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Introduction.

Let X be a compact complex manifold of dimension two. By virture of a result
due to Kodaira, the second cohomology of X carries a Hodge structure A% X, C)=
p@= 2HM(X ), H(X)=H'(X, %), where £2% denotes a sheaf of holomorphic p-forms
on X, even if X is non-Kéhler. Let @x denote the tangent sheaf of X. The contrac-

tion @x®£2% — Q% induces a cup-product
HO(X; Q})®H1(X; @X) -— Hl(Xa Q;{)9
and moreover we obtain an infinitesimal period map of two forms of X
8: HY(X, Ox) — Hom(H>»Y(X), HvY(X)).

We say that the infinitesimal Torelli theorem holds for X if the map & is injective.

An infinitesimal périod map is closely related to a differential of a (global) period
map. In fact, the local Torelli theorem in the sense of Griffiths (3) is reduced to the
infinitesimal one.

The purpose of this paper is to study the infinitesimal Torelli problem of elliptic
surfaces. The Main Theorem of this paper is as follows.

Main Theorem, LZLef¢: X—C be an elliptic surface with a base curve C. Assume
that: (1) there exist no multiple fibres and the exceptional curves of the first kind, and (ii)
the geometric genus p(X) of X is positive. Then the infinitesimal Torelis theorem holds
Jor X if one of the following conditions is satisfied.

(A): The functional invariant J(X) of X is not constant.

(B): J(X) is constant, but not equal to 0 or 1, and the base curve is a rational curve.

(C): (X)) is constant, but not equal to 0 or 1, and

X(X, 0x)=po(X)—g(X)+123.

We shall give counter-examples of the infinitesimal Torelli theorem (Remark 6.2,
and §7).
The global Torelli problem for general elliptic surface still remains oper*1) even if
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base curves of elliptic surfaces are projective lines,

In Appendix, we shall study the global Torelli problem for ‘‘Kodaira surface’.
By definition, Kodaira surface is an elliptic surface whose first Betti number is three,
and whose canonical bundle is trivial. Its second cohomology carries a polarized Hodge
structure induced by the cup-product. We can construct the coarse moduli space X
of Kodaira surface with a fixed degree, and we can define the period map associated with
this polarized Hodge structure @: KX—2D/I', where D denotes the period domain and I"
is a discrete group. By the explicit calculation of this period map, we can prove that
every fibre of @ consists of infinite numbers of points. Hence 24e global Torelli theorem
does not hold for Kodaira surface, although the local Torelli theorem holds for them.

The plan of this paper is as follows. Section 2 is a review of the necessary back-
ground in Hodge theory. In section 3, we reduce Main Theorem to studying some pair-
ings. In section 4, we study the properties of the direct image sheaves R p182.
After some remarks on deformation of elliptic surfaces in section 5, we complete the
proof of Main Theorem in section 6. Section 7 is a study of period maps of elliptic
bundles and we give conter-examples to the local Torelli theorem. Section 8 consists of
some Tables which summarize our results in this paper.

The author would like to express his hearty thanks to Professor K. Ueno for his many
suggestions and encouragements.

§ 1. Notations and Conventions.

In the present paper, we mean by a surface X (resp. a curve C) a compact complex
manifold of dimension two (resp. of dimension one).
Let £2¢ denote the sheaf of germs of holomorphic p-forms on a compact complex
manifold ¥. We use the following notations.
BHY)=dimcH* Y, C).
£ Y)=dimcHU (Y, 2}).
2:(X)=4A»%(X): the geometric genus of a surface X.
g(X)=2%1(X): the irregularity of a surface X.
X(X, 0x) =1—~g(X)+2X).
Let ¢: X—C be a proper flat holomorphic map from a surface X onto a curve C.
We call a surface X an elliptic surface with a base curve C, if a general fibres of ¢ are
nonsingular elliptic curves. We often call the morphism ¢:X—C above an elliptic
surface. If we do not mention otherwise, we always assume that an elliptic surface is

relatively minimal and has no multiple singular fibre. We use freely the theorey of
elliptic surfaces due to Kodaira (cf. (9), (10), (11), (12)).

§2. Hodge structures of surfaces and the infinitesimal period map.

2.0. Let X be a surface which may be non-Kéhler. We first prove the following
theorem which is essentially due to Kodaira.

Theorem 2.1. The second cohomology Z2(X, R) of a surface X carries a Hodge
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structure of weight 2, that is, %X, C)= @ H»(X), Hri=Hv?,
Peqg=2
where AP=H1 (X, 2%). )

Proof. For every surface X, the Hodge spectral sequence
EV=Hi(X, Q) — H!*(X,C)

degenerates at £;-terms (Kodaira (11), Theorem 3). Hence we have only to show that
Hti=Hor, By the definition of the Hodge spectral sequence, it is sufficient to show
that A20=/H%2  Let us consider Z»¢ as the Dolbeault cohomology. Then we can
choose linearly independent holomorphic two forms w1, we, ..., ws for basis of /»¢ where
A=h20 Since the complex conjugate of holomorphic two forms are 8-closed form of
the type (0, 2), it defines an element of Z*2. Since we have 4%9=/%2 by Serre duality,
we have only to show that the forms @, @, ..., @s are 9-cohomologically independent.
Put arimi4-as@a+...+asds=3p where a; are constants and ¢ is a C*= differential form of
the type (0, 1). Since 3% is holomorphic and dpA38¢p=0, we have d(pA3p)=0pA0p.
Hence, by Stokes’ formula, we conclude that d¢=0. This implies that a;=0. Q.E.D.

