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On the influence of density and morphology on the
Urban Heat Island intensity
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The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air

temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities,

specially during heat waves. We simulate the urban climate of various generated cities under

the same weather conditions. For mono-centric cities, we propose a linear combination of

logarithmic city area and logarithmic gross building volume, which also captures the influence

of building density. By studying various city shapes, we generalise and propose a reduced

form to estimate UHI intensities based only on the structure of urban sites, as well as their

relative distances. We conclude that in addition to the size, the UHI intensity of a city is

directly related to the density and an amplifying effect that urban sites have on each other.

Our approach can serve as a UHI rule of thumb for the comparison of urban development

scenarios.
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The canopy layer urban heat island (UHI) effect, a phe-
nomenon manifested by elevated near-surface air tem-
peratures in cities compared to their non-urban

surroundings, is mainly due to land surface modification in
connection with urbanisation. The surface energy balance of
urban areas differs from that of vegetated land in various aspects.
First, as impervious surfaces replace natural land cover of low
albedo, high thermal capacity, and high thermal conductivity,
urban areas exhibit reduced latent heat flux and increased heat
absorption1. Second, the geometry of urban surfaces featuring
buildings and street canyons leads to reduced overall wind ven-
tilation as a consequence of increased roughness, and to more
radiation trapping due to in-canyon reflections2,3. Anthropogenic
heat release from human activities also adds to the accumulation
of heat. The combined effect of these properties causes the UHI
phenomenon. Usually, the UHI intensity peaks at night4 as heat
stored in the urban surfaces during daytime is released5, resulting
in a lower cooling rate compared to vegetated surfaces.

The UHI effect has various direct and indirect impacts on
urban dwellers and their health6–8. In many cities, it exposes
urban dwellers to extra heat stress and thus leads to thermal
discomfort, as well as heat-related health problems during hot
summer days9,10. In particular during heat wave events, the risk
of heat morbidity and mortality increases9,11–13 as the UHI effect
interacts with heat waves by prolonging and intensifying hot
conditions11,14,15. Warming enhanced by urbanisation has been
identified in many cities and regions10,16–18, which implies more
severe heat stress in the future.

The impacts are further exacerbated when taking climate
change into consideration2,11,19, though they interact non-
linearly and are found to produce warming that is less than the
simple sum of their individual contributions20. Apart from health
risks, the joint economic costs of urban impacts from the UHI
effect and climate change have been estimated to be 2.6 times
those without UHI effect21. Although UHIs do not remain stable
under climate change2,22 or urban development20, future strong
nocturnal warming due to urban effects has been found in many
cities10,11,14,18,20. This may not be too critical under normal
temperature conditions. However, during heat waves this aggra-
vated heat stress can create significant risks to urban residents, as
mortality risk is found to be significantly associated with mini-
mum temperatures23,24. Therefore, measures to reduce the
impact of UHI will also contribute to urban heat stress mitigation,
especially in the future with more frequent and stronger extreme
heat events due to the interactions between urban climate, heat
waves, climate change, and urbanisation.

Many studies on the neighbourhood or block scale have related
higher temperature to urban characteristics, such as impervious
surface fraction (or its opposite, nature surface fraction), building
density13, and street canyon aspect ratio4,25. Some researchers
have also tried to quantify the neighbourhood-scale UHI intensity
based on this knowledge26,27. Those findings not only help to
advance our understanding of the physical mechanism behind the
UHI formation, but also shed light on useful measures to alleviate
heat stress in hotspots, or to generally create a better thermal
environment. Benefits of some local interventions like increasing
vegetation space28, green roofs29, and cool coating of buildings
and infrastructure30 have been proven by both numerical studies
and practical applications.

However, such mitigation strategies have very local influences
on climate31 and may not always work as efficiently at night as
during hot afternoon20. Besides, many aspects of urban form
(such as overall dimensions, skyline and poly-centricity, sprawl-
ing, and compactness)1 can affect the spatial pattern of urban
climates31,32. This suggests the potential of urban form and
structure to mitigate urban heat stress. For example, urban

characteristics measured by a sprawling index were found to be
strongly related to the growth rate of extreme heat event fre-
quency33. Thus, rapid urban growth poses challenges to urban
heat mitigation, but it also presents an important opportunity to
implement urban climate knowledge in newly developing areas. A
quantitative assessment is needed to support urban decision
making that takes the UHI effect into account. In this work, we
quantify the relationship between UHI and the urban form,
namely the three-dimensional configuration of urban elements.
With this, urban growth can be developed in a way that does not
create a strong UHI effect in the first place instead of reducing the
urban heat after expanding. As the UHI effect has the greatest
impact during heat waves and usually reaches its maximum at
night time, we focus on these conditions.

