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Abstract

The purpose of this contribution is to investigate the stabilizing influence of
hydrostatic fluid and/or gas pressure supports (especially the effect of the vol-
ume dependence of gas or fluid pressures) on the stability, here the eigenvalues
and eigenmodes of the stiffness matrix of shell or membrane-like structures
undergoing large displacements. For this purpose an analytical mesh free or
lumped parameter description for the fluid/gas (see also [3], [11], [12] and [13])
is taken, which yields a special structure of the nonlinear equations representing
the change of the gas or fluid volume or alternatively the change of the wetted
part of the shell surface. Finally this procedure leads to a stiffness matrix ma-
trix updated with several rank updates – depending on the volume containing
either gas or fluid or both. These rank updates are a key part in the stability
analysis: They describe the different coupling of the fluid or gas volume change
with the structural displacements in addition to the deformation dependence of
the standard pressure. The specific rank updates allow the derivation of a very
efficient algorithm to compute the modifications of the eigenvalues and eigen-
modes of the original stiffness matrix without gas or fluid loading or support.

Keywords: fluid-structure-interaction; large displacements; volume dependence;
stability; finite elements

1 Introduction

In conventional finite element analyses of structures with closed volumes an internal
pressure is assumed, which is acting normal to the surface of the system. For rela-
tively small deformations and structures not prone to instability this approximation
is adequate. However, for stability problems further effects have to be considered,
especially the change of the volume and the inner state variables of the gas and/or
the fluid. The fact that the applied gas or fluid pressure is volume dependent is
often neglected as also for example the volume dependence of the current fluid level.
For early investigations of buckling of structures with internal pressure we refer to
Fung/Sechler [6] and Harris et al. [8].

This contribution is devoted to the investigations of the influence of such a deforma-
tion dependent fluid/gas support or loading on the eigenvalues and eigenmodes of
the stiffness matrix of thin walled shell structures undergoing large displacements.
For this purpose we refer to the former contributions of the authors group [11],
[12], [13]. The contributions of Berry et al. [2] and Bonet et al. [3] were focusing
only on gas supported resp. loaded shell and membrane type structures. With the
derivations given in [11], [12] and [13] it is possible to come up with an analytical
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2 2 EIGENVALUE ANALYSIS

formulation of the fluid/gas terms only described by surface integrals over the sur-
rounding wetted structure. Hence e.g no FE discretization of the fluid or the gas is
necessary. Already van Dijk et al. [4] proposed a FE-description for shells filled with
a combination of gas and fluid. However, the effect of of the change of the normals
and effect of the hydrostatic pressure were neglected and some approximations to-
wards the fluid compressibility have been made. Only the deformation behavior of
airsprings and bottles was considered. A further contribution of the authors group
[9] recently submitted for publication merges all previous developments and thus
provides a unified formulation for closed chambers containing any combination of
volume dependent loading and support (see Fig. 1.1) and allows any combinations
of multiple chambers, too.
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Fig. 1.1: Elastic shell structure filled with fluid and gas

Due to the fact that in [9] the linearized set of equations – featuring several dyadic
rank updates of the stiffness matrix – for fluid and/or gas supported membrane
structures has already been derived, it will be only briefly presented here. The specific
rank updates of the stiffness matrix are a main part in the stability investigation,
because they allow the derivation of a very efficient algorithm to determine the
influence of the fluid or gas loading on the eigenvalues and eigenmodes of the stiffness
matrix. The numerical examples contain fluid and gas filled shell structures with
rather thin flexible walls investigated for buckling. The performance of the efficient
derived algorithm is also discussed.

2 Eigenvalue Analysis

As shown in the previous works of the authors group [11], [12], [13] the volume
dependence of the inner state variables (e.g. pressure p, fluid densitiy ρ or fluid level
xo) leads to several rank updates of the global stiffness matrix K. For reasons of
simplicity the special case of a single chamber only loaded with gas will serve as an
example. Keeping the notation introduced in [9], for a system only loaded with gas
the linearized set of equations describing the equilibrium becomes

(

K + αtaa
T
)

d = f , with K =Kel +Kg , (2.1)

where d is the unknown nodal displacement vector, Kel the stiffness part of e.g. the
elastic shell structure and Kg the so-called load-stiffness matrix [15] reflecting the
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normal change of the gas pressure loading. The external forces and the residuals of
both the virtual work of the inner forces of the elastic structure and the virtual work
of the pressure loading f g are combined in the right hand side vector f . The volume
dependence of the internal gas pressure pkg = pkg(v̄g) leads to the rank update with
the coupling vector a, which can be interpreted as the volume change of the enclosed
gas. The constant pressure volume gradient αt couples the volume change with the
pressure change. The formulae for the computation of K g, f g, a and αt are given
in the appendix. This dyadic rank update results in a fully populated part of the
system matrixA = K+αtaa