Remark 2.2. For every surface X, there exists a decomposition
HY(X, C)=HX, Q@ H(X, Ox),

and an inclusion Eﬂ’(X, é}{) C— HYX, Ox) (Kodaira (11), Theorem 3). Moreover
Kodaira showed that if B1(X) is even, AV0=4%1 if BY{(X)is odd, Al:0=/4%1—1,

2.1. Letw: X—.S be a proper smooth surjective holomorphic map from a complex
manifold X to a connected complex manifold .S. We assume that each fibre of = is a
(connected) surface. We put

HE: flat vector bundle associated with £2 74Cyx,
Hﬁv":tl;JsHP'q(Xr): C> subbundles of A(,

F¢= ,@H"Z“': C> subbundles of A,

H%: the canonical real structure of A,

F: a flat connection of H%.

One can prove the following theorem in the same way as the case in which X is
Kahler (cf. (2), (6)).

Theorem 2.3. Let m: X—S be as above. Then the subbundles ¥t are holomorphic
subbundles of HY:. Moreover the data {H}, ¥, 7, S} gives the variation of Hodge
structure of weigh! two, that s,

() F@F'~" =5 HE, where— denote the complex conjugation with respect to H %,

(i) POF?)C, OF~HRLQ;s.
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Remark 2.4. The definition of a variation of Hodge structure above is sufficient
for our purpose. See (4), (14).

2,2, Let us recall the definition of the infinitesimal period map and its relation to
the differential of a period map.

Let X be an z-dimentional complact complex manifold. Assume that the #-th
cohomology A*(X, C) carries a Hodge structure of weight n. Let @x denote the sheaf
of germs of holomorphic vector fields of X.

A contraction

(2.1) OxR%, —> Q!
induces a cup-product map
(2.2) HY(X, Ox)QHX, %) — HHU(X, 24)

for each pair of integers (p, ¢), p-+g=n, >0, ¢>0. By this cup-product (2.2), we can
consider a cohomology class y of AY(X, @x) as an element of Hom (A#9(X), H#+1e-1
(X)). Hence we can define a C-linear map

(2.3) 8: HY(X, @x) — @ Hom (Hpe, He+1a-1),
pta=n

Definition 2.5. We call a C-linear map 8 in (2.3) an infinitesimal period map of
holomorphic »-forms of X.

Let w: X—S be a proper, smooth, surjective holomorphic map between complex
manifolds with connected fibres. Assume that zke n-th cohomology H*( X, C) of each
fibre X(=m~N¢)) carries a Hodge structure of weight n. For each point ¢ on .S, we can
take a small open neighborhood U of ¢, and we can define the period map

2.9 & U—> D,

where D denote a period domain in the sense of (4) (see also (14) ).
Then Griffiths (3) showed that the following diagram is commutative.

do

T(U) - T(o)(TD)

p

y 8 U
H\YX,, Ox,) ——— =@ Hom (#*(X,), H*+14"1(X,))
p+a=n
where p denote 2he Kodatra-Spencer map at the point o.
From this fact, we can easily see the following theorem.

Theorem 2.5. Let w: X—S be as above. Anssume that the Kodaira-Spencer map
is injective at the point o. Then the period map D in (2.4) is a local embedding at o if the
infinitesimal period map of Xo is injective.

§3. Reduction of Main Theorem.

3.0. Let X be a surface. By (2.3), we have the infinitesimal period map of two
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forms of X:
3.1 8: HY(X, Ox) — Hom (H»%X), HvY(X))@Hom (H11(X), H»*( X))

Taking the projection of the right hand side term to the first factor and dualizing this
map by Serre duality, we have a cup-product

(3.2) pr HY(X, B)QH WX, &) —> HY X, 2xQQ%)
Note that this map is the cup-product in the sense of Godement (18).

Lemma 3.1. 7'ke infinitesimal Torelli theorem holds for a surface X if and only
if a cup-product (3.2) ¢s surjective.

Proof. The “if” part is obvious. For each element yEHY(X, @x) put 3(y)=
(f1, fo)EHom (% X), H*YX))®Hom (H+1(X), H*2(X)). Then f; is the dual
map of fi by the Serre duality. Hence 8(y)=0 if and only if /1=0. This implies
Lemma 3.1. Q.E.D.

From Lemma 3.1, Main Theorem is equivalent to the following theorem.

Theorem 3.2. Let o: X—C be an elliptic surface with a base curve C of genus g.
Assume that the conditions (i) and (1) in Main Theorem hold. Then the cup-product
(3.2) 75 surjective if one of the conditions (A), (B), and (C) in Main Theorem is
satisfied.

3.1, Let ¢: X—C be an elliptic surface with a base curve C and let ¥ denote a
coherent Ox-sheaf. Since C is a curve, the Leray spectral sequence

(3.3) EY' =HNC, RipsTF) > EfN =H(X, F)

always degenerates at £a-terms. Hence we have the following exact sequences

(3.4) 0—> HYC, pu82y) —> HY X, Q%) —> HYC, R1p:82%) —0.

(3.5) 0 —— HYC, px25,Q0Q%) —> HY(X, QxQQ%) — H(C, R1ox(Q5R85%)) —0.
Moreover we have an isomorphism

(3.6) HOC, p182%) =2 HYX, 2%).