Here, we simulate the urban climate of hypothetical cities
with variable size, density, and compactness/sprawling. To this
end, we use the surface and vegetation characteristics of the
region around Berlin (Germany), replace the city with gener-
ated clusters, run the urban climate model driven by the same
lateral climate conditions, and extract the UHI intensity. By
repeating the procedure for different mono-centric clusters, we
infer an expression for the UHI intensity that is solely based on
the area and the gross building volume. By studying a wider
range of city shapes, we generalise and propose a reduced form
to estimate UHI intensities based only on the structure of urban
sites, as well as their relative distance. We conclude that in
addition to the size, the UHI intensity of a city is directly related
to the building density, and an amplifying effect that urban sites
have on each other.

Results
Modelling set-up and UHI intensity definition. We start by
generating urban clusters resembling real-world cities and define
the urban canopy parameters (UCP) accordingly. Then, we use
the physical characteristics of the region around Berlin to simu-
late the urban climate employing the COSMO-CLM/Double
Canyon Effect Parametrization Scheme (CCLM/DCEP) urban
climate model34, always driven by the same lateral climate con-
ditions (see “Methods” section). An example, urban cluster and
its building information is illustrated in Fig. 1a. With each con-
figuration, we simulate the 2-m air temperature in the period of
August 1st–7th, 2003, i.e., during a heat wave characterised by
predominately clear skies and light winds28. In order to analyse
the overall UHI intensity of the city, we consider the urban cluster
and a non-urban belt with approximately equal area (Fig. 1b), as
used for remote sensing data35,36. Then, we define the hourly
UHI intensity ΔTi as the difference between the average 2-m air
temperatures in both areas, i.e., ΔTi ¼ hTCii � hTBii, where
hTCii and hTBii are the average temperatures at local time i in the
cluster and the boundary, respectively (see Fig. 1c). We extract
the daily maximum UHI magnitude, and average it over 7 days
for each simulation. For simplicity, UHI intensity and ΔT hen-
ceforth refer to the 7-day-average maximum UHI magnitude
based on 2-m air temperature difference, unless otherwise indi-
cated. A more general discussion of the UHI intensity and
shortcomings of how to measure it can be found in previous
studies37,38. Finally, we build models expressing ΔT as a function
of building parameters.

Simulations with mono-centric urban clusters. We repeat the
analysis for 50 clusters (generated by a gravitational urban
growth model39,40, see “Methods” section) that vary by size and
compactness. In the Supplementary Fig. 1, we provide details
on the clusters. The clusters are characterised by their size A
(km2), which is given by the number of urban cells, and by the
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gross building volume S (km3), which is given by the sum of
building volumes wi over all urban cells i (for calculation of wi,
see “Methods” section). Assuming constant floor height and
constant floor area per person, S is proportional to the popu-
lation size of the entire city. If we keep the cluster size constant,
we can study how the UHI intensity depends on the gross
building volume. As shown in Fig. 2a, ΔT increases approxi-
mately linearly with ln S. Analogously, we can keep the gross
building volume constant and test how the UHI intensity
depends on the cluster size (Fig. 2b). In this case, ΔT decreases
approximately linearly with lnA. It is plausible that given the
same urban area, cities with higher density exhibit more pro-
nounced UHI intensities and less dense cities exhibit reduced
UHI intensities2,29.

Combining both results, we find that the UHI intensity can be
described by

ΔT ¼ a1lnAþ a2ln Sþ a3; ð1Þ
where a1, a2, a3 are parameters. When fitting this form to all 50
investigated clusters, we obtain a1=−0.43 K, a2= 0.65 K, a3=
3.90 K, and R2= 0.96. In Fig. 2c, we plot predicted and simulated
UHI intensities against each other. From these results, we conclude
that the UHI intensity can be described by a linear combination of
logarithmic city area and logarithmic gross building volume
(resembling city population), which is a generalisation of previous
findings5,31,36,41–43. If we introduce the urban density1,2 and define
it as S/A, then we can rewrite Eq. (1), ΔT ¼ ða1 þ a2Þ lnAþ
a2 ln ðS=AÞ þ a3 or ΔT ¼ �a1 ln ðS=AÞ þ ða1 þ a2Þ ln Sþ a3,
showing that the UHI intensity increases linearly with the logarithm
of the density (given a1 < 0 and a2 > 0). Moreover, in the
Supplementary Fig. 2, we show that according to the simulations
the parameters ai approach 0, with growing street canyon width.
Certainly, the parameters ai also depend on additional factors, in
particular the background climate5,41,44 (such as wind speed,
precipitation, and cloud cover) and thermal properties of the rural
surface2,44,45.

