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Abstract

Cosmological perturbations of massive higher-spin fields are generated during inflation, but they decay

on scales larger than the Hubble radius as a consequence of the Higuchi bound. By introducing suitable

couplings to the inflaton field, we show that one can obtain statistical correlators of massive higher-

spin fields which remain constant or decay very slowly outside the Hubble radius. This opens up the

possibility of new observational signatures from inflation.

1 Introduction

The problem of writing down consistent equations of motion and Lagrangians for higher-spin (HS) fields

goes back to the beginning of quantum field theory (for reviews, see Refs. [1, 2]) and is particularly

difficult for massless fields. Massless degrees of freedom with spin s ≥ 1 are gauge fields and they come

with the corresponding gauge invariance needed to decouple unphysical polarizations. The problem of

writing consistent self-interactions become therefore highly constrained and complicated.

In flat space one can write down consistent gauge-invariant equations of motion for the free fields,

but it seems impossible to have non trivial S-matrices for spins s > 2 since the gauge invariances

are accompanied with conserved charges and the conservation laws are too strong to allow non-trivial

S-matrices. This is consistent with Coleman-Mandula theorem stating that the S-matrix in flat

spacetime cannot have extra symmetries beyond the (super-)Poincaré symmetry. On the other hand,

there are some explicit constructions of self-interacting massless HS theories away from flat spacetime

when a non-vanishing cosmological constant is allowed and no S-matrix exists [3]. This is particularly

interesting when thinking of the possible role of HS fields during inflation. These theories always

contain the massless spin-2 graviton and are therefore theories of gravity. An important feature of

these HS theories is that their mathematical consistency implies that they involve an infinite tower of

fields of all spins.

Even though the existence of such theories may look surprising given the large number of con-

straints, they look natural from the AdS/CFT [4], or dS/CFT [5], point of view and the subject of an

intense research activity, see Refs. [6,7] and references therein. For instance, one can compute the cubic
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couplings of the minimal bosonic HS theory in AdS4 starting from the holographic dual theory [8]. Of

course, to assess the importance of massless HS fields during inflation one has to deal not only with

the infinite tower of degrees of freedom (which might turn out to be a bonus from the observational

point of view), but also to compute the couplings of the massless HS fields to the matter (inflaton)

sector. This calculation, better performed on the CFT side, will allow a reliable computation of the

statistical inflationary correlators and will be presented elsewhere [9].

In this paper we take a more modest approach and deal with massive HS spins during inflation.

Their signatures on the non-gaussian cosmological correlators of the comoving curvature perturbation

have been recently studied in Ref. [10] (see also Ref. [11]). They arise in the squeezed limit of the

correlation functions when intermediate HS fields are exchanged carrying informations about their

masses and spins. If measured, these imprints will provide an exciting information about the particle

spectrum during the inflationary universe [12]. However, despite the fact that gauge invariance does

not constrain the system so tightly, the de Sitter isometries impose the so-called Higuchi bound [13]

on the masses of the HS states,

m2 > s(s− 1)H2, (1.1)

where H is the Hubble rate during inflation. This bound, which has a neat interpretation if derived

from the CFT3 side of the dS/CFT correspondence [10,14,15], implies the absence of curly hair in de

Sitter [14]. On wavelengths larger than the Hubble radius the perturbations of the fields with spin s

are scaling as a function of the conformal time τ as (−τ)∆, where

m2

H2
= −∆(∆− 3) + (s− 2)(s+ 1). (1.2)

The Higuchi bound imposes ∆ > 1 and HS fluctuations are doomed to promptly decay as soon as

they leave the Hubble radius. As such, the HS fields are short-lived mediators and the corresponding

signatures in the four-point correlator of the curvature perturbation are suppressed by powers of the

exchanged momentum in the squeezed configuration.

On the other hand, it is well-known that one can obtain vector spin-1 perturbations which remain

constant of super-Hubble scales by modifying the kinetic term to I(φ)F 2
µν , that is by introducing

an appropriate function of time (or equivalently inflaton field φ) [16, 17]. In such a case, one can

characterize the correlators involving the inflaton and the vector fields by exploiting the fact that the

de Sitter isometry group acts as conformal group on the three-dimensional Euclidean space [18].

The goal of this paper is to extend to generic HS fields what is known for vectors and to investigate

what kind of time-dependent functions one needs to couple the HS fields to in order to generate

correlation functions which can decay slower than what dictated by the Higuchi bound outside the

Hubble radius.

We will follow a bottom-up approach and start from the equation of motion of the HS fields.

We will see that the requirement of having the correct number of propagating degrees of freedom

drastically reduces the possible choices of the functions as well as the way they couple to the HS fields.

For some choice within the allowed set of functions the HS perturbations remain constant on scales

larger than the Hubble radius and an enhanced symmetry shows up. For some cases, we will also be

able to derive the corresponding actions. Long-lived HS fluctuations may not only leave a seizable

imprint on the statistical correlators of the scalar perturbations as intermediate states, but also alter
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the dynamics of scalar and tensor perturbations and possibly give rise to detectable observables with

HS fields on the external legs.

The paper is organized as follows. In section 2 we analyze the case of the spin-1, which is the

most known in the literature. In particular we show that one can recover the known result by simply

starting at the level of the most general equation of motion, instead from the action. Section 3 is

devoted to the study of the spin-2 fields. We will write the most generic equation and constraints,

derive the orthonormality condition, the corresponding Higuchi bound and discuss the cases in which

extra gauge symmetries appear in the system. We will also identify for which suitable coupling to the

inflaton there exist perturbations of the helicities ±2 which remain constant on super-Hubble scales.

The case of the generic spin-s is discussed in Section 4. Section 5 is devoted to a short descriptions of

possible observational consequences. Finally, we briefly conclude in Section 6.

2 The spin-1 case

We start our analysis with the simplest case of the vector field dynamics during a de Sitter phase with

spacetime metric

ds2 =
1

H2τ2

(
−dτ2 + d~x2

)
. (2.1)

Here H is the Hubble rate and we imagine that the inflationary phase is driven by a scalar inflaton field

whose vacuum expectation value φ0(τ) is slowly varying with time in such a way that the background

metric can be approximated by the expression (2.1). We wish to understand if it possible to couple a

spin-1 field suitably to a function of the inflaton in such a way that its helicities ±1 of the canonically

normalized super-Hubble perturbations can stay constant in time1.