Lemma 3.3. 4 cup-product p in (3.2) is compatible with the Leray spectral
sequence.

For a proof, see E.G.A. IIT (19), (12.2.6.1) and (12.2.6.2).
By Lemma 3.3, p is surjective if and only if the following cup-products are surjective,

(3.7) w1z HUC, pu%)QHNC, puldy) — HY(C, pu(R25Q2%))
(3.8) pa: HOC, pufd3)QHUC, R1pafy) —> H(C, R'ou(Q23@02%)).

Hence we can reduce the proof of Theorem 3.3 to a study of the cup-product p, and pe.
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§4. Properties of sheaves R ¢.%.

4.0. Let ¢: X—C be a minimal elliptic surface without multiple fibres. The
following proposition is well-known. Proofs can be found in (10), (16).

Proposition4.1. Zes ¢: X—C be as above and let wx c denote the relative canonical
sheaf. Then we have

(i) e+O0x=0c,
(i) Rlp4«Ox is invertible sheaf on C,
(i) deg RloxOx=—x(Ox)=—(1—g(X)+p¢(X)),
(iv) wx,c:go*(f\/), where/ denote the invertible sheaf R1¢4Ox,
(V) Qx=wx=pXQQfY).

Remark 4.1. The statements (i), (ii) and (iii) in Proposition 4.1 hold for an elliptic
surface without assumption on minimality and multiple fibres.

4.1. A canonical homomorphism.

Let ¢: X—C be a minimal elliptic surface without multiple fibres and let 2} ¢
denote the sheaf of relative one forms of X over C. Since a base curve is nonsingular,
we have an exact sequence

(4.1) 0 —> 0uf2f — Q5 —» Q% ,c —> 0.
Since X is a surface, there exists a canonical homomorphism
(4.2) QYR80 — A=y,

Considering a sheaf p*Q} as a subsheaf of Q% by (4.1), from (4.2) we have a canonical
homomorphism

(4.3) 1 5 Rp*Q; — wx.

4.2. A fundamental exact sequence.
Let ¢: X—C be as in 4.1. The singular fibres of ¢ were classified by Kodaira
(10). Let ay, ao, ..., a, denote supports of all singular fibres of ¢ and we put

(4.4) O =¢\(a), D=3\ 0%,
=1

If a singular fibre @' is of type 1/, or type II, we put ©'=¢. In other case, a singular
fibre @ can be written in the form

(4.5) @":}’.3 mi-@

where each irreducible component @} is a nonsingular rational curve which intersects
each other transeversely, Then for a singular fibre @ in (4.5) we define a divisor &' by

(4.6) @":Eﬁ] (m}—1)-0;.
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Moreover we put

(4.7) 6= 0.

=1
Now we shall determine the kernel and cokernel of the canonical homomorphism ¢ in
(4.3). _
Let 6%, (resp. ©..q) denote the underlying reduced subspace of @ (resp. @). If
#is a cusp of a singular fibre of type II, we can take a local coordinate (X, ¥) around
the point p, and a local parameter 7 around ¢(2) such that Y24 X3=¢. We define a
ideal /, of Ox,, by

Jy=(X?, ¥)Ox,,.

Moreover for cach point p on X, we denote by m, a ideal sheaf of p. Then we define an
ideal sheaf 7 of X whose stalk at each point p is given as follows.

Ox,,, if ¢ is smooth at g,
Ox(—(mi—1) ©)),, if m} =22, pE€ O, —(intersections)

(4.8)  Lp=|m,Q@0x(—(m}—1) O, —(m;—1)@)),, if Oy+6} and p ¢ O;N 6O},
m,Q0Ox,, if p is an ordinary double point of a singular fibre of type 175,
JsR0x,, if pis a cusp of a singular fibre of type II.

Then we have the following lemma,

Lemma 4.2. Lef us use the same notation as above. The canonical homomor-
phism v in (4.3) induces exact sequences

4.9) 0 —> (PARO(O)NRp*Qf —> LR () —> IRy —> 0
(4.10) 0 — p*QLROO) — Q% —> IQuwx/c —> 0
where ©(0) denotes an invertible sheaf associated with the divisor @.

Proof. 1f the morphism ¢ is smooth at p, the canonical homomorphism is surject-
ive and its kernel is isomorphic to *Q:®¢*£¢ ,. Hence there is nothing to prove in
this case. Take a point p where ¢ is not smooth. Then we can choose a local coord-
inate (X, ¥) around p and « local parameter 7 around ¢() such that

G Xrmi=t, if pe®; —(intersections),

(i) Xmi Ymj=2 if p lies on a intersection of @} and @/,
(iii) XY=t if p is an ordinary double point of a singular fibre of type 1/s,
(iv) Y24 X3=¢ if pis a cusp of a singular fibre of type II.

Since the map . is locally given by

EQo*(dt) —> EAp*(dr), EeQ% ,,

the image of the map « is generated by the following element in each case.
() X"k~ dXALY, (i) X s DY dXAdY and Xm: Y ;=D dXAJY, (iil) X dXAIY
and YV dXAdY, (iv) ¥ dXAdY and X2 dXAdY. Moreover the kernel of the map ¢ is
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generated by the following elements,

O L@, @) L F D @t (@, (i) and (v) ¢ ()@y*(a)

Hence we can easily see that the sequence (4.9) is exact at the point p. Hence the
sequence (4.9) is exact. Tensoring the dual sheaf of p*Q} to (4.9), we obtain an exact
sequence (4.10). Q.E.D.