T , which may lead to fairly high numerical effort during
the modal decomposition process. To bypass the solution with such an almost fully
populated system matrix in a first step the standard eigenvalue problem

K ψi = λi ψi (2.2)

has to be solved. With conventional algorithms, as for example a subspace iteration
method, the eigenvalues λi and the eigenvectors ψi of the matrix K having the
structure of a standard structural matrix can be computed. In the next step the
effect of the dyadic update of K by the coupling vectors on the eigenvalues and
-vectors will be investigated.

2.1 Computation of Shifted Eigenvalues

Starting from the standard eigenvalue problem

A φi = χi φi (2.3)

for the volume coupled system matrix A, the modal vectors φi can be assembled
in the modal matrix Φ and the associated eigenvalues χi in the spectral matrix X.
Rearranging equation (2.3) then leads to

AΦ = ΦX . (2.4)

Subsequently the modal matrix Φ can be split up into a modal factor matrix Ξ and
the modal matrix Ψ, which contains all eigenvectors ψ i of the uncoupled stiffness
matrix K. Thus Φ can be written as:

Φ = ΨΞ = Ψ







| | | |
ξ1 ξ2 ... ξi ... ξn

| | | |






(2.5)

All modal vectors are normalized, thus

ΨTΨ = I . (2.6)

Inserting equation (2.5) in (2.4) and left hand multiplication with ΨT yields

ΨT · | AΨΞ = ΨΞX

ΨTAΨΞ = ΨTΨΞX

ΨTAΨΞ = ΞX . (2.7)

With the notation

A⋆ = ΨTAΨ = ΨT
(

K + αtaa
T
)

Ψ . (2.8)
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a modified form of the eigenvalue problem (2.4) is obtained

A⋆Ξ = ΞX , (2.9)

which can be rewritten for the columns ξi of the modal factor matrix Ξ and the
eigenvalues χi:

A⋆ξi = χi ξi . (2.10)

Substituting (2.8) into (2.10) results after some reordering in:
(

ΨT

[

K + αtaa
T
]

Ψ− χiI
)

ξi = 0
(

ΨTKΨ + αtΨ
TaaTΨ− χiI

)

ξi = 0 . (2.11)

Using the spectral matrix Λ of K

Λ = ΨTKΨ (2.12)

along with the modified coupling vector

ā = ΨTa (2.13)

yields
(

Λ + αtāā
T − χiI

)

ξi = 0 . (2.14)

For this homogeneous set of equations non-trivial solutions ξi 6= 0 do exist, if the

determinant of the coefficient matrix
(

Λ + āāT − χiI
)

vanishes.

det
{

Λ + αtāā
T − χiI

}

= 0 (2.15)

Now two cases concerning the coordinates āj must be considered:

2.1.1 Case 1: All coordinates unequal zero (āj 6= 0)

In this case all new eigenvalues are different from the old ones: χi 6= λi. This ensures
the matrix (Λ − χiI) not to be singular. Therefore it can be moved out of the
operand in equation (2.15).

det
{

(Λ − χiI)
(

I + αt [Λ − χiI]
−1
āāT

)}

= 0 (2.16)

Using the multiplication rule of determinants on equation (2.16) results in

det (Λ− χiI) det
(

I + αt [Λ− χiI]
−1
āāT

)

= 0 . (2.17)

The determinant of the rank-one-updated identity matrix I can be easily given as

det
(

I + αt [Λ − χiI]
−1
āāT

)

= 1 + αtā
T [Λ− χiI]

−1 · ā , (2.18)

see [14]. Thus the following conditional equation for the eigenvalues χi is obtained:

det (Λ− χiI)
(

1 + αtā
T [Λ − χiI]

−1 · ā
)

= 0 (2.19)

As the new eigenvalues are different from the old ones, χi 6= λi, the determinant
of the diagonal matrix (Λ − χiI) is unequal zero. Consequently the second factor
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in equation (2.19) must be identical to zero to ensure the existence of non-trivial
solutions. For the eigenvalues χi the characteristical polynomial p(χ) is obtained:

p(χ) = 1 + αtā
T [Λ− χI]−1 · ā = 0 (2.20)

Because (Λ− χI) is a diagonal matrix, the polynomial p(χ) can be simplified by
summing up the product of the reciprocals of the j th diagonal element with the
square of the jth coordinate āj .

p(χ) = 1 + αt

n
∑

j=1

āj āj

λj − χ
= 0 (2.21)