Simulations with a wide range of urban forms. One can easily
think of configurations where A and S are unchanged, but the
urban form is very different. The investigated urban clusters do

exhibit a range of compact or scattered shapes (Supplementary
Fig. 1), but more complex spatial features, e.g., as captured by the
fractal dimension31,46, can hardly be analysed based on those
clusters since their fractal dimension covers a comparably small
range39. Accordingly, we perform further simulations with more
extreme urban forms that are beyond real life cities. We generate
ten different spatial patterns with a range of sizes and repeat the
urban climate simulations. In order to avoid additional com-
plexity, here we use constant building height and canyon width
throughout the urban sites and simulations. The shapes con-
sidered range from the rather sparse Cantor Dust to the more
compact Sierpinski Carpet. In addition to these regular fractals,
the patterns also include irregular ones, e.g., diffusion-limited
aggregation46–48 (DLA) clusters, and non-fractal shapes, such as
the filled circle (Supplementary Fig. 3, Table 1).

As the density here held constant, i.e., A ~ S, it is sufficient to plot
ΔT as a function of the area A if we want to apply Eq. (1). The
results are shown in Fig. 3, demonstrating that overall, the UHI
intensity tends to increase with the logarithmic size, but that for a
given size, the resulting ΔT-values spread over a wide range that is
certainly due to the variety of shapes that have been used. Although
fractal geometry represents a convenient formalism to characterise
spatial structures, we found that the fractal dimension is not a
sufficient indicator to describe the UHI intensities, and we propose
an alternative ansatz as follows. Motivated by the perception that
any urban site has a heating influence on other urban cells that
declines with the distance between the urban cells, we explore the
following educated guess combining a size term and a form term

ΔT ¼ b1lnAþ b2
1
N

XN
j

XN
i≠j

d�δ
ij þ b3 with δ ’ 3=2; ð2Þ

where dij is the Euclidean distance (km) between the urban sites i
and j, N is the total number of urban cells, and b1, b2, b3 are
parameters. If hij is the heat influence that site i has on j, then
Hj ¼

P
ihij is the influence that site j receives from all other sites.

Since for ΔT, we calculate the average over all the cells of a city,
we need an additional sum over all sites and a division by their
number, i.e., 1

N

P
jHj, which with hij � d�δ

ij corresponds to the
second term in Eq. (2). When fitting Eq. (2) to all ten patterns
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Fig. 1 Example of generated urban clusters and resulting heat patterns. a Three-dimensional illustration of average building height in each grid cell of a
considered cluster. b Gross building volume in the cluster together with cluster edge and surrounding boundary. c Simulated temperature field at night
(02:00 local time). The UHI intensity is defined as ΔT= 〈TC〉− 〈TB〉, where 〈TC〉 and 〈TB〉 are the average 2-m air temperatures in the city (blue line) and
boundary (green line), respectively.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16461-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2647 | https://doi.org/10.1038/s41467-020-16461-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(42 simulations), we obtain b1=−0.19 K, b2= 0.04 K km3/2,
b3= 1.60 K, and R2= 0.95. The performance is visualised in
Fig. 3b, where predicted and simulated UHI intensities are
plotted against each other. In the Supplementary Fig. 4, we show
how we found the value of the exponent δ based on the
simulations of pattern 10 (Supplementary Fig. 3), i.e., a square of
constant N but with varying space between the urban pixels.
Equation (2) suggests that the distribution of distances between
the urban sites contains the information necessary to capture the
UHI intensity of basically any urban shape.

General regression model. A naturally emerging question is if
Eq. (2) can also be used to estimate the UHI intensity of the
generated urban clusters that led to Eq. (1). In order to unify both
approaches, we introduce a weighting factor f ðf ui;wi;YiÞ into the
second term of Eq. (2), i.e., as a function of the building volume
wi, the urban fraction f ui, and the street canyon width Yi for
each urban cell. We find reasonable fitting for f ðf ui;wi;YiÞ �� f u iwi

Yi

�1=2
. Moreover, we have to include the ln S term as in Eq.

