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On the influence of interface 
charging dynamics and stressing 
conditions in strained silicon 
devices
Irene Olivares, Todora Angelova & Pablo Sanchis  

The performance of strained silicon devices based on the deposition of a top silicon nitride layer with 
high stress have been thoroughly analyzed by means of simulations and experimental results. Results 
clearly indicate that the electro-optic static response is basically governed by carrier effects. A first 
evidence is the appearance of a variable optical absorption with the applied voltage that should not 
occur in case of having a purely electro-optic Pockels effect. However, hysteresis and saturation effects 
are also observed. We demonstrate that such effects are mainly due to the carrier trapping dynamics at 
the interface between the silicon and the silicon nitride and their influence on the silicon nitride charge. 
This theory is further confirmed by analyzing identical devices but with the silicon nitride cladding layer 
optimized to have intrinsic stresses of opposite sign and magnitude. The latter is achieved by a post 
annealing process which produces a defect healing and consequently a reduction of the silicon nitride 
charge. Raman measurements are also carried out to confirm the obtained results.

�e silicon platform has the unique capability for enabling a monolithic integration of photonic and electronic 
circuits with a low cost standardized fabrication process. However, the centrosymmetric crystalline structure 
of silicon prevents the development of key photonic components such as electro-optic modulators due to the 
absence of the second-order non linearity. �e main approach to overcome the intrinsic limitations of silicon has 
relayed on the plasma dispersion e�ect, which is currently the most e�ective mechanism for changing the silicon 
refractive index at a fast rate1. However, a trade o� between low driving voltages, high bandwidth and low losses 
is usually given in part due to the optical absorption inherent to the plasma dispersion e�ect.

High modulation speeds can be achieved by means of the Pockels e�ect without penalizing insertion losses. 
�erefore, di�erent approaches are being followed for trying to have access to such feature in the silicon platform. 
�e integration on silicon of ferroelectric materials with high Pockels coe�cients, such as LiNbO3

2 or BaTiO3
3, 4 

is currently one of the main approaches. �e use of nonlinear polymers with a high second-order nonlinearity has 
also been proposed5. However, the demonstration of Pockels e�ect in strained silicon by Jacobsen et al.6 opened 
the door to a new route for a CMOS compatible integration of fast and low loss electro-optic modulators at min-
imum complexity and cost. Since then a large number of works have been reported to analyze and optimize the 
Pockels e�ect in strained silicon devices7–18 and values above χ(2) = 100 pm/V have been theoretically proven19. 
In the last years, discrepancies between theoretical and experimental results have made relevant that other e�ects 
could also take place in the measured responses20. Most recently, the in�uence of carrier e�ects have been demon-
strated to play a prominent role in the electro-optic response21–24. High frequency measurements have shown 
a modulation response vanishing for speeds much faster than the e�ective carrier lifetime21. �e free carrier 
distribution inside the silicon waveguide depends on the �xed charge of the cladding layer22. Variations of the 
carrier distribution can a�ect the electric �eld inside the waveguide and therefore the modulation induced by the 
Pockels e�ect. However, an electro-optic response induced by the free carrier distribution has been demonstrated 
by using cladding materials with di�erent and opposite �xed charge concentrations and interface traps densities23. 
Furthermore, the injection of free carriers in the silicon waveguide in response to an applied electric �eld has also 
been proposed as a possible mechanism responsible of the electro-optic response24.
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In this work, the in�uence of interface charging dynamics and stressing conditions on the electro-optic 
response of strained silicon devices is discussed. �e paper has been divided in two main parts. In the �rst part, 
the impact of the charge interchange at the interface and the silicon nitride charge are analyzed by means of simu-
lations and experimental results. Secondly, the in�uence of stress is analyzed not only as a function of magnitude 
but also for di�erent types of stress by fabricating samples with a silicon nitride layer with both compressive and 
tensile intrinsic stress. Furthermore, an additional annealing step, which changes the intrinsic stress of the silicon 
nitride, is carried out to further investigate its in�uence. Results provide an additional con�rmation of the strong 
contribution of carrier e�ects taking place in the electro-optic response.

Results and Discussion
An asymmetric Mach Zehnder interferometer (MZI) with a length di�erence between arms of 180 µm has been 
used to analyze the electro-optic performance. �e waveguide structure has been designed to maximize the strain 
inside the core taking into account a SOI substrate with a top silicon layer of 220 nm thickness25. A full etch depth 
and a waveguide width of 400 nm have been chosen to increase the stress at the walls. Furthermore, the thickness 
of the silicon nitride layer has been optimized to 700 nm. Alumnium electrodes have been placed on top of the 
silicon nitride to achieve an active length of 1 mm. A sketch of the waveguide structure is shown in Fig. 1(a). �e 
silicon nitride has been deposited by means of PECVD and process parameters have been changed to control the 
intrinsic �lm stress. A compressive stress as high as −2 GPa and a maximum tensile stress of 419 MPa have been 
achieved by varying temperature and the concentration ratio between silane and ammonia. �erefore, two iden-
tical samples but with opposite silicon nitride intrinsic stress have been fabricated.