Function (2.21) has poles at the eigenvalues λi of the stiffness matrix K. Further
on, function (2.21) has for a positive αt the following limits between the poles (see
also Fig. 2.1):

lim
χ→λ+

j

= −∞ , lim
χ→λ−

j+1

= ∞ , lim
χ→−∞

= 1 and lim
χ→∞

= 1 . (2.22)

The pressure volume gradient αt can be physically seen as a kind of spring constant
of the gas. Negative values for αt are therefore artificial and physically not possible.
A closer look at the definition

αt = κ
pkg

t

v̄g
t

(with κ = 1.4, see [1]) (2.23)

shows that neither negative volumes v̄g
t nor negative pressures pkg

t exist, thus αt > 0
always yields.

The characteristical polynomial p(χ) is strictly monotone between its poles, therefore
the new eigenvalues χi resp. the zero values of p(χ), must lie somewhere in between
the poles. As depicted in Fig. 2.1 the new eigenvalues χi will increase for a positive

p(χ)

1

χχ1 χ2 χ3

λ1 λ2 λ3

Fig. 2.1: Eigenvalue shift for the example of a 3rd order polynomial p(χ) and αt > 0

pressure volume gradient αt, resp. a gas/fluid support.

λ1 < χ1 < λ2 < χ2 < ... < λn < χn (2.24)
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As already mentioned the polynomial p(χ) is strictly monotone between the poles
λj , therefore an efficient method to localize the zeroes in p(χ) can be found by the
bisection method. For a given tolerance tol

n > log2

(

λj+1 − λj

tol

)

(2.25)

iterations are necessary to approximate the new eigenvalue χj [5].

2.1.2 Case 2: Coordinate āj = 0

Physically, the modified coupling vector ā still represents the volume change of the
structure. If a specific degree of freedom has no influence on the volume change, the
associated coordinate āj = 0 of the coupling vector consequently will be zero. This
means that the corresponding eigenvalue λj and eigenmode φj are not affected by the
gas support and therefore will remain untouched. The mathematical interpretation
of this fact is that in this case the matrix

Λ + αtāā
T − χiI (2.26)

contains zero entries in the jth row and the jth column, except for the diagonal
element. This has the effect that the jth eigenvalue χj of (2.26) equals the old
eigenvalue λj . Therefore in a first step, in the algorithm all zero entries must be
filtered out of the coupling vector ā and the associated rows and columns in the
spectral matrix Λ must be reduced likewise. Thus we obtain a reduced coupling
vector â without any zero entries and a reduced spectral matrix Λ̂ and can proceed
in analogy to case 1 (2.21) with the characteristic polynomial p̂(χi) of a reduced
order

p̂(χi) = 1 +
m

∑

j=1

âj âj

λ̂j − χ
= 0 , with χ 6= λj , m < n . (2.27)

2.2 Computation of Eigenvectors

For the computation of the corresponding eigenvectors equation (2.14) is considered
again, focusing on the column ξi of the modal factor matrix Ξ:

(

Λ + αtāā
T − χiI

)

ξi = 0 . (2.28)

Rearranging this equation yields

(Λ − χiI) ξi = −αt

(

āāT
)

ξi

(Λ − χiI) ξi = −αtā
(

āT · ξi

)

ξi = −αt (Λ− χiI)
−1
ā

(

āT · ξi

)

. (2.29)

To eliminate the implicit form of ξi it can be normalized by its length, leading to

ξi = −
αt (Λ− χiI)

−1
ā

(

āT · ξi

)

||αt (Λ − χiI)
−1
ā (āT · ξi) ||

= −
(Λ − χiI)

−1
ā

|| (Λ− χiI)
−1 ā ||

. (2.30)
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as the ith column of Ξ. With the multiplicative split (2.5) the transformed modal
matrix can then be computed:

Φ = ΨΞ = Ψ







| | | |
ξ1 ξ2 ... ξi ... ξn

| | | |
.






(2.31)

In the case of zero entries in the coupling vector the reduced modal matrix Φ̂, which
can also be computed according to this outlined scheme, must be amended by the
old eigenvectors corresponding to the zero entries of ā to make it complete.

2.3 Efficiency considerations

In most engineering problems only a few lower eigenvalues are of interest. But an
obvious disadvantage in the presented algorithm is the fact that – although only a
few eigenvalues χi and the associated eigenmodes φi of the system matrix A are
to be computed – in a preceding computation both, all eigenvalues λj of the global
stiffness matrix K are necessary to set up the characteristical polynomial p(χ) and
the complete modal matrix Ψ ofK with all its decoupled eigenvectors is also needed
to obtain the new modal matrix Φ via the product approach (2.31). In this section
a reduction of the general case with all n eigenvalues and n eigenmodes of K is
discussed and in which cases just m < n lower ones are sufficient.