(1). Thus, in general,

ΔT ¼ c1 lnAþ c2 ln Sþ c3Dþ c4 with D ¼ 1
N

XN
j

XN
i≠j

f uiwi

Yi

� �1=2

d�3=2
ij ;

ð3Þ

where c1, c2, c3, c4 are parameters. Fitting leads to c1=−0.26 K,
c2= 0.28 K, c3= 0.07 K km1/2, c4= 2.43 K, and R2= 0.99. In
Fig. 3c, we again plot predicted and simulated values against each
other, and find similar agreement as in Fig. 2c, despite the more
general approach. We would like to note that we also obtain

decent fitting if we employ f ðf ui;wi;YiÞ � ln f u iwi

Yi
þ 1

� �
, as the

forms of power laws with small exponents and of the logarithmic
function are quite similar. We find that regressing
ΔT ¼ c1 lnAþ c2Dþ c3, i.e., without the ln S term, also provides
reasonable fitting but Eq. (3) is preferable according to the Akaike
Information Criterion49. Moreover, Eq. (3) can be rewritten into
another form that includes urban street canyon aspect ratio25,50

(see Supplementary Note 1). Overall, Eq. (3) represents a com-
paratively simple way to estimate the UHI intensities based on
urban form and size. Given that the parameters ci are known, all
that is necessary to estimate the UHI intensity is the spatial
information of urban sites and building heights.

Application to a real-world example. Here, we briefly illustrate
how the above findings can be applied to idealised urbanisation
scenarios of the (real) city of Berlin. We restrict the simulations to
urban development that takes place vertically (decrease/increase
in building height), horizontally (shrinking/expanding extent of
urban cluster), or that decreases/increases the urban fraction. For
each of these three urbanisation types, we have created several
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configurations with changes in gross building volume varying
between −50% and +100% compared to the present urban
canopy data of Berlin (see “Methods” section). The para-
metrization is then used both to run the urban climate model and
to calculate the quantity D in Eq. (3). Of course, in addition to
urban structure factors, weather conditions (e.g., cloud cover and
type, wind speed, and direction), and rural surface conditions
(such as thermal admittance and surface wetness) are very
important factors influencing the UHI intensity45. Together with
the reference run (the simulation with real urban canopy data for
Berlin that was used to validate the configuration of the climate
model, see “Methods” section), we performed 21 simulations.

The simulated UHI intensities from these scenarios are plotted
against the change in gross building volume in Fig. 4a. We find
that the increases in building height and urban fraction both lead
to increases in UHI intensity, yet they behave differently, as the
latter leads to faster UHI intensity increase. This is probably due
to the stronger shadow effects from taller buildings, which reduce
heat storage during the day. For the scenarios with changed urban
cluster size, the trends are less clear. The fluctuations may be
caused by the fact that the randomly removed or added urban
cells vary in urban surface fraction, building structure, and street
canyon configurations. In addition, the background climate and
rural surface characteristics are heterogeneous throughout the
domain, so that different expansion directions of the urban
cluster will have slightly different influences on the resulting UHI
intensity. The higher than reference run UHI intensity of the
scenarios with decreased urban cluster size can be understood,
when considering that outer cells normally exhibit lower urban
surface fraction and building height. When these cells are
removed, the remaining central urban core has relatively high
building density, leading to higher UHI intensity.

When regressing Eq. (3) on the urban climate results from these
scenarios, we obtain c1=−0.25 K, c2= 0.13 K, c3= 0.18 K km1/2,
c4= 1.85 K, and R2= 0.99. As for these simulations, we use
heterogeneous real-world external data (such as vegetation,
orography, and soil parameters, etc.) instead of homogeneous
external data for simulations with model generated mono-centric
urban structures, the coefficients here differ slightly from before.
The predicted and simulated values are plotted against each other
in Fig. 4b. Considering the high heterogeneity of the urban
structure factors within the real UCP data and the derived
scenario UCP data, we can conclude that our general regression
form as in Eq. (3) holds not only for model-created urban
structures, but also for real-world urban structures. In order to test
the robustness of these results, we last perform an out-of-sample

validation: we remove one simulation from the 21 samples, regress
Eq. (3), and obtain a prediction that is independent from its
corresponding simulated value. Then, we repeat the procedure for
each sample in the set (leave-one-out cross-validation). Compar-
ing the predicted and simulated values, we can see that the UHI
intensities predicted by our approach show agreement with the
simulated UHI intensities. Except for two values with a deviation
of −0.21 K and 0.14 K, the rest of the predictions have an error
within ±0.1 K.