A spin-1 field σρ on the de Sitter background with mass m satisfies the following equation(
�−m2

1

)
σρ = 0, (2.2)

where

m2
1 = m2 + 3H2. (2.3)

We now couple the spin-1 field σρ to functions of time, which we might think of as functions of φ0.

The most general coupling up to two derivatives is of the form

�σρ + (∇µI)∇µσρ + α∇µI∇ρσµ + βIρµσ
µ −M2

1 (φ)σρ = 0. (2.4)

The constraint

∇ρσρ = 0, (2.5)

1From the helicity equations written later on, it is easy to show that, given a spin-s state, if the helicities ±s
are constant on super-Hubble scales, all the other helicities decay on large-scales with increasing powers of the

conformal time.
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ensures that Eq. (2.4) for σρ propagates three-degrees of freedom, that is the degrees of freedom

expected for a massive spin-1 field. The parameter β, the form factors I(φ), M2
1 (φ) and Iρµ(φ) are

restricted by the consistency of the equation with the constraint. Taking the divergence of equation

of motion and using Eq. (A.1), we find

(∇ρ∇µI)∇µσρ + 3H2∇µσµ + α(∇ρ∇µI)∇ρσµ − α∇µI∇νI∇νσµ

−α2∇µI∇νI∇µσν − αβ∇µIµνσν + αM2
1∇µI σµ

+β (∇ρIρµσµ) + βIµρ∇µσρ −
(
∇ρM2

1

)
σρ = 0, (2.6)

which can be written as

0 = ∇µσρ
{
βIµρ + (1 + α)(∇ρ∇µI − α∇µI∇ρI)

}
+σρ

{
(3H2 + αM2

1 )∇ρI + β (∇µIµρ − αIµρ∇µI)−∇ρM2
1

}
. (2.7)

This equation is satisfied without imposing any further constraint on σµ for

βIµν = −(α+ 1) (∇µ∇νI − α∇µI∇νI) (2.8)

and

(3H2 + αM2
1 )∇µI + β (∇ρIρµ − αIρµ∇ρI)−∇µM2

1 = 0. (2.9)

Therefore, the functions M2
1 and Iµν are determined by Eqs. (2.8) and (2.9), once the function I(φ)

is specified. The equation obeyed by σµ is explicitly written as

σ′′i −∇2σi −
2

τ
∂iστ + I ′(σ′i + α∂iστ ) +

M2
1 /H

2 − 3

τ2
σi + 2(1 + α)

I ′

τ
σi = 0 (2.10)

σ′′τ −∇2στ −
2

τ
∂iσi +

M2
1 /H

2 − 1

τ2
στ − (1 + α)

(
I ′′ − aI ′2

)
στ + (1 + α)I ′σ′τ = 0, (2.11)

σ′τ −
2

τ
στ = ∂iσi. (2.12)

2.1 Long-lived spin-1 perturbations

In order to obtain scaling solutions, we may choose I to be of the form

I = n ln(−Hτ) = n

∫ φ

dφ′
V (φ′)

V ′(φ′)
. (2.13)

Then the solution of Eq. (2.9) with a constant mass turns out to be

M2
1 =

[
3− n(1 + α)(3 + αn)

]
H2. (2.14)

We may now expand σµ in helicity modes as

σµ =
1∑

λ=−1

σ(λ)
µ , (2.15)
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where

σ(0)
τ = σ0

0,1, σ(±1)
τ = 0,

σ
(0)
i = σ0

1,1ε
0
i , σ

(±1)
i = σ

(±1)
1,1 ε±1

i , (2.16)

and the polarization vectors ελi are normalized as

k̂iε
0
i = 1, k̂iε

±1
i = 0, ε±1

i ε∓1
i = 2, ε∓1

i = ε±1∗
i . (2.17)

These conditions are solved for ε0
i = k̂i and for momentum along the z-direction, we may choose

ε±1
i = (1,±i, 0). The equations for the helicity modes become

σ±1
1,1
′′

+
n

τ
σ±1

1,1
′
+

(
k2 − n(1 + α)(1 + αn)

τ2

)
σ±1

1,1 = 0, (2.18)

σ0
0,1
′′ − 2− n(1 + α)

τ
σ0

0,1
′
+

(
k2 +

2 [1− n(1 + α)]

τ2

)
σ0

0,1 = 0. (2.19)

The longitudinal mode σ0
1,1 is specified by Eq.(2.12) to be

σ0
1,1 = −1

k

(
σ0

0,1
′ − 2

τ
σ0

0,1

)
. (2.20)

The equation for obeyed by the longitudinal mode σ0
1,1 can easily be found by appropriate differenti-

ation of the (2.20). For a field scaling as

σµ(τ, ~x) = τ∆−1σ̃µ(~x), (2.21)

we find

∆− = 2 + nα and ∆+ = 1− (1 + α)n. (2.22)

Let us now consider the canonically normalized field (from Eq. (2.4) one can see that this choice

combines the first two terms to give only �σ̄i plus other interaction pieces)

σ̄i =
〈

exp(I(φ)/2)
〉
σi = exp(I(φ0)/2)σi. (2.23)

This field has scaling behaviour ∆̄− 1 and from Eq. (2.22) we infer

∆̄− 1 = ∆− 1 +
n

2
, (2.24)

so that

∆̄− = 2 +
n

2
(1 + 2α), ∆̄+ = 1− n

2
(1 + 2α). (2.25)

The particular values
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n = − 4

1 + 2α
and n =

2

1 + 2α
(2.26)

give ∆̄− = 0, ∆+ = 3 and ∆̄+ = 0, ∆− = 3, respectively. Due to a coupling to a time-dependent

function, the helicities ±1 of the massive spin-1 perturbation are constant on scales larger than the

Hubble radius. It might be surprising that a constant super-Hubble mode is found for any value of α.