A central factor in the modal analysis within this scheme are the distances of the
old eigenvalues λj among each other, because they determine the coupling. If all
eigenvalues λj+1 are much smaller than all following eigenvalues λm+1

λj+1 ≪ λm+1 , (2.32)

then we can conclude for the new eigenvalues χj with

λj < χj < λj+1 ≪ λm+1 (2.33)

that they are also much smaller than λm+1:

χj ≪ λm+1 (2.34)

Therefore – although for the computation of the first j = 1..m shifted eigenvalues χj

in the strict sense all old eigenvalues λ1...λj ...λn must be considered – all summands
in the characteristical polynomial for m + 1 ≤ j ≤ n are negligible compared to the
rest. Thus we get under the assumption āj ≪ λm+1 (verification of assumption at
the end of section)

p(χ) = 1 + αt

m
∑

j=1

āj āj

λj − χ
+ αt

n
∑

j=m+1

āj āj

λj − χ
= 0

≈ 1 + αt

m
∑

j=1

āj āj

λj − χ
. (2.35)

If the distance between the eigenvalues is large enough, then the updated lower
eigenvalues χj remain almost unaffected by higher ones greater than λm. Thus both,
the search for the old eigenvalues λj with conventional methods and the search for
the zeroes in p(χ) with the bisection method can be restricted to a minimum number
m, which may reduce the computational effort considerably for large FE-problems.
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The same argument can be used to reduce the number of eigenvectors ψ i of K
necessary for the setup of the new modal matrix Φ. Looking at equation (2.30)
again the non-normalized vector can be written as

ξ⋆
i = − (Λ− χiI)

−1
ā = −













ā1/ (λ1 − χi)
ā2/ (λ2 − χi)

...
ān/ (λn − χi)













(2.36)

and its norm is given by

|ξ⋆
i | =

√

(

a1

λ1 − χi

)2

+

(

a2

λ2 − χi

)2

+ . . . +

(

an

λn − χi

)2

. (2.37)

As already demonstrated for large distances between the eigenvalues and with equa-
tion (2.34) the coordinates of ξ⋆

i can be approximated by

ξ⋆
ij =

aj

λj − χi
for j < m (2.38)

respectively

ξ⋆
ij = 0 for j > m . (2.39)

The length of ξ⋆
i is less affected by eigenvalues λj with large distance to χi, because

here the squares of the reciprocals of the distances are computed. Thus looking at
equation (2.31)

φi =







| | | |
ψ1 ψ2 ... ψj ... ψn

| | | |






ξi (2.40)

follows that the jth coordinate in vector ξi obviously represents the influence of the
old modal vector ψj ofK on the computation of the shifted eigenvector φi due to the
rank-1-update, which gives an a posteriori control for Ξ: To estimate the accuracy
of the eigenmodes φi computed with a reduced set of m eigenvalues λj and -vectors
ψj the modal factor matrix Ξ must be considered. In the case of a fully populated
matrix the mutual influence of the eigenvectors is obviously high or the previous
assumption āj ≪ λm+1 was not correct, which means that a new computation with
a larger set of eigenvalues λj and -vectors ψj is probably necessary. In the case
of a less populated modal factor matrix with a dominantly diagonal shape, a new
computation with a larger modal set would not affect the solution remarkably.

2.4 Multiple Rank updates

Although it may seem that the derived algorithm is only valid for a rank-one-update
of the stiffness matrix K, multiple rank updates can easily be taken into account by
a subsequent application of this method. I. e. in the case of a closed chamber (see Fig.
1.1), which is partially filled with a heavy incompressible fluid and an additional gas
volume the system matrix A in the equilibrium equations according to [9] features
a rank-2-update:

A = K + αt (a+ b) (a+ b)T − γtbb
T , (2.41)
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where αt again couples the total volume change a+ b with the gas pressure change
∆pkg and the pressure volume gradient γt at time t couples the change of the fluid
level ∆xo with the volume change b under the wetted shell surface. The formulae
for the computation of a, b, αt and γt are summarized in the appendix. To compute
the eigenvalues and -vectors the stiffness matrix with the first rank update is split
according to equation (2.41), which leads to a matrix A1 only affected by the gas
volume change (a+ b):

A1 = K + αt (a+ b) (a+ b)T (2.42)

For this rank-one-update the eigenvalues and -vectors can be computed as described
in the previous section. In the same manner the shift of eigenvalues and -vectors of
A1 due to the second rank update can be computed.