Discussion
The UHI effect can increase the frequency of extreme heat events,
extend the duration of high temperatures, and narrow the time
window for relief from high-heat exposure9,11,14. This heat stress
may deteriorate further when taking climate change and rapid
ongoing urbanisation into account. Moreover, as the majority of
world’s population already lives in cities, urban areas are expected
to absorb the lion’s share of global population growth that is
estimated to be 2.2 billion by the end of this century51. This
means that in the future many more people will be exposed to
more frequent and intensified extreme heat events, not to men-
tion demographic change and an increasing proportion of vul-
nerable elderly people. Therefore, urban development policies
need to take the UHI effect into account21 and make proper use
of effective ways to reduce excessive urban heat.

Achieving this goal requires more comprehensive under-
standing of how the UHI effect is influenced by key local- and
regional-scale factors, such as urban canyon structure, building
density, urban surface fraction, and urban form. A challenge in
the study of cities is that many factors and characteristics vary
among cities, most notably the background climate5, thermal
properties of the rural surface45, city size41, density44, urban
form52, street geometry8,44, and building material2,44. Here, by
employing simulated cities, we can keep the climate conditions
constant and clearly define these factors, and thus investigate the
UHI phenomenon for cities over almost two orders of magnitude.

We quantify the relationship between key urban factors and
the UHI intensity, and propose a regression model to quantita-
tively estimate the UHI intensity based on detailed 3D urban
structure data. Our results show that: firstly, given the same urban
area or gross building volume, the UHI intensity is strongly
influenced by the building density (gross building volume per
unit area, calculated as the product of total building plan area,
and average building height within an urban area unit); and
secondly, increasing building density will lead to stronger UHI
intensity. However, due to different effects of aspect ratio,
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increasing building plan area causes a more rapid increase in UHI
intensity than adding vertical building height. Given knowledge
about the coefficients, Eq. (3) can serve to quantify the effect of
interventions on the city in question and to investigate scenarios
of the urban development.

Our results confirm that increasing urban fraction and building
height will enhance the UHI intensity, which is consistent with
previous studies4,26–29,41,53. Although increasing building height
means more shading effect and less heat storage within a street
canyon during the day, it also leads to larger aspect ratios and
lower night time cooling rates due to stronger trapping of out-
going radiation. The extent to which one of these two effects
offsets another still requires further investigation. According to
our results, increasing the building density through taller build-
ings leads to slower increase in UHI intensity, and the increase
rate gets smaller for larger street canyon aspect ratio4. On the
other hand, based on numerical modelling, Marciotto et al. found
a peak point of aspect ratio at ~3.5, beyond which the maximum
UHI intensity will decrease with increasing aspect ratio25. This is
not a contradiction as in our work, most of the street canyons still
have an aspect ratio <3.5 even when the height of all buildings is
doubled. However, it is also unrealistic to have a that large
average aspect ratio within many grid cells at 1 km resolution.

Regarding the influence of urban form, our results show that
the sprawling development will lead to a better thermal envir-
onment when considering the entire urban area. Stone et al.
found that sprawled cities show a greater rate of increase in the
frequency of annual extreme heat events33. A reason for this
difference could be their use of observational data acquired at
weather stations that are often located near the airport instead of
the city centre. Moreover, when the urban area and the gross
building volume are controlled, the factors within the term D in
Eq. (3) still interact with each other non-linearly. Under the
premise that the street canyon geometry is homogeneous over all
urban sites, the term D clearly indicates that more compact urban
clusters will lead to higher UHI intensities. However, without this
precondition the situation is more complex. Future work that
links the quantity D to factors like urban fractality31,46,54, urban
centrality/poly-centrism33,55, anisometry31, and intra-urban
street canyon geometry will further our understanding of the
influence of the urban form on the UHI effect.