However, this is just a consequence of the fact that α parametrizes the arbitrary mass (2.14) of the

photon and the two possible values of n become

n = 1±
√

4M2
1 /H

2 − 3. (2.27)

The solutions to Eqs. (2.18) and (2.19) with Bunch-Davies initial conditions are easily found to be

σ0
0,1 = A0N0(−kτ)(3−n(1+α))/2H

(1)
(1+n+nα))/2(−kτ), (2.28)

σ±1
1,1 = A1N1(−kτ)(1−n)/2H

(1)
(1+n+2nα))/2(−kτ), (2.29)

where A|λ| = exp(iπ/2(1 + n(1 + α(1 + |λ|)/2)). The coefficients N0 and N1 can be calculated after

normalization of the solution. For this, we need an inner product, which can be defined once a

conserved current is specified. It is straightforward to verify that the current

Jµ = eI
(
hρ∇µσ∗ρ

′ − σ∗ρ∇µhρ
′ + αhµσ∗ρ∇ρI − ασµ

∗hρ∇ρI
)
, (2.30)

is conserved on shell, ∇µJµ = 0. Then, we may define the inner product of fµ, hµ as〈
fµ|hν

〉
= (−i)

∫
dΣ
√
ĝ nµe

I
(
hρ∇µσ∗ρ

′ − σ∗ρ∇µhρ
′ + αhµσ∗ρ∇ρI − ασµ

∗hρ∇ρI
)
, (2.31)

where Σ is a spacelike hypersurface with normal nµ and ĝ is its induced metric. Normalizing the

solutions as 〈
σ(λ)
µ (τ, ~x)

∣∣∣σ(λ′)
ν (τ, ~x′)

〉
= δλλ

′
δ(3)(~x− ~x′), (2.32)

we find that

〈
σ(0)
µ (τ,~k)ei

~k·~x
∣∣∣σ(0)
ν (τ,~k′)ei

~k′·~x
〉

= 0,〈
σ(±1)
µ (τ,~k)ei

~k·~x
∣∣∣σ(±1)
ν (τ,~k′)ei

~k′·~x
〉

=
4k

π
N2

1 δ
(3)(~k − ~k′). (2.33)

The fact that the helicity-0 mode σ
(0)
µ (τ,~k) has zero norm signals a gauge symmetry of the field

equation (2.4). Indeed, it be straightforward to verify that Eq. (2.4) is invariant under the gauge

transformation

σµ → σµ + ∂µθ + (1 + α)θ∇µI. (2.34)

Due to this symmetry, only the ±1 helicities are propagating as we found above. Note that for α = −1,

we recognize the standard U(1) gauge transformation of the gauge potential.
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2.2 Long-lived spin-1 perturbations and enhanced symmetry

The special case α = −1 is particularly interesting. From Eq. (2.8) we immediately read off that

β = 0 and Eq. (2.9) simplifies to

(3H2 −M2
1 )∇µI −∇µM2

1 = 0. (2.35)

Once I is given, we can solve it to find M2
1 . However, there is also a solution independent of I, which

is simply

M2
1 = 3H2. (2.36)

The equation of motion further reduces to

�σρ + (∇µI)∇µσρ −∇µI∇ρσµ − 3H2σρ = 0 (2.37)

and it is straightforward to check, making use of Eq. (A.1), that Eq. (2.37) is invariant under the

gauge transformation

δσµ = ∂µξ, (2.38)

and therefore, it propagates two degrees of freedom, corresponding to a massless photon. For all other

values of α and/or M2
1 , the gauge invariance is lost and we have the usual three degrees of freedom of

a massive photon.

Let us compare Eq. (2.37), which describes a massless photon, with the equation of that of an abelian

vector σµ non-minimally coupled to the classical value of the inflaton field φ0(τ) [16,17]

S = −1

4

∫
d4x
√
−g J(φ)FµνF

µν , Fµν = ∂µσν − ∂νσµ. (2.39)

The equation of motion for σµ is

J∇µFµν + (∇µJ)Fµν = 0, (2.40)

or

�σν −∇µ∇νσµ + (∇µI)∇µσν − (∇µI)∇νσµ = 0, (2.41)

where I = ln J . In the ∇µσµ = 0 gauge Eq. (2.41) is written as

�σν + (∇µI)∇µσν − (∇µI)∇νσµ − 3H2σν = 0, ∇µσµ = 0 (2.42)

which is identical to Eq. (2.37).

Eq. (2.37) together the constraint are explicitly written as

σ′′i −∇2σi − 2∇i∂iστ + I ′(σ′i − ∂iστ ) = 0, (2.43)

σ′′τ −∇2στ −
2

τ
∂iσi −

2

τ2
στ = 0, (2.44)

σ′τ −
2

τ
στ = ∂iσi. (2.45)
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Expanding in helicity modes, we find

σ±1
1,1
′′

+ k2σ±1
1,1 + I ′σ±1

1,1
′

= 0, (2.46)

σ0
0,1
′′ − 2

τ
σ0

0,1
′
+

(
k2 +

2

τ2

)
σ0

0,1 = 0. (2.47)

Using the function I of Eq. (2.13), we find that

∆− = 2− n and ∆+ = 1, (2.48)

in agreement with Eq. (2.22) once α = −1 is taken. Then, the canonically normalized field σ̄i (2.23)

has

∆̄ = 2− n

2
. (2.49)

If we wish a constant magnetic field

Bi = exp(I(φ0)/2) εijk
∂jAk
a2
∼ τn/2+2+∆−1, (2.50)

we find two possible solutions

Bi ∼ τn/2+2+∆±−1 =

{
τn/2+2 ⇒ n = −4,

τ−n/2+3 ⇒ n = 6
, (2.51)

In the first case, however, a too large electromagnetic coupling constant is generated during inflation,

while the second case implies a too large energy density in the electric modes. If we wish the electric

field

Ei = exp(I(φ0)/2)
A′i
a2
∼ τn/2+∆, (2.52)

to be constant on super-Hubble scales, this implies which implies

Ei ∼ τn/2+∆± =

{
τn/2+1 ⇒ n = −2,

τ−n/2+2 ⇒ n = 4
, (2.53)

We recover the very well-know result that a massless photon coupled to the inflaton field in a proper

way has super-Hubble perturbations which remain frozen during inflation [16,17].