A2 = A1 − γtbb
T (2.43)

3 Numerical Examples

As shown in [9], the effects of a volume dependent gas or fluid loading on the system
matrices can be summarized to:

• The global stiffness matrix Kel of the elastic shell structure is updated with
the normal change parts [15] due to fluid Kf and gas Kg loading to: K =
Kel +Kf +Kg.

• Further rank updates ofK have to be considered due to the volume dependence
of the gas/fluid support, see equations (2.1) and (2.41)

• At least within a nonlinear analysis with changing loading the right-hand-side
vector f ex − f el has to be updated because of the volume dependence of the
gas/fluid support: f = f ex − f el − ff − f g.

In section 2 an algorithm for an efficient eigenvalue and eigenmode extraction of
the global system matrix was presented, also considering the dyadic rank updates
due to volume coupling. As already shown these specific rank-updates lead to an
eigenvalue shifting of the old eigenvalues λ to increased values χ.

In this section some numerical examples will be presented in order to discuss the
influence of the fluid-structure-interaction on the stability behavior of thin-walled
shell structures, especially the quantitative shifting of the eigenvalues and the cou-
pling of the eigenmodes due to the volume dependence. The first examples will deal
with fairly stiff structures under several loading conditions. Afterwards the inflation
and hydrostatic loading of a rubber dam will serve as an example for soft structures
showing large deformations.

3.1 Fairly stiff structures

This section deals with closed steel cylinders under the following loading conditions:

• empty cylinder

• gas loaded cylinder

• partially fluid filled cylinder
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• partially fluid and gas filled cylinder

• completely fluid filled cylinder

As in the previous section in a first phase the internal fluid/gas support conditions
are applied quasi statically and afterwards the axial loading – directly imposed on
the upper cap – is steadily increased until the first eigenvalue equals zero and thus
the critical buckling load is reached. The steel cylinder features a height of h = 40 m,
a radius of r = 20 m and a thickness ratio of r/t = 1000. The upper and lower caps
are connected to the cylinder with a Navier support and modeled as nearly rigid
bodies, to prevent the cap from buckling before the global buckling state is reached.
In order to cover also unsymmetric buckling modes half of the cylinder instead of a
quarter is used for the computation. For the discretization about 1400 linear solid
shell [10] elements with ANS/EAS enhancements are taken. Table 1 provides an
overview over all simulations:

Starting with the empty cylinder under axial loading – load case a) – a critical
buckling load of Fcrit = 420 MN is achieved. Further on, the typical buckling mode
with a high number of buckling waves along the lower boundary can be observed.

For a gas filled cylinder with an internal gas pressure of pkg = 1 bar – load case b)
– the buckling load is increased by a factor of 1.71 compared to the empty cylinder.
The buckling mode shows less buckling waves as in the first case, but they are still
concentrated along the lower boundary, see Table 1. Neglecting the volume depen-
dence of the right-hand-side vector (pressure increase due to structural deformation:
∆pkg = 0.2%) only slightly affects the critical buckling load. In Fig. 3.1 this corre-
lation between the volume change due to deformation and the internal gas pressure
– performed via the adiabatic state equation – is depicted.

The partially fluid filled cylinder with a maximum pressure amplitude of pmax =
3.6 bar at the bottom – load case c) – has a critical buckling load of 600 MN , which
is about a factor 1.44 higher as for the empty cylinder. However, although the pres-
sure amplitude is much higher in this case as for the gas filled cylinder, the buckling
load is still 16% lower. This is due to the fact that the hydrostatic distribution is
linear in contrast to the constant gas pressure distribution and only affects elements
below a water level of xo = 36 m. Further for the open cylinder a consideration of
the volume dependence neither for the stiffness matrix nor for the right-hand-side
vector leads to remarkable differences in the buckling load and the buckling mode.
The buckling waves concentrate along the upper boundary, where the stiffening cir-
cumferential stresses show the lowest values.

Starting with an initial gas pressure of pkg = 20 mbar and slowly increasing the
interior water level (and thus decreasing the gas volume) to xo = 39 m results for
the partially gas and fluid filled cylinder – load case d) – in a critical load,
which is about a factor of 2.06 higher as for the empty cylinder. The maximum
pressure amplitude at the end of the filling phase is pmax = 5.6 bar. Neglecting the
volume dependence of the right-hand-side during the filling phase would only result
in a maximum pressure amplitude of pmax = pkg + ρgxo ≈ 3.9 bar and thus leads
to a considerably lower estimate of the buckling load. The structural displacements
caused by the axial loading lead to a further pressure increase of 0.3 bar. Hence,
beginning the analysis directly (without simulating the filling process) with an al-
ready filled cylinder and with a comparable pressure amplitude of pmax = 5.6 bar
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would only slightly affect the critical buckling load. Due to the relatively high in-
ternal pressure the cylinder behaves almost as a rigid body and shows a kind of
beam-like shear buckling in combination with an elephant foot buckling along the
lower boundary.