Our results, to some extent, cross the scale hierarchy with
regards to urban heat stress mitigation by aggregating the com-
plex interactions of vegetation fraction and canyon geometry at
the neighbourhood-scale grid cell (in our case, at the scale of
1 km) into an impact at the city scale. This means that city-scale
UHI intensity cannot simply be scaled up from that of the
neighbourhood scale, as nearby neighbourhoods also influence
each other. Since there is no single best design that meets all
climate objectives1, a quantitative assessment of the impact of
different designs can help to balance between different
objectives30,37,56–58. However, it is beyond the scope of this paper
to integrate our findings into a more holistic frame, since decision
making on urban design is a very complex process that requires
consideration of many other aspects. For example, a denser city
can be preferable regarding energy efficiency but will lead to
greater UHI intensity57, a proper comparison requires quantita-
tive assessment of both objectives. Even for the same objective of
urban heat stress mitigation, it is difficult to clearly prefer
one development design over another one before their detailed
3D urban structures are available, or at least some of the factors
are fixed. The main reason is that the factors in Eq. (3), in par-
ticular building height and street width, interact and impose
limits on each other. Instead, our approach permits an
assessment30,56,58 that takes the 3D urban structures of different
urban development scenarios as inputs, and enables the

comparison between these scenarios with regard to heat stress
mitigation on the city scale.

Some limitations exist in this work and the application of our
results. Firstly, besides urban form and factors related to street
canyon geometry1, weather conditions and rural surface
characteristics44,45 play an important role in determining UHI
intensities. To apply Eq. (3) to another city, one would need to
derive the coefficient of the regression again, requiring
~20 simulations. This hampers the fast application of our results,
especially for those without expertise in running numerical cli-
mate simulations. Properly identifying a representative heat wave
event and always using it as standard driving data could help to
avoid unnecessary simulations. Secondly, with the coefficients
known, applying Eq. (3) still requires detailed 3D urban structure
data for the development scenarios under consideration. This
data will become increasingly available with the rapid develop-
ment of spatial information technology. Lastly, for simplification
and to better separate the influences of the various factors, we
excluded anthropogenic heat in this study. For Berlin, the influ-
ence of anthropogenic heat release on nocturnal UHI effect
should be relatively small during summertime according to stu-
dies on other temperate cities45,59–61. Moreover, during the night,
anthropogenic heat release from cooling should be negligible as
the majority of households do not use air conditioning. However,
for cities or scenarios where cooling equipment is widely operated
during hot summertime, UHI intensity can be increased by >1 ∘C
(refs. 62–64). Further work on the influence of anthropogenic heat
will be helpful for more accurate UHI prediction for cities, where
cooling devices are widely used.

Methods
Climate model. The mesoscale non-hydrostatic climate model CCLM (ref. 65)
coupled with a multi-layer urban canopy model (UCM), the DCEP (ref. 34), was
used in this study. Previous work has shown that diurnal variation and magnitude
of UHI can be well represented in CCLM/DCEP during summer months28,66.

CCLM was developed from the operational weather forecast Local Model of the
German Meteorological Service by the CLM-Community and has been the
community model of the German climate research since 2005. In the standard
CCLM, cities are represented by a bulk-transfer scheme with modified soil and
vegetation parameters. An urban scheme is necessary to represent important urban
characteristics in terms of thermal properties and vertical effects of buildings28. The
DCEP scheme, based on the Building Effect Parametrization67, accounts for the
effects of buildings and streets configuration on the atmosphere. When coupled
with CCLM, DCEP is only applied to the urban fraction of a mesoscale model grid
cell, the remaining natural surface fraction is treated by the land surface scheme of
CCLM. In DCEP, the urban surface is conceptualised as multiple series of identical
street canyon elements that are characterised by canyon direction, street width,
building height, and building width. Therefore, UCP required by DCEP for each
urban grid cell are: urban surface fraction, canyon direction distribution, building
height distribution, street width, and building width.

Model set-up and data analysis. We conducted a chain of three nested CCLM
simulations with resolutions of 0.165∘, 0.025∘, and 0.009∘, see coverage of each
model domain in Supplementary Fig. 6b. The domain of the innermost simulation
was centred at Berlin. A period of 1 week during a heat wave event was simulated28.
The coarsest simulation was driven by ERA-Interim reanalysis data with a spin-up
time of 5 years. The remaining two nesting steps started 6 months and 12 days,
respectively, before the analysed period.

The DCEP scheme is only applied in the finest simulations. To validate our
model configuration, we conducted a reference run with UCP data derived from a
3D dataset of Berlin at 1 km resolution28. Statistics of the model performance
against observational data (measured at six weather stations located in and near
Berlin, see Supplementary Fig. 6b) are shown in Supplementary Table 2. In terms
of mean error, mean absolute error, and root-mean-square error, the model
satisfactorily reproduces the 2-m air temperature.

Configurations for the simulations with generated UCP data were the same with
the reference run except that the external data, such as vegetation, orography, and
soil parameters were made homogeneous based on the mean value of the finest
domain. This minimises the effect of non-urban parameters on our results.