4.3. Let us use the same notation as in 4.0, 4.1 and 4.2. From (4.6), (4.7) and (4.8),
we get an exact sequence

(4.11) 0—I1—00(—0)—7—0

where 7" denote a torsion sheaf on X whose supports lies on the intersections of singular

fibres. Now we shall prove the following proposition.

Proposition 4.3. Let ¢: X—C be a minimal elliptic surface without multiple
singular fibres and let us use the same notation as above. Then

@) oxd = O(— gla;)
(i) Rlpel = RlpsOxP7, where 7' is a torsion sheat on C
(iii) P+O(O) = O¢

(¥) Rips0(®) = O(% ).

Proof. Since g4/ is invertible and px(O(— X 4i)) C /S Ox, the assertion (i) is ob-
=1
vious. Since the supports of the sheaf 7" in (4.11) are 0-dimentional, from (4.11) we
get an exact sequence

(4.12) > 04T —> Ripd —> R1p,0(—0) —> (.

Since C'is a curve, every coherent sheaf is decomposed into a locally free part and a tor-
sion part uniquely. Hence we can conclude from (4.12) that locally free part of R1p,/
and R¢,O(—0) are isomorphic to each other. Then we shall prove the locally free
part of Rlp,O(—0) is isomorphic to Rlp,Ox. Since the problem is local, we can
assume that a divisor in (4.4) consists of only one singular fibre, that is @=86,. If a
singular fibre © is one of the types ils, II, 1II and IV, the multiplicity of each
irreducible component is equal to one. This implies that the linear system |@] is empty.
Hence in this case there is nothing to prove. If a singular fibre @ is one of the type I},
II*, II1* and IV*, we claim the following.

Claim. There exist a sequence {Ow},-o of divisors which satisfies the following
conditions;
(8) BGo=¢, O,=0, where O is one of the types IF, IT*, III* , and IV*.

(b) For cach integer b, 1Sk<s, Di=0y—Bs_1 is an irreducible nonsingular ra-
tional curve.

(c) For each integer b, 1Sk<s, deg (Opy(—Or-1]pp) =(—Ok_1)Dr= —1.
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We assume that the cliam holds. Let us consider the following exact sequence for each
integer 4, 1<A<gs,

(4.13) 0 —> O(—81) —> O(—B_1) —> Op(—Bilp,) —> 0

By the condition (b) and (c), we have R19,Op,(—6Os_1]Ds)=0. Taking the direct ima-
ges of the exact sequence (4.13), we have

—> SO*ODk(—@k-l]Dk) — RIV’*O(—@—*) — Rl‘/’*o(—@_k—l) — 0.

Since the first term of above sequence is a torsion sheaf, the locally free part of Rlp,0O
(—6%) and R1¢,O(—B;_1) are isomorphic to each other. By induction with respect to
4, we conclude that the locally free part of R1p,O(—8) is isomorphic to Rp,Ox. The
proof of the claim is reduced to a calculations of the intersection numbers of divisors.
One can find easily a sequence of divisors satisfying (a), (b) and (c). Hence the proof
is left for readers. The proof of the assertion (iii) and (iv) is essentially same as in (i)
and (ii). Hence we omit it.

44. Let ¢: X—C be a minimal elliptic surface without multiple fibres. From
the exact sequence (4.10), using (iv) in Proposition 4.1 and Proposition 4.3, we have the
following exact sequence.

0 —> 0 £, 0% 540 O(— £ a)RFV
(4.14) i=1

—85 Rip, 0(@)RQL £+ R19p Q% —E25 0BT —> 0.

Let /(X) denote the functional invariant of an elliptic surface ¢: X—C (Kodaira
(10), p. 572). If the functional invariant /(X) is not constant, the moduli of general
fibres changes corresponding to its values, and the elliptic surface has at least one singular
fibre. If the functional invariant is constant, the moduli of general fibres does not
change. From the exact sequence (4.14), we have the following proposition.

Proposition 4.4. Let ¢: X—C be as above. Then we have the followings.
(7)) If the functional invariant J(X) is not constant, then

(4.15) Pl =00,

(4.16) R0, Q5 =O0cBT s, where Ta denote a torsion sheaf.
(1) If the functional invariant J(X) is constant, then

(4.17) 0 —> QL —> 0, QL —> O(— 21 a)QFV —> 0 (exact)

(4.18) 0—> Q;@o(é:l 2)Rf —> Ryl —> OcDT —> 0 (exact).

(I1I) If /(X) is constant, but not equal to 0 or 1, we have »=2x(0x), and
(4.19) o(— Y a)=0f).

Proof. The proof of (4.15) can be found in (5), Lemma 5.2. Hence we omit it.
From (4.15), we conclude that the cokernel g4 is a torsion sheaf. This implies (4.16).
If /(X) is constant, the rank of the sheaf p,{2% is two. Hence the cokernel of g3 is a
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torsion sheaf, Since the sheaf R1p,O(O) is locally free (Proposition 4.3), g3 is a zero
map. This implies that (4.17) and (4.18). The proof of (III) is an easy execrise.
Hence we omit it. Q.E.D.

§5. Remarks on deformations of elliptic surfaces.