The last case is a completely fluid filled cylinder under axial loading – load
case e). In comparison with the empty cylinder the buckling load Fcrit of the fluid
filled cylinder is about a factor 2.17 higher. The buckling mode clearly shows high
frequency buckling waves along the upper edge and an elephant-foot type buckling
wave along the lower boundary. A surprising fact is that although the almost same
pressure amplitude and pressure distribution as in the case of the partially fluid
and gas filled cylinder are acting, the buckling modes are different. But looking at

the higher eigenvalues shows that in the critical buckling state the 2nd and 3rd

eigenvalue (which corresponds to the beam-like shear buckling mode similar to the
gas+fluid filled cylinder) are also very close to zero. Thus already a slight change in
the pressure amplitude might have led to the same beam-like shear buckling mode
as in the previous example. The axial loading, starting at load step 20 (current over-
pressure amplitude of pmax = 4.0 bar), leads to a slight fluid volume compression of
about 0.04%. In Fig. 3.2 the relation between volume change and density change is
depicted. Despite the fact that this volume change is relatively small, it leads to very
high internal pressure if the bulk modulus of the fluid is chosen to be that of water
with K = 0.5 · 103N/mm2. Fig. 3.3 depicts the development of the compressible

pressure part pkf
t during the loading process. This pressure increase from 3 bar to

5.3 bar (leading to pmax = 6.3 bar) due to structural displacements is responsible
for a buckling load, which is about 32% higher compared to a computation of Fcrit

neglecting the volume dependence of the right-hand-side.

Load case pmax ∆p Buckling mode Remarks

• Fcrit = 420MN
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✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

σ

pmax

b)
• buckling mode

1.0 bar 0.2 bar with less waves

• small differences in

Fcrit if RHS 6= f(∆v)

(To be continued on next page)
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• Fcrit/F empty
crit = 1.44

� � � � � � � �
� � � � � � � �
� � � � � � � �

✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✂ ✂✄ ✄

σ
g

x

pmax

c)
• buckling starts

3.6 bar 0 bar at upper boundary

• high number

of buckling waves

• Fcrit/F empty
crit = 2.06

☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎

✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✝ ✝✞ ✞

σ
g

x

pmax

d)
• beam-like shear buck-

5.6bar 0.3 bar ling and elephant foot

buckling

• -30% difference in

Fcrit if RHS 6= f(∆v)

(if filling process is considered)

• Fcrit/F empty
crit = 2.17

✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟

✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠✡ ✡☛ ☛

σ
g

x

pmax

e)
• buckling along upper edge

4.0 bar 2.3 bar and elephant foot

buckling along lower edge

• -32% difference in

Fcrit if RHS 6= f(∆v)

Table 3.1: Stability analyses of closed cylinder under axial loading with different internal
pressure configurations

Discussion

The previous examples showed that the internal gas/fluid pressures lead to high
circumferential stresses. This hydrostatic pretensioning of the cylinders dominates
the solution and therefore leads to considerably higher buckling loads in compari-
son to the empty cylinder. Depending on the pressure amplitude and the pressure
distribution (constant or linear) the buckling modes also differ considerably.

But as already mentioned, in the cases of the steel cylinders considering the left-
hand-side parts (stiffness matrix terms) of the volume coupling both in the equilib-
rium iterations and in the stability computation did not affect the solution to a high
degree. Inspecting the modal factor matrix Ξ makes clear that there is almost no
coupling between the old eigenvectors (computed without rank-update) and the new
eigenvectors, because it is almost identical to the identity matrix I. Thus for fairly
stiff structures the rank-updates of the left-hand-side are negligible. On the other
hand the examples showed that, although the volume changes were small, neglect-
ing also the volume dependence of the right-hand-side vector resulted in different
buckling loads for the same load case. Therefore at least the right-hand-side should
be updated with the volume dependent information to achieve realistic results.
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Fig. 3.1: Distribution of inner state variables during complete loading process
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Fig. 3.2: Distribution of inner state variables during loading process