3 The spin-2 case

Motivated by our findings for the spin-1 case, we now proceed to consider a spin-2 field σρσ with mass

m on the de Sitter background, with again the goal of investigating if it possible to couple it suitably to

a function of the inflaton field in such a way that its canonically normalized helicities ±2 super-Hubble

perturbations can stay constant in time. The equation and the constraints read
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(
�−m2

2

)
σρσ = 0, ∇µσµρ = 0, σ = σρρ = 0, (3.1)

where

m2
2 = m2 + 2H2. (3.2)

Let us now write, as we did in Section 1 for the spin-1 case, the most general coupling of the spin-2

field σρσ to functions of the inflaton field φ0(τ)

�σρσ + (∇µI)∇µσρσ + α (∇µI)∇ρσµσ + α (∇µI)∇σσµρ −M2
2σ

ρσ = 0, (3.3)

where α is a numerical constant. Taking the divergence of Eq. (3.3), we find that

0 = ∇µσρσ
[
(1 + α)(∇ρ∇µI − α∇µI∇ρI)

]
+ α∇σσµρ (∇ρ∇µI − α∇µI∇ρI)

+ σµσ
[
(4H2(1 + α) + αM2

2 )∇µI −∇µM2
2

]
. (3.4)

In order not to introduce any extra constraint on σµν we should demand that

∇µ∇ρI − α∇µI∇ρI = I0 gµρ, (3.5)

(4H2(1 + α) + αM2
2 )∇µI −∇µM2

2 = 0. (3.6)

The function I0 can be directly obtained by choosing µ = ρ = i and the condition (3.5) is satisfied if

I ′′ +
2

τ
I ′ − αI ′2 = 0, (3.7)

which gives

I = A− 1

α
ln
(
B +

α

Hτ

)
, (3.8)

where A and B are numerical constants. Eq. (3.6) specifies M2
2 to be

M2
2 = −4(1 + α)

α
H2, or M2

2 =
m2τ − 4(1 + α)H2

α+AHτ
(3.9)

and the equations of motion (3.3) are

σ′′ττ +
2

τ
σ′ττ −

(
∂2
i −

M2
2 /H

2 − 8

τ2

)
σττ

+(1 + 2α)I ′
(
σ′ττ +

2

τ
σττ

)
=

4

τ
∂iσ0i +

2

τ2
σii, (3.10)

σ′′τi +
2

τ
σ′τi −

(
∂2
i −

M2
2/H2 − 8

τ2

)
στi

+I ′
{

(1 + α)σ′τi +
2(1 + 2α)

τ
στi + α∂iσττ

)
=

2

τ
∂iσττ +

2

τ
∂jσij , (3.11)

σ′′ij +
2

τ
σ′ij −

(
∂2
i −

M2
2/H2 − 4

τ2

)
σij

+I ′
(
σ′ij + α(∂iστj + ∂jστi) +

2(1 + α)

τ
σij +

2α

τ
δijσττ

)
=

4

τ
∂(iσj)0 +

2

τ2
δijσττ . (3.12)
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In addition, the helicity fields σττ , σ0i and σij are subject to the constraints, which are explicitly

written as

σ′ττ − ∂iστi −
1

τ
(σττ + σii) = 0, (3.13)

σ′τi − ∂jσij −
2

τ
στi = 0, (3.14)

σττ − σii = 0. (3.15)

We may now expand the Fourier modes of σµν in helicity eigenstates as

σµν =

2∑
λ=−2

σ(λ)
µν . (3.16)

The mode functions can then be written in terms of the various helicities as (σ̂ij = σij−δijσττ/3) [11]

σ(0)
ττ = σ0

0,2, σ
(±1)
ττ = 0, σ(±2)

ττ = 0, (3.17)

σ
(0)
iτ = σ0

1,2ε
0
i , σ

(±1)
iτ = σ±1

1,2ε
±1
i , σ

(±2)
iτ = 0, (3.18)

σ̂
(0)
ij = σ0

0,2ε
0
ij , σ̂

(±1)
ij = σ±1

2,2ε
±1
ij , σ̂

(±2)
ij = σ±2

2,2ε
±2
ij , (3.19)

where the polarizations tensors are given by

ε0
i = k̂i, ε0

ij =
3

2

(
k̂ik̂j −

1

3
δij

)
, ε±1

ij =
3

2

(
k̂iε
±1
j + k̂jε

±1
i

)
, (3.20)

and ε±1
i , ε±2

ij are such that

k̂i ε
±1
i = 0, k̂iε

±2
ij = 0, ε±2∗

ij = ε∓2
ij , ε±2

ij ε
∓2
ij = 4. (3.21)

In addition, they satisfy

k̂iε
0
ij = ε0

j , k̂iε
±1
ij =

3

2
ε±1
j , k̂iε

±2
ij = 0, (3.22)

and for momentum along the z-axis we may take

ε±1
i = (1,±i, 0), ε±2

ij =

 1 ±i 0

±i −1 0

0 0 0

 . (3.23)

The equations for the different helicity modes become

σ±2
2,2
′′

+

(
2

τ
+ I ′

)
σ±2

2,2
′
+

(
k2 +

M2
2/H2 − 4

τ2
+

2(1 + α)

τ
I ′
)
σ±2

2,2 = 0, (3.24)

σ±1
1,2
′′

+ (1 + α)I ′σ±1
1,2
′
+

(
k2 +

M2
2/H2 − 4

τ2
+

2(1 + 2α)

τ
I ′
)
σ±1

1,2 = 0, (3.25)

σ0
0,2
′′ −

(
2

τ
− (1 + 2α)I ′

)
σ±0

0,2
′
+

(
k2 +

M2
2/H2 − 2

τ2
+

2(1 + 2α)

τ
I ′
)
σ0

0,2 = 0. (3.26)
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They admit scaling solutions when M2
2 is constant

M2
2 =

1

α
(s+ 2)(α− sα− 1)H2 = −4(1 + α)

α
H2, (3.27)

and I has the form

I = A+
1

α
ln(−Hτ) = A+

1

α

∫ φ V (φ′)

V ′(φ′)
dφ′. (3.28)

