S in ce 0  is  eq u iva r ia n t to  th e  isom orph ism  f in  (II), w e  ha ve anoth er p eriod  m ap
H x HI/1 Z\ x SL(2, Z) D+/500(P, H 2z )

\ 0  1)
f r o m  th e  co a r s e  m od u li sp a ce  o f K od a ira  s u r fa c e  o f  d eg r e e  k  to  th e q u o tien t an a ly tic
space.

We have the following commutative diagram;

H X H

 

D+

 

H x HI (1 Z\xSL(2, Z)
\ 0 1 ) \

\OE)

H xHISL(2, Z) x SL(2, Z) ' D-F/SO(P, HD

The global Torelli problem of K odaira  surfaces (of degree k )  asks w h e th e r  th e
p er iod  m ap  d i is  in jectiv e . By the commutative diagram (10.7) we have the following

(10.7)
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theorem.

T h e o r e m  1 0 .6 . E v e r y  f i b r e  o f  c o n s is t s  o f  in f in i t e ly  m a n y  p o in ts . H ence
th e g lob a l T ore&  th eo rem  d oes n o t h o ld  fo r  K odaira su r fa ce , th ou gh  th e  lo ca l T o re lli
th eo rem  d o es  hold.

DEPARTMENT O F MATHEMATICS

K Y O T O  U N IV E R SIT Y
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*) Added in Proof: Recently, K. Chakiris [20] proved the weak global Torelli theorem.