5.0. Let X be a compact complex manifold. By deformations of X we mean a
triple (¢, 7', m) where

(i) % and 7 are analytic sets,

(i) = is locally trivial (in the sense of Kuranishi (8)) and proper homolophic
map 7: X—7, such that for some point of o on 7, the fibre #~(0) is biholo-
morphic to X.
Kuranishi (7) proved that for any compact complex manifold, the versal deformation
always exists. This versal family is called Kuranishi family, and its base space 7 is
called the Kuranishi space.
Kas (5) proved the followings. (theorem 6.2, (5))

Theorem 5.1, Zet ¢: X—C be an elliptic surface satisfying the following con-
ditions.
() FEovery fibre of ¢ is irreducible.

(i) g=glC)=2.

(i) 40 —g(X)+26(X) 22—2.

(iv) The functional invariant J(X) is not constant.
Then the Kuranishi space is smooth, and the number of moduli u(X) is defined. More-
over we have

p(X)=dim cAYX, Ox)=11(1—g(X)+p,(X))+3¢—3.

Remark 5.2. By using the Tyurina’s theorem of simultaneous Brieskorn resolu-
tion of rational double points (15), we can show that the assumption (i) in Theorem 5.1
is not needed.

Moreover Kas (5) found the first example of a surface which has an obstruction to
deformations, that is, an elliptic surface with a constant functional invariant.

Theorem 5.3. Zet ¢: X—C be an elliptic surface with a constant functional
invariant J(X). Assume that:
@ JX)=0, 1.
. 242
() 120 —¢(X)+pe(X)>EL2
(i) zke curve C is sufficiently general.
Then the veduced structure of the Kuranishi space T of X is smooth and
dim 7'=3(1—¢(X)+2«(X))+ 483,
while we have dim ¢ AUX, Ox)=111—¢(X)+p(X))+4¢—3.
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§ 6. Proof of Main Theorem.

6.0. In this section we complete the proof of Main Theorem. By the reduction
of Main Teorem in §3, Main Theorem is equivalent to Theorem 3.2, and then we have
only to prove that the cup-products 1 and ue are surjective.

6.1. Let ¢: X—C be a minimal elliptic surface without multiple singular fibres.
Assume that the geometric genus pg(X) of X is positive. We put

N=X(X, Ox)=1—g(X)+2(X),
g=the genus of a base curve C.

When a base curve C'is a rational curve, the geometric genus of X is positive if and only
if &V is greater than one. (Note that for any elliptic surface, N is non-negative.) If C
is a rational curve and N=2, a surface X is a K—3 surface and the canonical bundle of
X is trivial. Hence the cup-product (3.2) is clearly surjective. By this reason, we omit
this case in the following proof. Hence we assume that if C is a rational curve, N is
greater than lwo.

6.2. The case (A) of Main Theorem.

Let ¢: X—C be as above. Assume that the functional invariant /(X) of X is
not constant. From (4.15), (4.16) and (v) in Propositon 4.1, we have isomorphisms:

(6.1) HYC, 94023) = HYC, A%Rf V),

(6.2) HY(C, px(25R8%) = HY(C, QARARS V),

(6.3) HC, R, 2%) ~ HYC, 0Oc)DHNC, T),

(6.4) HC, R1pu(Q5®23) = HYC, QLQf VIDHNC, TRQARF V).

For an elliptic surface with non-constant functional invariant, the number
N=x(X, Ox) is always positive (Kodaira (10)). By this reason and the assumption
in 6.1, the degree of the invertible sheaf QA®F V is greater than zero. Hence we have

HY(C, QEQQRf V)=0.

From this fact, we conclude that the cup-product i in (3.7) is automatically sur-
jective.

Next, we consider the cup-product us in (3.8). From (6.1), (6.3) and (6.4) the
cup-product pe is reduced to the following pairings.

HAC, QARQf VIQHC, Oc) —> HYC, Q:RF V)
HC, RRf VIQHAC, T') — HNC, TRQRfV).

The first pairing is clearly surjective. Since 7" is a torsion sheaf of a curve C

3
the second pairing is also surjective. This implies that u. is surjective.

6.3. The case (B) and (C) of Main Theorem.
Let ¢: X—C be as in 6.1 and let us assume that the functional invariant /(X)
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of X is constant, but not equal to 0 or 1.
From the exact sequences (4.17) and (4.18), using the isomophism (4.19), we have
the following exact sequences.

(6.5) O—D.Qé——>(p*.9}—>/—>0
(6.6) 0 —> O —> R1p, 0% —> OcHT —>0

Since the degree of the invertible sheaf f is equal to —N<C0, from (6.5), we have
an exact sequence

(6.7) 0 — HY(C, Q8 — HY(C, *Q%) — HY(C, f) —> 0.
Moreover, from the exact sequence (6.6), we obtain exact sequences;
(6.8) 0—> HC, RRf V) —> H(C, Rigu Q) —> HY(C, OcBT)
— HY(C, AQfV)=0 (deg fV=N>0)
(6.9) 0 —> HC, (2)*Q(fV)?) —> HUAC, Ripx(Q)RURS V)
—> HAC, URf V) +H(C, IR V) — 0.
As we see in 6.2, we have HY(C, QtQQ:QfV)=0. Hence, from (6.5), we have an
isomorphism
(6.10) HYC, o Q@R f V)= HI(C, ).
From (6.7), (6.8), (6.9) and (6.10), the cup-product u1 and u= are reduced to the
following pairings;
(6.11) p1: HNC, fYQHC, AR fV) —> HY(C. 20)
(65.12) bt HOC, QURFVIRHC, R@fV) —> HOC, (2D:Q(fV))
(6.13) pd : HYC, OcBTIRQHNC, ARFV)
— HYC, R fVISHUC, ThRARFV).