3.2 Soft structures

After investigating fairly stiff structures the effect of the volume dependence on the
eigenvalues and eigenmodes of the global system matrix will now be investigated for
soft structures. The inflation and hydrostatic loading of a rubber dam will serve as
a real world example for a multi chamber system with varying loading conditions;
hydrodynamic effects will not be considered in these examples. For a discussion of
the general application of such dams is referred to [7]. The rubber dam consists of two
fiber reinforced membrane parts (thickness t = 30 mm, width w = 3.20 m, length
l = 19 m, Young’s modulus E = 60 N/mm2, Poisson ratio ν = 0.4), which are hot
vulcanized along one edge resulting in the typical deflection fin, which later is helpful
to reduce vibrations. Along the other edge the two membrane layers are clamped
and anchored to the ground. The most important task of such controlled dams is
the adjustment of the water retention level resp. the dam height, which allows to
take control of the discharge. In the case of inflatable dams the dam height h can
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Fig. 3.3: Development of pressure pkf due to volume compression during loading process

be simply regulated by the internal gas pressure. Characteristic for gas filled rubber
dams is a typical buckling mode, the so-called V-notch (see Fig. 3.5a), which already
appears at relatively low head water levels, depending on the bending stiffness of
the dam membrane and the incident flow. The computation is performed in several
steps: First the membrane structure is deployed by increasing the internal pressure.
Afterwards the head water levels will be raised. In this special load case with head
water loading and an interior gas filling a 2-chamber system is the appropriate
analysis model. Although the head water level is not affected by the deformation of
the dam, (resulting only in a rank-1-update of the stiffness matrix due to volume
dependence of the gas filling), the normal change parts and the residual vectors for
all 2 chambers have to be considered. For reasons of symmetry only half of the dam
model is discretized using about 1300 solid-shell elements [10] with linear shape
functions and ANS/EAS enhancements for the kinematics. The dam is clamped
along one edge; along the bottom a pure penalty contact model is chosen. One end of
the dam is left free while the other end features the symmetry boundary conditions.
After the inflation process of the dam is finished, its free end is now fixed by a penalty
contact in horizontal direction to simulate the real world boundary condition, see
Fig. 3.5a). Fig. 3.4 presents some information on the equilibrium iterations necessary
for a load step together with the maximum value of the circumferential strain εϕϕ.
While in the first load step the contact formulation and the volume change of the
dam body cause a high number of iterations, the perfect matching of the development
of the strains and the iteration number demonstrate that in the following load steps
the inner forces dominate the number of equilibrium iterations. With increasing
internal pressure the inner forces are also steadily increased leading in combination
with large volume changes and large shell rotations to a high number of iterations
during the inflation process. From load step 25 on the rise of the head water level
slightly reduces the inner forces again and thus the number of equilibrium iterations
decreases too. At the end the heavy water loading becomes too high and forces the
dam to perform a kind of rolling motion leading again to large strains and thus high
iteration numbers. In Fig. 3.5 the typical V-notch buckling mode of a real world dam
under hydrostatic loading is depicted in comparison to the eigenmode computed with
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Fig. 3.5: a) Real world buckling mode and b) FE eigenmode of inflatable dam under hydro-
static loading

the presented FE algorithm. From the numerical side the more interesting fact is
the population of the modal factor matrix Ξ, which is shown in Fig. 3.6 for several
load steps. In section 3.1 for fairly stiff structures the modal factor matrix was
almost the identity matrix. For soft structures the modal factor matrices in Fig.
3.6 show a clear coupling between the eigenmodes. In the first few load steps, when
the system is still low pressurized and almost without any stiffness the coupling is
most visible. A strong coupling between the last four eigenmodes can be observed in
load step 5 (participation between 10% and 100%). For the almost fully pressurized
dam (load steps 15-20) the high internal forces dominate the global stiffness matrix,
resulting in a weakly populated modal factor matrix and thus a decoupling of the
eigenmodes. The hydrostatic (load steps 30-34) loading activates the coupling again,
with participation values of the eigenmodes between 1% and 10%. In Fig. 3.7 the
eigenvalue shifting due to volume coupling – calculated by the ratio of the shifted
eigenvalue χ1 to the original eigenvalue λ1 – during the loading process is depicted.
Similar to the coupling of the eigenmodes for a low pressurized very soft structure
(load steps 1-5) the effect of the volume dependence (resp. the dyadic rank-update
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Fig. 3.6: Rubber dam: Population of modal factor matrix Ξ during loading process

structural stiffness matrix A = K+aaT ) becomes dominant: The first eigenvalue χ1

of A is about 35% higher compared to the eigenvalue λ1 of K. For higher pressures
the increasing internal forces then prevail the stiffening effect of the rank-update on
the eigenvalues, visible in the constant relatively low rate for the eigenvalue change.
Only in the last load steps when the water level equals the dam height, changes up
to 5% can be observed again.