Then, Eqs. (3.24), (3.25), and Eq. (3.26) reduce to

σ±2
2,2
′′

+

(
2 + 1/α

τ

)
σ±2

2,2
′
+

(
k2 +

M2
2/H2 − 4 + 2(1 + α)/α

τ2

)
σ±2

2,2 = 0, (3.29)

σ±1
1,2
′′

+
1 + 1/α

τ
σ±1

1,2
′
+

(
k2 +

M2
2/H2 − 4 + 2(1 + 2α)/α

τ2

)
σ±1

1,2 = 0, (3.30)

σ0
0,2
′′ − 2− (1 + 2α)/α

τ
σ±0

0,2
′
+

(
k2 +

M2
2/H2 − 2 + 2(1 + 2α)/α

τ2

)
σ0

0,2 = 0. (3.31)

In addition, the conditions (3.13), (3.14), and (3.15) turn out to be

σ0
1,2 = − i

k

(
σ0

0,2
′ − 2

τ
σ0

0,2

)
,

σ0
2,2 = − i

k

(
σ0

1,2
′ − 2

τ
σ0

1,2

)
− 1

3
σ0

0,2,

σ±1
2,2 = − i

k

(
σ±1

1,2
′ − 2

τ
σ±1

1,2

)
(3.32)

with solutions

σ±λλ,2 = N±λ2 (−kτ)
α(1−λ)−1

2α H(1)
νλ,2

(−kτ), νλ,2 =

∣∣∣∣1 + (3 + λ)α

2α

∣∣∣∣ . (3.33)

The case α = −1 can indeed be obtained from the standard massive spin-2 action by multiplying the latter

by the factor I. Indeed, let us consider the action

S =
1

2

∫
d4x
√
g

{
σµν Êµνρσσρσ −

m2

2
J
(
σµνσµν − σ2

)}
, (3.34)

where I = ln J , σ = σµµ and

Êµνρσσρσ = −1

2
∇λ
(
J∇µσνλ

)
− 1

2
∇λ
(
J∇νσµλ

)
+

1

2
∇λ
(
J∇λσµν

)
+

1

2
∇µ
(
J∇νσ

)
−1

2
gµν
(
∇λ
(
J∇λσ

)
−∇λ

(
J∇ρσλρ

))
+ 3H2J (σµν − gµνσ) . (3.35)

The kinetic part of the action (3.34) can in fact be written as the quadratic part of the Einstein-Hilbert

action in the Jordan frame

1

2

√
−ĝ J (R̂− 2Λ) =

√
−g
(
J

2
(R− 2Λ)− J

2
(Gµν + Λgµν)σµν +

1

2
σµν Êµνρσσρσ + · · ·

)
, (3.36)
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where ĝµν = gµν + σµν and gµν is the background de Sitter metric. It is straightforward to check by taking

the divergence, the double divergence and the trace of Eq.(3.35) that we still get the conditions

∇µσµν = 0, σ = 0. (3.37)

Using the above constraints, it is easy to verify that the equations of motion reduces to Eq.(3.3) for m2 =

M2
2 − 2H2 = −2H2 (for α = −1). One may also calculate the corresponding energy-momentum tensor for

σµν by varying the action (3.34) with respect to the background metric. The result is

Tµν = J∇λσµκ∇λσνκ + J∇µσκλ∇νσκλ − 2J∇κσ(µλ∇ν)σκλ − J∇λσκ(µ∇κσν)λ

−8H2J (σµκσν
κ − σσµν) +

1

4
gµνJ

[
∇λσσρ∇σσρλ +∇λσσρ∇ρσσλ

−∇λσσρ∇λσσρ + 4H2(σκλσ
κλ − σ2)

]
. (3.38)

3.1 Orthonormality of the mode functions and inner product

The various coefficients N2 are to be specified by the requirement of orthonormality of the mode

functions

〈
σ(λ)
µν (~k, τ)ei

~k·~x|σ(λ′)
ρσ (~k, τ)ei

~k′·~x
〉

= δλλ′δ
(3)(~k − ~k′). (3.39)

Therefore, we need to define first the inner product. The latter can be defined once a conserved current

is found. It can be check that the current

Jµ = eI
[
hρσ∇µσ∗ρσ − σ∗ρσ∇µhρσ + 2α∇σI

(
σ∗ρ

σhµρ − σ∗ρ
µhρσ

)]
,

(3.40)

is conserved so that ∇µJµ = 0. Therefore, we may define the inner product as

〈
hµν |fρσ

〉
= (−i)

∫
dΣ
√
ĝ nµ e

I
{(
hρσ∇µf∗ρσ − f∗ρσ∇µhρσ

)
+ 2α∇σI

(
f∗ρ

σhµρ − f∗ρ
µhρσ

)}
,

(3.41)

where Σ is a spacelike hypersurface with normal vector nµ and ĝ is the determinant of the induced

metric on the hypersurface. Since I is a function of time only, this implies that

〈
σ(λ)
µν (~k, τ)ei

~k·~x
∣∣∣σ(λ′)
ρσ (~k, τ)ei

~k′·~x
〉

= (−i)(Hτ)2ηµρηνσ∫
d3x(−Hτ)1/α

(
σ(λ)
µν σ

∗(λ)
ρσ

′
− σ∗(λ)

ρσ σ
(λ)
µν

′)
ei(
~k−~k)′·~x

and

12



〈
σ(0)
µν (~k, τ)ei

~k·~x
∣∣∣σ(0)
ρσ (~k, τ)ei

~k′·~x
〉

=
2(1 + 6α+ 8α2)

α2π

H2

k

(
H

k

)1/α

(N0
2 )

2
δ(3)(~k − ~k′),

(3.42)〈
σ(±1)
µν (~k, τ)ei

~k·~x
∣∣∣σ(±1)
ρσ (~k, τ)ei

~k′·~x
〉

= 0, (3.43)〈
σ(±2)
µν (~k, τ)ei

~k·~x
∣∣∣σ(±2)
ρσ (~k, τ)ei

~k′·~x
〉

=
4H2

kπ

(
H

k

)1/α

(N±2
2 )