The pairings p1 and p are clearly surjective. Hence the proof of (B) and (C) of
Theorem 3.2 (or, equivalently, Main Theorem) is reduced to showing the pairing pu}
is surjective,

If a base curve C is a rational curve, the pairing u; is surjective. In fact, the
degree of the sheaf 2®fV is positive. This implies the case (B) of Main Theorem.

If the genus of a base curve C is greater than zero, we apply the following lemma due
to Mumford (cf. (13), Theorem 6).

Lemma 6.1. Zet C be a nonsingular complete curve of genus g and L s an inver-
tiblesheaf on C such that deg L=22g+1. Then the natural pairing

HC, DRHC, L) — H(C, L?)

is surjective.
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From this lemma, we conclude that the pairing g} is surjective if
deg Qe fVz2g+1.

Since deg fV=N, the pairing u} is surjective if N is greater than two. This implies
the case (C) of Main Theorem.

Remark 6.2. Tihere exist a counter-example to the infinitesimal Torellt problem.
Let C be an elliptic curve and let P; and P2 be two distinct points on C. There exists
a branched double covering w: C—C whose branched points are Py and P:. Let £
be an elliptic curve. Then there are natural involtions;

u: € —C
t2: B —> K.

Put X=CXxZ£. Then we have an involution 1=(, t2): X—X. The minimal
resolution X of the quotient variety X/(1,;) has a natural elliptic fibration over C:

The general fibre of ¢ is a fixed elliptic curve £ and it has exactly two singular
fibres of the type I} on the branched points. Hence this elliptic surface X has a
constant functional invariant and N=x(X, Ox)=1.

We can apply the same argument as in 6.3 and the infinitesimal Torelli theorem
holds for X if and only if the cup-product p; in (6.12) is surjective.

But, since deg fV=N=1 and ¢ is trivial, we have deg Qi® fV=1. Hence, by
Riemann-Roch theorem, we have

dim cZ%C, QLR fV)=1, dim cH°(C, (R1)*R(fV)?) =2.

This implies the cup-product gl in (6.12) is not surjective.

§7. The infinitesimal period map of elliptic bundles.
(Counter-examples to the Local Torelli theorem).

7.0. Let ¢: X—C be an elliptic bundle with a base curve C, that is, a fibre
bundle over a curve C' whose typical fibre and structure group is an elliptic curve £.
The following theorem is due to Kodaira (10).

Theorem 7.1. Let ¢: X—C be an elliptic surface without multiple singular
Sibres and the exceptional curves of the first kind. Then the following conditions are
equivalent.

(@ ¢: X—Cis an elliptic bundle.

(&) Xx(X, 0x)=0.

() R Ox=0c.

(@) Qi=e*X.
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Let X be a relatively minimal surface. Assume that the first Betti number
BY(X) of X is odd and greater than one. By the classification of surfaces (Kodaira
(12), p790, Table I), X is an elliptic surface induced by the algebraic reduction. More-
over this elliptic surface is obtained from an elliptic bundle by means of a finite number
of logarithmic transformations.

In other word, if the first Betti number B1(X) of X is odd and greater than one
and its elliptic fibration has no multiple fibre, then it is an elliptic bundle.

7.1. Now we shall study the infinitesimal period map of elliptic bundles. (cf.
Theorem 2.1.)

Let ¢: X—C be an elliptic bundle. Assume that the geometric genus p.(X) is
positive. Since ¢ is smooth, we have an exact sequence

(7.1) 0— *Qt —> QY —> Q%) —> 0
and an isomorphism
-Qi(/c ~wx/c.

By Theorem 7.1, we have wx,c=0Ox. Hence, from (7.1) and this, we get the fol-
lowing exact sequences.

(7.2) 0 —> Q} —> 925 —> Oc —> 0.
(7.3) 0 —> Qf —> Rip, 2% —» Oc —> 0.

Lemma 7.2. Let ¢: X—C be as above. Then

() Ripuly~s0,

(ii) the exact sequences (7.2) and (7.3) split if and only if B1(X) is even.

Proof. The assertion (i) is easy. Hence we omit the proof. From (7.2), we have

an long exact sequence

(7.4) 0 — H(C, QL) —> HAC, 4 82%) —> HC, Oc) —> HYC, QLY.

The splitting of the exact sequence (7.2) is equivalent to the surjectivity of the map
r. Using the Leray spectral sequence and (c) of Theorem 7.1, we have ALo(X)=
dim ¢HUC, p2%), YU X)=¢(X)=g(C)+1. By Remark 2.2, BY(X) is even if and
only if 410(X)=4%1(X). From (7.4), the map » is surjective if and only if 200(X)=g(C)
+1=221(X). Q.E.D.

Tet ¢: X—C be an elliptic bundle. By (d) of Proposition 7.1, we have an isomor-
phism

423 =~ QL.

By this and (i) of Lemma 7.2, the cup-products u1 and p2 in (3.7) and (3.8) are
reduced to the following pairings;

(7.5) prz HYC, puf2)QHNC, Qg) —> HYC, 0x82,R1%).

