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The frequency dependence of the transverse optical mode in the long-wavelength limit 
on the density of conduction electrons is calculated. This dependence is a consequence of 
the dielectric properties of the free electron gas which gives a change of the effective ion-ion 
interaction. By putting the limiting frequency equal to zero one finds an equation for the 
ferroelectric Curie temperature. 

Es wird die Frequenzabhangigkeit der transversalen optischen Gitterschwingungen von 
der Dichte der Leitungselektronen im Grenzfall langer Wellen berechnet. Diese Abhan- 
gigkeit folgt aus den dielektrischen Eigenschaften des freien Elektronengases, die eine Ande- 
rung dcr Ion-Ion Wechselwirkung ergeben. Es 1aBt sich eine Formel fur die ferroelektrische 
Curietemperatur finden, wenn man die Grenzfrequenz gleich Null setzt. 

1. Introduction 

In  the years since 1959 several publications [l to 41 appeared in which phonon 
dispersion curves, measured with neutron spectroscopy, were compared with 
theoretical calculations based on a rigid ion and a shell model. In  1960 Cochran 
[5 ,  61 showed that the ferroelectric transition in ionic crystals arises from insta- 
bilities of these crystals against a normal mode of vibration. As a function of 
temperature the limiting frequency of the transverse optical mode becomes zero 
a t  the Curie point, as expressed by the Lyddane-Sachs-Teller relation [5, 7,  81. 
Later interest was in the lattice dynamics of ferroelectric semiconductors as 
PbS, PbTe, and SnTe, in which the measurement of the static dielectric constant 
and the Curie temperature are difficult because of the high conductivity [9 to  
131. In  connection with the work on SbSI and FeS in our laboratory [14] the 
following problem arose: What is the dependence of the Curie temperature on 
the concentration of charge carriers 8 This problem will be analysed in this paper 
on the basis of a simple model for the coupled ion-electron system. 

We will consider a lattice consisting of two types of ions immersed in an elec- 
tron gas. The ions interact with one another via Colulomb forces and via central 
repulsive forces. The electrons screen the ions as a consequence of the Coulomb 
interaction between ions and electrons. From the expression for the screened 
Coulomb potential the limiting frequency of the transverse optical mode is cal- 
culated and by putting this frequency equal to zero we get the Curie temperature 
as a function of the electron density. 

As a general conclusion we may state that this temperature decreases with 
increasing electron concentration. An approximate expression is given for the 
shift of this temperature. 
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To the authors' knowledge no experimental results have been reported on the 
relation between the ferroelectric Curie temperature and the electron density in 
samples of SbSI. For Fel-,S Hirahara and Murakami [15] have observed a de- 
crease in the a-transition temperature with increasing conductivity. If this 
transition temperature is identified as a ferroelectric transition temperature [16] 
these results are in qualitative agreement with ours. 

2. Effective Force between the Screened Ions 
The potential field of the bare ions is given by 

(1) 
2; e V ( r )  = z -~ 

i Ir - Ril ' 

where Zi e is the charge and Ri the position of the i-th ion. 
For the effective potential of the screened i-th ion we take 

for a degenerate electron gas with density no and 
4 iz e2 no 

A 2  = ___ 
kT 

for a classical electron gas with density no. 
The energy of two ions a t  Rt and Rj  is given by 

and the total screened Coulomb energy is 

(5) 
1 1 

Etot = - E(R,,  R,) EE - 2 E(Rij)  2 i . i  2 i . i  

with Rij = Ri - Ri and R, ,  = . 
For the force on the I-th ion we can write 

with 

3. Series Expansion of tho Force 
We define 

Ri = R! f SR,, 
R?.  - R? - Rg 

5 7  - 2 1 ,  

R . .  - R'?. + SR.. 
$7 - 2 1  5 7  7 

where Ri is the equilibrium position of the i-th ion. 
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Xext we expand the force Kl from (6) in powers of SRjl and get the following 
result : 

From (7 )  we calculate 

The force K l  vanishes for 8Rf1 = 0, so the first term in the sum (8) drops out. 
Substitution of (9) and (10) into (8) gives 

I 12(Rgl)2 + 31 Rjl + 3 + Z l  Z j  e2 - - - - ~ ~- -exp (- il RYl) (RY1. SRjl) R j l .  , 
( d5 (11) 

We can write Kl = 2, e F1, where P1 is the local effective electrical field a t  R1 : 

4. Tho Transverse Optical Modr 
We now want to calculate F1 for a transverse optical mode in a lattice consist- 

ing of two types of' ions We take 

8R4+ = 8R: exp ( i  K R,) , 
SRt - = 8Eko exp (i K R,) 

for the amplitudes of the positive and negative ions. SR! is parallel with 8RC 
and both are perpendicular to K .  