For each generated urban cluster, we define a non-urban boundary of
approximately the same area by determining several layers of cells surrounding the
urban area36. The difference between average 2-m air temperatures of urban area
and rural boundary area was taken as the canopy layer UHI intensity.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16461-9

6 NATURE COMMUNICATIONS |         (2020) 11:2647 | https://doi.org/10.1038/s41467-020-16461-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Urban growth model. We used a gravitational urban growth model39 to create
realistic 3D urban canopy data. This model, based on the concept that growth is
more likely to take place close to high densities, is capable of reproducing various
attributes of real-world cities, such as the radial gradients of population density,
radial gradients of urban fraction, and the power law between the population and
city area. On a square grid, the probability of growth in cell i is given by
pi ¼ G

Mi

P
j≠ivjd

�γ
i;j , where γ is the main parameter, di,j is the Euclidean distance

from cell i to j, vj is the value in cell j, Mi is a site-specific normalisation
constant39,40, and G is another parameter determining the overall rate of growth.
Starting with a single v= 1 cell in the centre, the model is run iteratively incre-
menting the counts vi → vi+ 1, if z < pi, where z is a random number between 0
and 1. The exponent γ controls the shape of the emerging urban clusters, i.e., small
γ lead to sprawled and radial symmetric structures, and large γ lead to compact
forms with less radial symmetry. Consistent with ref. 39, we explored
γ ∈ {2.0, 2.05, …, 2.7, 2.75} and 1000 × 1000 system size.

From the resulting 14,1758 clusters, for each γ value we first select one cluster
with an area of approximate 2000 cells (as we put these clusters in the climate
model domain with 1 km2 resolution, its area corresponds to 2000 km2). The
corresponding gross building volume increases with γ. We name these clusters set
1, and took the cluster for γ= 2.5 in set 1 as reference cluster Cref. Similarly, we
select one cluster for each γ value that has approximately the same gross building
value as Cref. The corresponding cluster areas decrease with γ. We name these
clusters set 2. At last, another nine clusters emerging from the same growth
sequence (realisation) as Cref are selected. Together with Cref, they make up set 3. In
addition, ten clusters from different γ values are selected according to the criterion
that they are close to Cref in terms of gross building volume and size. They
constitute set 4. See Supplementary Fig. 1 for the cross plot of size versus gross
building volume of all selected clusters and some of them depicted.

3D UCP data. In order to make use of the gravitational urban growth model
output, the grid value vi in pixel i was taken as the floor count of the building in this
pixel. The system was aggregated into to a coarser domain of 200 × 200, thus each
coarse pixel consists of 25 finer pixels with values {v1, v2, . . . , v25}. Then the urban

fraction fu of this coarse pixel was calculated as Nðvi > 0Þ
25 , where N(⋅) is a function that

counts the number of considered values that match the criterion of it. Only coarse
pixels with urban fraction no <20% were taken as urban cells68, in the end we got a
200 × 200 urban/non-urban matrix for each output. For some outputs from large
γ values, the v values of pixels near the centre become very large after many
interations. In order to have more realistic city centres, we applied a threshold of 30
for maximum average number of building storeys on each coarse pixel and rescaled

the building height distribution as follow. If �v ¼
P

vi
Nðvi > 0Þ>30, vi ¼ 30vi

�v , thus the

average building height �v for all coarse pixels will not exceed 30 storeys. Then for
each coarse pixel marked as urban cell, we calculated the building height dis-

tribution {fh1, fh2, . . . , fhj} following f hi ¼ Nðvi ¼ iÞ
Nðvi > 0Þ, where fhi denotes the share of

buildings with height of i storeys, and j is the maximum value of the original
1000 × 1000 lattice.

We applied the CCA algorithm69 on the aggregated urban/non-urban matrix to
assign all urban pixels into clusters. In this study, we only focus on the central,
largest cluster of each output. In addition, only the central clusters with >200 pixels,
which do not touch any edge of the coarse domain were considered.