(7.6) pe: HVC, px2)QHC, Q) —> HY(C, 912, Q).
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From the isomorphism above, we have p,(X)=g(C). Since we assume that the
geometric genus p.(X) is positive, the genus g(C) is greater than zero.

If a base curve C is an elliptic curve, then £} is isomorphic to the structure sheaf
Oc. Hence the cup-products in (7.5) and (7.6) are always surjective. Hence /e
infinitesimal Torelli theorem holds in this case.

Now we assume that g(C) is greater than one. From the exact sequence (7.2), we
get an exact sequence

(7.7) 0 — HY(C, 2®€Qc) —> HY(C, 9:2;®%2) —> HYC, Q) — 0,
and an isomorphism

By the isomorphism (7.8) and @ natural surjection HYC, p82%) — HY(C, Oc), we can
easily see that the cup-production in (7.6) is reduced to a pairing

H\C, 0c)QH(C, o) — HY(C, Q).

Since this pairing is perfect and Z1(C, £2;)=C, it is surjective. Hence the cup-product
in (7.6) is always surjective,

Next we consider the cup-product g1 in (7.5). From the exact sequence (7.4),
we have the following exact sequence and isomorphism.

(7.8) 0 — HYC, QL) —> HYC, 942%) —> HY(C, Oc) —> 0, if BYX) is even.
(7.9) HYC, Q) = HYC, ¢.823), if BY(X) is odd.

From these facts, we can reduce the cup-product pi in (7.5) to the following
pairings.
The case in which B1(X) is even.

(7.10) HYC, QHRQHAC, Q5) —> HAC, Q:Q00Q%).
(7.11)  HYC, 0)QHC, L) —> H(C, Q7).
The case in which B1(X) is odd.
(7.12)  HYC, QHRHNC, ) — HYC, RS HO(C, ¢x(Q3)Q82;).

The pairing (1.11) s clearly surjective. And the pairing (7.10) s surjective if
g(O)Y=2 or if g(C)>2 and C is non-kyperelliptic. (Noether).

The pairing (7.12) is equal to (7.10) and the image of this pairing is contained in
the proper subspace HO(C, 2:R82;) of HYC, ¢ (2%)R02%).

We summarize our results.

Theorem 7.3. Let o1 X—C be an elliptic bundle. Assume that the genus of a
base curve is greater than one. Then
() if BUX) is even, the infinitesimal Torelli theorem holds for X, If and only
if g(C)==2 or g(C)Y>2 and C is non-hyperelliptic,
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(i) #f BUX) is odd, the infinitesimal Torelli theorem does not hold for X.
Moreover the infinitesimal period map has a kernel whose dimension is equal
to or greater than g(C).

Remark 7.4. If a base curve C is an elliptic curve, the infinitesimal Torelli the-
orem always holds. In fact, if BUX) 75 even, X is a complex torus. And if BY(X)
is odd, X is a Kodatra surface. In each case, X has the trivial canonical bundle.

Remark 7.5. Machara (17) showed that an elliptic bundle with odd £1(X) has
the smooth Kuranishi space of dimension 4g(C)—2=dim Z(X, Ox). Hence the period
map is not a local embedding, if a genus of a base curve is greater than one. In this
sense, an elliptic bundle with odd BY(X) whose base curve has a genus g(C)=2 is a
counter-example to Local Torelli theorvem in the sense of Griffiths(3).

Remark 7.6. If an elliptic surface has a multiple fibre, the infinitesimal Torelli
theorem does not hold. (cf. Chakiris (1))

§ 8. Tables.

Let ¢: X—C be a minimal elliptic surface without multiple fibres. Our results in
this paper are summarized in the following Tables.

Put N=1—¢(X)+p,(X) and let § denote the infinitesimal period map (3.1).

O N1
(a) g(C)=0.
e JX)  |dimcAN(X, 6x)] 5 X
1 0 10 X | rational
2 1 20 o | &3
not const. |  1lV-3 0
>3 | N—1 | const. %0, 1 1153 o
=0,1. | ? )
(b gO)=1.
N 2e(X) J(X) dim cHY (X, Ox) 5
not const. 11N+3¢—3 | o
Lor2 | Mgl 1= ? @)*
not const. 1UN+3¢—3 | ©
>3 | Ntg—1]| comst. #0,1. | 1I¥4+4g—3 | o©
C—0,1. ? )
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(ID) N=0. (p,(X)=g(C))

£(C) ‘ BUX) ’ dim ¢H1(X, Oy) c 5 X
2 \ 4 X elliptic ruled
0 o
1 ‘ 4 X Hopf
4 4 [e) complex torus
1 _
3 2 le) Kodaira
N £(C)=2 (l)r o o
_ non-hyperelliptic b o
oo | T2 4g—2 £(C)>2 and <
= hyperelliptic <
2¢+1 4g—2 X

O...injective. X...not injective.
(?)*. There exists a counter-example to the infinitesimal Torelli theorem
(cf. Remark 6.2).

Appendix. The global Torelli problem of Kodaira surfaces.
10.0. The coarse moduli space of Kodaira surfaces.

Definition 10.1. Let X be a relatively minimal surface. Then X is called
Kodaira surface if B1(X) is equal to three and the canonical bundle of X is trivial.