We are interested in the limit K -+ 0. The sum for Pl (equation (12)) is uni- 
formly convergent forA+ 0 because of the occurrence of the factor exp ( - A  R,O1): 

lim 2 . . . = 2 l i m . .  . , 
K+O 1 1 K + O  

and we may substitute 
SR,+ L SR?, 
SR,- = SRO . 

The field a t  a positive ion consists of two parts, one part corresponding to all 
the other positive ions and a second part corresponding to  the negative ions. 
In  the contributions of the positive ions there appears the quantity 

8Rji ZE SRj - 8R1= 8R: - 8R: = 0 ,  
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and t,his means that the positive ions do not give a contribution to the field a t  
a positive ion site in the limit of infinitely long waves. 

The electrical field a t  a positive ion site R2 reduces to  

x (RYi * (WRO, - 8RO)) Rjl . (13) I z' indicates a sum for all negative ion sites. We now take as our lattice a NaCl 

structure and calculate (13) by substituting 
i 

Rjl = a (j, 
where 2 a is the lattice constant and n, m, and p are integers. It can be shown 
that for a NaCl structure the sum over the negative ions can be written as 

Aft,er some calculation we get for the field a t  a positive ion 

where 

and 

In  an analogous way we have 

(16) 
4 n  I ? ( - )  == - n Z, e (8Ry - SRO) G ( I  a )  . 

I n  connection with the formulas (14), (15), and (16) we can make the following 
remarks : 

(i) For I = 0 (no conduction electrons) the derivation is no longer correct 
because the sum is not uniformly convergent and the interchange of summation 
and taking the limit is not allowed. 

(ii) The function G(z )  has the limiting value 1 for x --z 0. 
(iii) If we define G ( 0 )  = 1 we can also use (14) and (15) for the case A = 0, for 

then we get 
4 n  4 -  
3 3 

a lattice constant 2 u = 6 8 .  
and T = 300 OK we find x = 0.25 by using formula (3b). 

P( +) = - n Z- e (SILO_ - 8R:) = 2 P . 

(iv) For an electron density n, = 10l8 
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____ 
0.1 
0.2 
0.3 
0.4 
0.5 

Table 1 

Numerical values of the function G(z) 

0.99913 0.6 I 
0.99654 0.7 
0.99223 0.8 
0.98624 
0.97860 1.0 , 0.9 I 

__-__ 
(34 

0.96937 
0.95859 
0.94633 
0.93268 
0.91770 

(v) For x = 0.1, 0.2, . . . , 1 the numerical calculated values of G(z) are given 
i n  Table 1. 

5. The Change of the Curie Temperature 

The equations of motion for the ions are 
- rn* o$6RO, = K,, (8Rg - 6R;) + 

(17)  

where K,, is the central repulsive force constant. The solution of the equations 
{17) is 

4 n  + 3 n  Z- 2, c2 G (A a )  (6R$ - 6R$) , 

'The ferroelectric Curie temperature is reached if a&( T) = 0; so we get the follow- 
ing equations for this transition temperature : equation (19) corresponds with 
the case of no electrons present and (20) with the case of finite density of conduc- 
tion electrons : 

4 n  
T = Tc 

4n ] , = o .  - 
T = To 

In  formula (20) G ( I  a )  depends on T because I (cf. formulae (3a) and (3b)) and 
.a are functions of the temperature. 

For the calculation of Td from equation (20) it is necessary that the dependence 
of K,, from T is known. We calculate this dependence by using the following 
relations which apply for the case that there are no conduction electrons pres- 
.entl) : 

4 n  
p W$ = K,, i- n Z- Z +  e2 , 

8 n  
3 p w ; = K c r -  - n Z - Z + e 2 ,  

4 n C  
T - T, E o = E o o +  ---. 

l) Cf. reference [5],  pages 391 to 395. 
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The first and second equation give the frequency of the transverse and longitudi- 
nal optical modes. The third one is the Lyddane-Sachs-Teller relation and the 
last one is the Curie-Weiss law. In  the case considered in this paper E~ == 1 
because the ions are not polarizable. From these equations we derive a relation 
between K,, and T which depends on the parameter C and T,: 

4 n  3 K,, = - - Z- Z ,  e2 n (,,,- ( T  - T,)  + 1). 
3 

If we assume that n = 4/(2 a)3 as a function of T is the same in both equations 
(19) and (20) we can substitute (21) into (20) and get the following relation for 

This equation is solved by means of iteration; the zero-order solution is found by 
taking TA = T, in the right member of (22). We also may solve (22) by graphi- 
cal methods. 

In  general we may state that for increasing concentration of charge carriers 
the Curie temperature decreases because dG(x)/dx < 0. 
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