2
δ(3)(~k − ~k′), (3.44)

from where we find

N0
2 =

√
π

2H

α√
(1 + 6α+ 8α2)

(
k

H

)α+1
2α

, (3.45)

N±2
2 =

√
π

4H

(
k

H

)α+1
2α

. (3.46)

The fact that the norm of the helicity ±1 modes vanish for any value of α means that there should also

exist a gauge invariance projecting out the ±1 helicity modes. It is straightforward to find that for

δσµν = −ξµ∇νJ − ξν∇µJ, J = eαI , (3.47)

the following equation is satisfied

0 = �δσρσ + (∇µI)∇µδσρσ + α (∇µI)∇ρδσµσ + α (∇µI)∇σσµρ −M2
2 δσρσ

= − (1 + 2α)

α

(
∇ρJ∇σJ∇µξµ + σ ↔ ρ

)
. (3.48)

Therefore, the transformation (3.47) is a gauge transformation if it satisfies

ξτ = 0 and ∇iξi = 0, (3.49)

where the vanishing of the temporal component of ξµ follows again from the traceleness condition δσµµ =

−2∇µJξµ = 0. Thus, the gauge parameter satisfies two conditions leading to 4−2 = 2 free gauge parameters,

which leads to 5− 2 = 3 polarizations, precisely the helicity 0 and ±2 ones.

3.2 The Higuchi bound and the long-lived spin-2 perturbations

The two-point function for the Fourier modes of the spin-s field σµ1···µs(
~k, τ) can be expressed in terms

of a null polarization vector εi (ε2
i = 0). For momentum ~k = (0, 0, k) along the z-axis, we may choose

εi = (cosψ, sinψ, i), ε̃i = (cosψ′, sinψ′,−i) and the two-point function can be expressed as

〈
εsσs(τ) ε̃sσs(τ ′)

〉′
=

s∑
λ=−s

eiλ(ψ−ψ′)
(

(2s− 1)!!

(2λ− 1)!!(s− λ)!

)2

σλs,s(−kτ)σ∗λs,s(−kτ ′), (3.50)

where εsσs(τ) = εi1 · · · εisσi1···is(~k, τ). For the s = 2 under consideration, positivity of the two-point

function then leads to the positivity of the squares of N0
2 and N±2

2 . In particular, the positivity of the

13



square of N0
2 leads to the condition

1 + 6α+ 8α2 > 0, (3.51)

which is satisfied for α in the range

α < −1

2
or α > −1

4
. (3.52)

This is the corresponding Higuchi bound for spin-2 fields coupled non-trivially to the inflation field.

The next step is to calculate the scaling dimension of the spin-2 fields. We look for solutions of the

form

σij(~x, τ) = σ+
ij(~x)τ∆+−2 + σ−ij(~x)τ∆−−2. (3.53)

Then we find that

∆− = −1− 1

α
, ∆+ = 4. (3.54)

Going to canonically normalized fields σ̄ij , it is easy to convince oneself that

σ̄ij = exp(I(φ0)/2)σij . (3.55)

Indeed, from Eq. (3.3) one can see that with this choice the first two terms combine to give only �σ̄ij
(plus other interaction pieces). Being the scaling dimension of σ̄ij equal to ∆̄−2, we have two options.

The first one is

∆̄− − 2 = ∆− − 2 +
1

2α
= −3− 1

2α
. (3.56)

Demanding ∆̄− = 0 to have long-lived perturbations, we get

α = −1

2
, (3.57)

corresponding to ∆̄+ = 3 and which saturates the Higuchi bound (3.52). In fact this border limit

introduces an extra symmetry, as we will discuss in the next subsection. The second case is

∆̄+ − 2 = ∆+ − 2 +
1

2α
= 4 +

1

2α
. (3.58)

Demanding ∆̄+ = 0 to get long-lived perturbations, we get

α = −1

8
, (3.59)

corresponding to ∆̄− = 3 and which is also allowed by the Higuchi bound.
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3.3 Long-lived spin-2 perturbations and enhanced symmetry

It is easy to see that for the value (3.57) also the norm of the zero-helicity state vanish, or equivalently,

N0
2 blows up. Therefore, for α = −1/2, only the ±2 helicities survive. In this case, there should be an

further gauge symmetry. Indeed, for

δσµν = ∇µξν +∇νξµ − ξµJ−1∇νJ − ξνJ−1∇µJ, J = eαI , (3.60)

we find that

0 = �δσρσ + (∇µI)∇µδσρσ + α (∇µI)∇ρδσµσ + α (∇µI)∇σσµρ −M2
2 δσρσ

=
(1 + 2α)

Jα

(
∇µJ ∇µ∇ρ(J−1ξσ) + 3H2J∇ρ(J−1ξσ) + σ ↔ ρ

)
. (3.61)

Hence, for α = −1/2, the equation for the spin-2 field (3.3) is invariant under the gauge transformation

(3.60). As a result of the gauge invariance and the tracelessness condition

∇µξµ = ξµ∇µJ, (3.62)

the gauge parameter provides 4− 1 = 3 free parameters which leads to 5− 3 = 2 propagating modes,

the helicities ±2. This result does not come as a surprise. Indeed, for α = −1/2 the linear equation

for σ̄ij = (−Hτ)σij reduces to the equation of motion for a massless graviton. In addition, the gauge

symmetry (3.60) is written as

δσ̄µν = ∇µεν +∇νεµ, εµ = eI/2ξµ, (3.63)

that is the standard gauge transformation of a massless spin-2 field which, for the cosmologically

interesting case where the transformation is done on fixed space hypersurfaces, leaves the helicity-2

field unchanged (at the linear level). So, by suitably coupling a massive spin-2 field to the inflation

background one can obtain at the quadratic level an effectively massless helicity-2 state. Of course

this degree of freedom couples to the comoving curvature perturbation differently from the standard

massless graviton.

4 The spin-s case

Let us now consider a generic massive spin-s field σµ1···µs on a four-dimensional de Sitter spacetime.