For each coarser grid cell, the proportion of urban surface occupied by building
footprints was calculated28 as f b ¼ Wb

Y þWb
, where Wb and Y are building width and

street width, respectively. The building volume w for each grid was calculated
according to

w ¼ Agrd ´ f u ´ f b ´�v ´Hf ; ð4Þ

where Agrd is the area of the grid cell (1 × 1 km2 throughout all the simulations), fu
is urban fraction measured as urban surface fraction, �v is the aforementioned
average building height measured by the number of storeys, and Hf is the floor
height (we assume constant floor height of 3 m for all buildings to further simplify
conditions in this study), see the notation in Supplementary Table 3. We take the
number of pixels of the considered cluster as the urban size A, and the sum of
the building volume covered by the cluster as the gross building volume, namely
S ¼ P

wi.
For other parameters required by the DCEP scheme, such as street direction

distribution, street width, and building width28, we first assumed they are
distributed homogeneously within the urban area in order not to introduce further
variability. The fraction for each direction (−45∘, 0∘, 45∘, and 90∘ to the north
clockwise) in each pixel is 25%. For street width Y and building width Wb, 20 m
and 15m are taken, respectively. Based on the selected clusters, 50 UCP datasets
are created.

We create additional 42 UCP datasets that feature ten spatial patterns (see
Supplementary Fig. 3 and Table 1 for examples of each pattern), which are named
set 5. For these clusters, we chose a street canyon width of 15 m and building width
of 20 m. We take a different street canyon width compared to sets 1–4, since in set
5 some of the clusters are rather small and as smaller canyon width leads to
stronger UHI intensities, we have a better signal to noise ratio.

To study how the street canyon width influences the parameters a1, a2, a3 in Eq.
(1), we pick five UCP datasets from set 1 and another five from set 3 to create
additional UCP data. Based on each of these UCP datasets, we then create four new
UCP datasets by only changing the street canyon width to 10 m, 15 m, 25 m and 30
m, respectively, and changing the building width accordingly to keep the fraction of
building plan area unchanged. Then for each street width in {10, 15, 20, 25, 30} m,
we get ten simulations and fit the results with Eq. (1). Comparing resulting
a1, a2, a3, we are able to study the influence of the street width. These modified
UCP datasets are together named set 6.

The parameters taken for different UCP datasets can be found in
Supplementary Table 4.

UCP data from different urbanisation scenarios of Berlin. To illustrate how our
findings can be used in for real-world cities, we create a series of UCP data based
on different hypothetical urbanisation scenarios for Berlin. This is done by mod-
ifying the real UCP data taken for the reference run. Assuming that the change of
living space only happens in vertical direction, we increased (or decreased) the
average building height proportionally by −50%, −25%, +25%, +50%, and
+100%. Thus, we get five UCP scenarios with a gross building volume increment of
−50%, −25%, 25%, 50%, and 100% relative to the real UCP data.

Similarly, we can also allocate the change by altering the urban fraction. For the
scenarios of decreasing gross building volume by 50% and 25%, we simply decrease
the urban fraction of each grid cell by 50% and 25%. However, for increasing gross
building volume scenarios, we decrease the vegetation surface of each grid cell by
the same percentages to get three scenarios with gross building volume increased
by 25%, 50%, and 100%. Similar method has been used by Schubert and Grossman-
Clarke28.

It has to be noted that both vertical changes and horizontal changes are
constrained within already urbanised grid cells, that is, without changing the shape
of the urban cluster. In the third scenario the change of gross building volume is
achieved by modifying the extent of the urban cluster. This is implemented by
randomly adding or removing urban grid cells. For decreased gross building
volume scenarios, we simply repeated the process of randomly removing an urban
grid cell from the edge of the cluster. For increased gross building scenarios, the
following steps are repeated until the gross building volume of the expanded urban
cluster approximately agrees with the desired size. Step 1: randomly pick a grid cell
from the urban cluster; step 2: randomly select a non-urban grid cell that is
adjacent to an urban grid cell; and step 3: replace this non-urban cell with the
urban cell selected by step 1. At the end, we get ten scenario UCP datasets with
gross building volume changed by −50%, −25%, −10%, +10%, +25%, +40%,
+50%, +60%, +75%, and 100% respectively,

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The initial lateral and boundary conditions for the simulations were obtained from the
ERA-Interim data (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-
interim). The UCP data and hourly 2-m temperature data of all simulations can be
accessed at “Urban canopy parameterisation data for urban climate simulation using
CCLM/DCEP and hourly 2-m temperature output (https://doi.org/10.1594/
PANGAEA.914906)”70. Further data are available from the corresponding author upon
reasonable request.

Code availability
The source code of the COSMO-CLM model is available from the CLM-Community
(clm-community.eu) after registration. The DCEP code is available from S. Schubert
upon request. The R-package dcepucp used to create UCP datasets for the simulations is
available at https://github.com/sebschub/dcepucp. Custom R-code may be provided
upon request.
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