Theorem 10.2. (Kodaira(11), Theorem 19) Let X be a Kodaira surface. Then
X has an unique structure of an elliptic surface ¢: X—C over an elliptic curve C.
1t is obtained as a quotient manifold of C2 by an affine transformation group generated
by the following elements.

g1 (2, 20— (23, Zut T4

(10.1) ge: (Zy, Z2) —> (24, Zz+—9+—\£:—_if)

g3: (Z1, Z2) —» (Z1+1, Z2+-2Z0)
g4t (Z1, Zz) - (Z1+w, Zz—«/——lZO

Here, we denote by (Z1, Z2) a global coordinate of C2, by 4 a positive integer, by w and 7
elements of upper half plane H= {£|Im £>0}.

Definition 10.3. Let I'(r, w, #) denote a group generated by elements in (10.1)
and we put

X0,y =C2I'(7, w, £).

We call a Kodaira surface above “Kodaira surface of type (r,w,£)”. The integer 4
is called a degree of a Kodaira surface.

Now we shall prove the following theorem.

Theorem 10.4. Le! k be a positive integer. The coarse moduli space of Kodaira
surface of degree k is represented by the quotient analytic space
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HXHI(L 2 xsze 2

Proof. We put [v=UI(r, w, /). Then I: acts on C2xH? in the obvious

manner. Since this action is properly discontinuous, free from fixed points, and trivial
on the factor H2, we have a smooth fibration of Kodaira surface of degree 4;

(10.2) w: C2xH2I, —> H2,

It is easy to see that at each point of H2 this family is complete and effectively parame-
trized. Hence we must only prove the following lemma.

Lemma 10.5. LZet (r,0) and (', w') be two points on H2.  Kodaira surfaces of
type (1, w, k) and (7', o', k) are mutually isomorphic to eackh other if and only if there
exist an integer m and an element (i Z.) of SZ(2, Z) such that

— _awtb
(10.3) T=1"+m, w= o d
A proof is straightforward. Hence we omit it.

10.1. Explicit calculation of period map of Kodaira surfaces.
We first recall the following theorem due to Maehara (17).

Theorem 10.6. Les ¢: X—C be a Kodaira surface of degree k. We have a co-
homological relation

(10.4) - HYX, Z)=HVC, Z2YQHWE, Z)DZ|*Z
where E denote a regular fibre.

Let P denote the cup-product on A% X, Z). Then, by the index theorem, the
symmetric bilinear form P defines a polarization in the sense of (14). By the Theorem
10.6, we can choose a base of H%(X, Z)/(torsion)

Ay, Aey As, As,
such that
0 0 01
10.5 (PAA—O 0-10
(10.5) (A, f))—o_1 00
1 0 00

We put Hi=H*X, Z)/(torsion). Then A} is a free Z-module of rank four.
Moreover we put 7 j=H ;QR, Hi=H;QC. We define the orthogonal group with
respect to a polarization 2 by

O(H %, P)={aEGLH?)' a P a=P}

Moreover, we put SO(P)={a€O(H ;t, P)|det (¢)=-+1}. Then we can easily see
the followings.
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%) SO(P)=SO%P)IISOYP) 1 0 0 0
0-10 0
0 01 0
0 0 0—1

where SO(P) denote the identity component of SO(P).
(IT) There exists an isomorphism of Lie groups:

f: SL(2, RyxSL(2, R) —» SO(P).

(III) SO(P, H3)={aESL(HL)|' a P a=P} is isomorphic to SL(2, Z) x SL(2, Z).
The classifying space of polarized Hodge structures {#, #*, P} with the Hodge
numbers A20=j%2=]1 A11=2 is given by

DZ{[M; Az; As; M) EP3(C), Ay Ay—A2 A3=0 ]
—A1 AgFA2 Aa+As Aa—As A1 >0
Then D has the two connected components 2D+ and D~ which is given by
D(resp. D)= {[A1; Az; As; AJE D, Im (A2/A1) >0 (resp. <0)}.

Then we can easily see that the Lie group SO%P) acts transitively on D+, and Dt is a
symmetric bounded domain of type IV. Moreover there is an isomorphism (10.6)

(10.6) D: HXH —> D+

(7 ,0) —> [1; 7; w; Tw].

Note that this isomorphism is equivariant for the group isomorphism f in (II) with
respect to the natural action of SL(2, R) XxSL(2, R) to X H.

Let us consider the complex analytic family of Kodaira surfaces of degree 4 in
(10.2). Since the base space A XH is simply connected, we can trivialize the local
system Rem,Z. [If we choose a suitable trivialization, the period map associated with
the variation of Hodge structures of Kodaira surfaces is given by the map @ in (10.6).
Since @ is equivariant to the isomorphism [ in (I1), we have another period map

d: HxH/(l %) X SL(2, Z) —» D*SO%P, H%)
0

from the coarse modull space of Kodaira surface of degree k to the quotient analytic

\é
B IS, Z)XSL@, Z)— s DHSOP, H)

space.
We have the following commutative diagram;
HXH —-—- . > Dt
N
\\
(10.7) { HXH| (1 Z) X SL(2, Z)
| 01 N
i

The global Torelli problem of Kodaira surfaces (of degree k) asks whether the
period map D is injective. By the commutative diagram (10.7) we have the following
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theorem.

Theorem 10.6. ZEvery fibre of O consists of infinitely many points. Hence
the global Torelli theorem does not hold for Kodaira surface, though the local Torelli
theorem does hold.
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