This field obeys the equation of motion(
�−m2

s

)
σµ1···µs = 0, (4.1)

where

m2
s = m2 − (s2 − 2s− 2)H2, (4.2)

and the constraints

∇µ1σµ1···µs = σµ1
µ1µ3···µs = 0, (4.3)

15



which ensure that there are 2s+ 1 degrees of freedom. Again, we are interested to see if such field can

coupled consistently to the inflaton field in such a way to obtain frozen perturbations on super-Hubble

scales. The general coupling to the inflaton will have the form

�σµ1···µs + (∇µI)∇µσµ1···µs + α (∇µI)∇µ1σµµ2···µs + · · ·
· · ·+ α (∇µI)∇µsσµ1···µs−1µ −M2

s (φ)σµ1···µs = 0, (4.4)

where, in order to have again the same degrees of freedom, we retain the constraints (4.3). We have not

included possible terms of the form Iµ1µ σ
µµ2···µs + permutations, as the trace conditions will demand

Iµ1µ to be proportional to the metric (otherwise we have to put extra conditions on the spin-s field),

and therefore such terms can be absorbed in the mass term.

Taking the divergence of the equation of motion (4.4), we get

0 = ∇µσµ1···µs
{

(1 + α)(∇µ∇µ1I − α∇µI∇µ1I)
}

+

+β∇µ1σµµ2···µs
(

(∇µ∇µ1I − α∇µI∇µ1I)
)
· · ·

· · ·+ β∇µsσµ1···µs−1µ
(

(∇µ∇µ1I − α∇µI∇µ1I)
)

+{ [
(s+ 2)H2(1 + sα− α) + αM2

2

]
∇µI −∇µM2

s

}
σµµ2···µs . (4.5)

This relation leads to

∇ρ∇µI − α∇µI∇ρI = I0gµν , (4.6)[
(s+ 2)H2(1 + sα− α) + αM2

2

]
∇µI −∇µM2

s = 0. (4.7)

Eq. (4.6) is satisfied if I is given by Eq. (3.28), which we report here again

I = A+
1

α
ln (−Hτ) , (4.8)

and the mass parameter turns out then to be

M2
s =

1

α
(s+ 2)H2(α− sα− 1) + eαIm2

0, (4.9)

where m2
0 is an integration constant. Note that Eq. (4.7) admits the constant solution

M2
s =

1

α
(s+ 2)H2(α− sα− 1), (4.10)

corresponding to m2
0 = 0. We may expand now σµ1···µs in helicity modes as

σµ1···µs =
s∑

λ=−s
σ

(λ)
µ1···µs . (4.11)

In particular, for a mode of helicity λ and n-polarization directions we may write

σ
(λ)
i1i2···inτ ···τ = σ(λ)

n,sε(λ)i1···in , σ(λ)
n,s = 0, n < |λ|, (4.12)
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where ε(λ)i1···in are polarization tensors. Then from Eq. (4.4) we find that the n = |λ| helicity λ mode

function σ
(λ)
|λ|,s satisfies the equation

σ
(λ)
|λ|,s
′′
−
[

2(1− λ)

τ
− (1 + α(s− λ))I ′

]
σ

(λ)
|λ|,s
′

+

[
k2 +

M2
s /H

2 − s+ λ(λ− 3)

τ2
+
s(1 + αs) + αλ(1− λ)

τ
I ′
]
σ

(λ)
|λ|,s = 0. (4.13)

We close this subsection with a final comment concerning the possibility of superluminal propagation

of the spin-s field σρ1···ρs . This is determined by the leading two derivative matrix Sµν in the equation

of motion

Sµν∂µ∂νσρ1···ρs + · · · = 0. (4.14)

Since this term is exactly the same with the leading two-derivative term when there is no coupling

to the inflaton, we conclude that the coupling of the spin-s field to the inflaton does not change its

superluminality properties. Therefore, the spin-s field σρ1···ρs propagates causally even when it is

coupled to the inflaton field as long as this coupling is of the form considered here.

4.1 Long-lived spin-s perturbations

Having found the generic equation of motion for a spin-s field, we are now ready to look for frozen

super-Hubble modes. Eq. (4.13) admits scaling solutions only when M2
s is constant and it must

therefore be given by the expression (4.10). Indeed, looking for solutions of the form

σ
(λ)
|λ|,s(τ, ~x) = τ∆−sσ̃

(λ)
|λ|,s(~x), (4.15)

we find

∆− = 1− λ− 1

α
, ∆+ = 2 + s. (4.16)

The dominant component is the helicity λ = s, for which we find the scaling

∆− = 1− s− 1

α
, ∆+ = 2 + s. (4.17)

Repeating the argument for the canonically normalized field

σ̄µ1···µs = exp(I(φ0)/2)σµ1···µs , (4.18)

we find

∆̄± − s = ∆± − s+
1

2α
. (4.19)

Demanding ∆̄− = 0, we get
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α =
1

2(1− s)
(4.20)

and ∆̄+ = 3. Demanding instead ∆̄+ = 0, we get

α = − 1

2(2 + s)
(4.21)

which corresponds to ∆̄− = 3.

5 Some possible observational consequences

Long-lived HS fields are active during inflation may give rise to peculiar signatures on the non-gaussian

observed (anisotropic) correlators, which are not necessarily suppressed by the mass of the HS fields

or by powers of the long mode in the squeezed limit. Let us discuss in this section some possibilities.

Consider for instance a massive spin-2 state coupled to the inflation field as described in Section 3

and such that the corresponding scaling at large scales approximately vanishing. The coupling to the

comoving curvature perturbation ζ will be of the form

S ⊃ g
∫

dτd3x

H2τ2
σ̄ij ∂iζ ∂jζ. (5.1)

The exchange of the long-lived ±2 polarizations generates a scalar four-point function in the soft limit

q ≡ |~k1 + ~k2| � ki (i = 1, · · · , 4)

〈
ζ~k1ζ~k2ζ~k3ζ~k4

〉′
'

〈
〈ζ~k1ζ−~k1〉

〉〈
〈ζ~k3ζ−~k3〉

〉′
=

9

4
g2Pσ̄(q)Pζ(k1)Pζ(k3)

∑
s=±2

εsij(~q)ε
s
k`(~q)k̂1,ik̂1,j k̂3,kk̂3,`, (5.2)

where the primes indicate that we have removed the factors (2π)3 and the Dirac delta’s. This four-

point correlator can have a sizable amplitude and maybe detectable in future CMB and galaxy survey

throughout its imprinted anisotropy. In particular, the massless graviton contribution corresponds to

g = 1. Any deviation from it will signal the presence of extra spin-2 states.