4 Conclusions

This contribution contains investigations of the influence of gas or fluid support
on the eigenvalues and eigenmodes of the stiffness matrix of shell or membrane-
like structures undergoing large displacements. The derived equations consider the
change of the inner state variables (e.g. the gas pressure pkg) during the deformation
process depending on volumetric effects as e.g. a closed containment. This leads to a
stiffness matrix, with additional dyadic updates, which allowed the derivation of an
efficient algorithm to compute the eigenvalues and eigenmodes just by shifting the
old eigenvalues. The effect of the gas or fluid support is reflected in the coordinates
of the modal factor matrix: For a nearly unaffected system (as in the case of the gas
supported steel cylinder) it has approximately the shape of the identity matrix. In
the case of the soft membrane structure, it is at least in the low pressurized state
and the final inflated and hydrostatic loaded state fully occupied by non-zero entries,
thus leading to slightly different eigenmodes compared to the original modes.
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The examples showed that for a modal analysis in the case of soft, low pressurized
structures a consideration of the volume dependence of the gas/fluid support is
important, because here the structure is gaining a certain amount of additional
stiffness. For stiffer structures however, the effect of the volume dependence on the
eigenvalues and eigenmodes is negligible and therefore the modal analysis can be
performed with conventional algorithms neglecting the rank-updates. Nevertheless
the example with the partially gas+fluid filled cylinder and the completely fluid
filled cylinder showed that at least for the computation of the right-hand-side the
volume dependence should be taken into account.

5 Appendix – Nomenclature and formulae

For a detailed description see also [9].

• g, f Indices denoting the area of structural surface wetted
with gas resp. fluid

• t Index denoting the current state t in the linearization

• ξ, η and ξ̄, η̄ Co- and contravariant coordinates

• eξ ⊗ eη and eξ̄ ⊗ eη̄ Co- and contravariant base systems

• N(ξ, η) Isoparametric shape functions of finite element
surfaces

• g Acceleration of gravity

• n = eξ × eη Non-normalized normal vector on surface

• ρ Fluid density

• pkg, pkf Gas and fluid pressure due to volume compression

• px = ρg · x Hydrostatic pressure at structural surface point x

• pc = ρg · c Hydrostatic pressure in the center of gravity c
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of the fluid

• po = ρg · xo Hydrostatic pressure resulting from free fluid surface
level xo

• v̄g, v̄f Gas and fluid volume

• v̄f
0 Initial fluid volume

• Γo Free fluid surface

• α = κpkg/v̄g, β = K/v̄f
0 , γ = ρ|g|/Γo Pressure volume gradients

• ᾱ = α/(α + β), β̄ = β/(α + β) stiffness parameters defining load case (see [9])

• pf =
(

1 − β̄
)

pc −
(

1 − β̄
)

pkf − β̄pkg + β̄po − px Absolute fluid pressure

• pg = ᾱ (pc − po) − (1 − ᾱ) pkg − ᾱpkf Absolute gas pressure

• W ξ̄ = nt ⊗ e
ξ̄ − eξ̄ ⊗ nt , W η̄ = nt ⊗ e

η̄ − eη̄ ⊗ nt

Skew symmetric contravariant tensors

• Load-stiffness matrices due to the change of the normal of the wetted surfaces

- Gas

K
g
elem =

1

2

∫

ηg

∫

ξg
pg

t







N

N ,ξ

N ,η







T 





0 W ξ̄ W η̄

W ξ̄T 0 0

W η̄T 0 0













N

N ,ξ

N ,η






dξdη ,

- Fluid

K
f
elem =

1

2

∫

ηf

∫

ξf
pf

t







N

N ,ξ

N ,η







T 





0 W ξ̄ W η̄

W ξ̄T 0 0

W η̄T 0 0













N

N ,ξ

N ,η






dξdη

−
ρt

2

∫

ηf

∫

ξf
NT

(

n
f
t ⊗ g + g ⊗nf

t

)

N dξdη ,

• Load vectors due to gas and fluid pressure loading

f
g
elem =

∫

ηg

∫

ξg

[

ᾱ (pc
t − po

t ) − (1 − ᾱ)pkg
t − ᾱpkf

t

]

NTn
g
t dξdη

f
f
elem =

∫

ηf

∫

ξf

[

(

1 − β̄
)

pc
t − (1 − β̄)pkf

t − β̄pkg
t + β̄po

t − px
t

]

NTn
f
t dξdη

• Coupling vectors for gas and fluid parts

aelem =

∫

ηg

∫

ξg
NTn

g
t dξdη , belem =

∫

ηf

∫

ξf
NTn

f
t dξdη
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