Another possible observable where the presence of the spin-2 state might appear is in the power

spectrum of the comoving curvature perturbation. The action might contain terms of the form

S ⊃ g2H
2

∫
dτd3x

H4τ4
exp(I)σijσ

ij

= g2H
2

∫
dτd3x

H4τ4
exp(I(φ0))

[
1 + I ′(φ0) δφ+

1

2
I ′′(φ0)(δφ)2 + · · ·

]
σijσ

ij

' g2H
2

∫
dτd3x

H4τ4

[
1 +

1

α
ζ +

1

2α2
ζ2 + · · ·

]
σ̄ij σ̄

ij . (5.3)

18



The first term linear in ζ can be further split if the σ̄ij gets an expectation value inside the Hubble radius

during inflation. This is expected since, even though such a zero mode is absent at the beginning of

inflation, it will be quantum mechanically generated to be of the order of the square root of its variance,

〈σ̄ij〉 ∼ H2N , where N is the total number of e-folds. Repeating what done in Ref. [19], one therefore

expects a correction to the power spectrum of the comoving curvature perturbations to be of the order

of

δPζ(k)

Pζ(k)
∼ g2

2H
2Nk

α2εM2
pl

∑
λ=±2

〈σ̄ij〉〈σ̄m` 〉ε
j
(λ)i(k̂)ε`(λ)m(k̂), (5.4)

where Nk is the number of e-folds to go till the end of inflation from the moment the wavelength

1/k leaves the Hubble radius and ε = −Ḣ/H2 is a slow-roll parameter. Parametrizing the anisotropy

generated by the helicity-2 background by the unit vector ~n

〈σ̄ij〉 = 〈σ̄〉(ninj − δij/3), (5.5)

and exploring the spin sum

∑
λ=±2

εj(λ)i(k̂)ε`(λ)m(k̂) = 2
(
P j`Pim + P `

i P
j
m

)
− 2P j

i P
`
m,

P j
i = δ ji − k̂ik̂

j , (5.6)

we finally find in terms of the angle cos θ = ~n · k̂

δPζ(k)

Pζ(k)
∼ 2g2

2H
2Nk〈σ̄〉2

α2εM2
pl

sin4 θ. (5.7)

This result can be generalized to a generic spin-s field σµ1···µs with an interaction of the form

S ⊃ gsH
2

∫
dτd3x

H4τ4
exp(I)σi1···isσ

i1···is , (5.8)

where gs a spin dependent coupling. It will lead to a correction to the comoving curvature power

spectrum of the form

δPζ(k)

Pζ(k)
∼ 2g2

sH
2Nk〈σ̄〉2

α2εM2
pl

sin2s θ, (5.9)

with a distinctive angle dependence signature. We see that the presence of HS backgrounds leads to

well-defined angular anisotropic structure in the late-time universe observables. In particular, it might

interesting to understand if the couplings gs are related to each other in such a way that the various

contributions can be resummed. We leave this and other investigations for the future.
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6 Conclusions

Inflation offers a unique possibility to probe high energy states. In this paper we have investigated

whether massive HS fields, if present during inflation, may be quantum mechanically excited and

possess fluctuations which are not damped on super-Hubble scales. While this is not possible in the

standard case where HS fields are coupled to the spacetime background minimally, due to the Higuchi

bound, we have shown that suitable couplings to functions of the inflaton field may deliver long-lived

HS fluctuations on large scales.

Our findings can be generalized in several ways. First, we have restricted ourselves to equations of

motions with a maximum of two-derivatives. One could extend the study to higher-derivatives, maybe

using the ambient space methods. It might be also worth exploring deformations of the divergence

condition we have imposed to reduce the degrees of freedom. Finally, since a consistent theory of HS in

de Sitter calls for an infinite tower of fields and although the effect of a single short lived HS field could

be observationally negligible, the the effect of an entire trajectory (non-linearly interacting) could still

produce some enhanced effect. All these issues clearly stress the need to construct a consistent theory

of HS fields during inflation.
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A Useful relations

In the text we have made repeatedly use of the relation

[∇ρ,∇σ]σµ1···µs = Rµ1κρσσ
κ···µs + · · ·+Rµsκρσσ

µ1···κ, (A.1)

where Rµκρσ is the Riemann tensor. We also recall here that a spin-s field has components σα1...αs in

an orthonormal local Lorentz frame, where the indices α1, . . . , αs are flat. This field transforms in the

2s+ 1-dimensional representation of the SO(4,1) group of rotations of the orthonormal Lorentz frame.

It can written in terms of the totally symmetric tensor σµ1...µs as

σµ1...µs = eα1
µ1 · · · e

αs
µs σ

µ1...µsσα1...αs

= τ−s δα1
µ1 · · · δ

αn
µn σα1...αs , (A.2)

where eαµ = τ−1δαµ is the veilbein for the de Sitter metric (2.1) and (µ1, . . . , µs) are curved space indices.

If σα1...αs scales near τ → 0 as

σα1...αs(τ, ~x) ∼ τ∆σ̂α1...αs(~x), τ → 0, (A.3)

we find that the scaling of σµ1...µs is accordingly

σµ1...µs(τ, ~x) ∼ τ∆−sσ̂µ1...µs(~x), τ → 0. (A.4)
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Finally, for the four-dimensional de Sitter metric (2.1), the non-vanishing components of the connection

are

Γk0m = −1

τ
δkm, Γ0

ms = −1

τ
δms. (A.5)

Correspondingly, the components of the covariant derivative ∇µσρ1···ρs are given by

∇0σ0···0rn+1···rs = σ′0···0rn+1···rs +
s− n
τ

σ0···0rn+1···rs , (A.6)

∇mσ0···0rn+1···rs = ∂mσ0···0rn+1···rs +
n

τ
σ0···0rnrn+1···rs + δrrn+1

s− n
τ

σ0···0rn+2···rs . (A.7)
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