Influence of free carriers and interface traps. �e sample with tensile stress has been �rstly charac-
terized. �e change of the e�ective refractive index as a function of the applied voltage is shown in Fig. 1(b). 
It can be seen that there is hysteresis and a saturation e�ect. �e saturation can be observed starting at around 
−30 V to higher negative values, where the index change remains rather constant despite the increase in voltage. 
Simulations have been carried out to analyze the potential impact of the free carriers redistribution inside the 
slightly p-doped silicon waveguide on the measured response.

�e simulated e�ective index change as a function of the applied voltage is shown in Fig. 1(c) for di�erent 
�xed charge concentrations at the silicon-silicon nitride interface. As it was pointed out by Azadeh et al.22, a �xed 
charge stored in the silicon nitride �lm causes a displacement of the index curve, which may give rise to a linear 
response in a certain range of applied voltages. Figure 1(d) shows the voltage at which the index curve is centered 
depending on the �xed charge. Typical values reported for silicon nitride are on the order of 1–5·1012 cm−2 so that 
simulations have been carried out in the range [−1013, 1013] cm−2 to take into account slightly high densities. �e 
linear relationship of the experimental response with the applied voltage would be in agreement with simulations 
in case that the positive �xed charge stored within the silicon nitride were around 1013 cm−2. However, a discrep-
ancy of around one order of magnitude is found between the simulated and the experimental e�ective refractive 
index change. �e maximum e�ective index change in simulations is in the order of 10−3 while experimentally 
only reaches 10−4. �e origin of this discrepancy is attributed to a charge interchange at the interface between 
silicon and silicon nitride, which would also explain the presence of the hysteresis and saturation e�ects.
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Figure 1. Free carrier simulation results and experimental e�ective index change. (a) Sketch of the simulated 
device, (b) experimental e�ective index change for the tensile stress sample, (c) e�ective index change obtained 
by simulations for di�erent �xed charge concentrations and (d) voltage at which the index curve is centered as a 
function of the �xed charge.
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�e trapping properties of silicon nitride �lms have been extensively studied in the microelectronics industry. 
�e material is known due to its high defect concentration, positive �xed charge and ability to trap carriers from 
the silicon substrate in MOSFET devices26, 27. Although charge in the bulk or away from the interface is actually 
�xed, there is thought to be a part of it that can be interchanged between silicon and silicon nitride. �e amount 
of �xed charge is usually studied using metal-insulator-semiconductor (MIS) structures. �e charge of defects 
and dangling bonds can be altered at the interface or near the interface by applying a bias, causing the trapping 
and detrapping of carriers and resulting in a varying �xed charge, Q�xed

28, and hysteresis in the C-V measurement. 
Furthermore, the creation of new interface traps is well documented due to processes such as carrier injection 
into the insulator �lm (HCI) and bias temperature instability (BTI). When high voltages are applied to the gate, 
high carrier concentrations are accumulated next to the interface and Si-H, N-H bonds can be broken mediated 
by a carrier trapping mechanism, giving rise to a great amount of new interface traps29–31. Both are slow processes 
involving the release and di�usion of hydrogen at the interface and usually take place in a range from less than 
seconds to minutes and hours. Since our measurement time is around two minutes for each measured voltage, 
those processes can be taking place when we perform the hysteresis cycle. In order to further investigate if HCI or 
BTI processes are present in our devices and, therefore, new interface traps are being created, soaking measure-
ments have been carried out. Experiments performed in MIS structures usually consist in a constant gate applied 
voltage during a large period of time and a relax phase at 0 V during a similar range of time. �e same procedure 
has been applied to our devices, maintaining a voltage of −120 V during one hour and monitoring the resonance 
shi� of the MZI response. �e measured variation of the e�ective index with time is depicted in Fig. 2(a). It can 
be seen that the index change decays with time at almost half of its initial value. �e rate at which traps are being 
created is usually characterized with a time dependency in the form

∆ =N At (1)it
n

where n is typically in the range of 0.2–0.3 or around 0.5 respectively for negative BTI (NBTI) and HCI29–31. �e 
e�ective index variation when the high voltage is applied has been �tted to an analogous time dependency to 
con�rm its presence. �e result is depicted in Fig. 2(b), showing an almost perfect �t (R2 = 0.992) and obtaining a 
value of n = 0.2197 for the exponent, which would agree quite well with the theory of a NBTI process. �e behav-
ior of the optical absorption has also been characterized by means of a straight waveguide fabricated in the same 
sample. An electrode equal to that used on the MZI was located on top of the waveguide and an analogous meas-
urement procedure was carried out. Figure 2(a) shows also the evolution of the absorption with time. Absorption 
values are negative indicating that they are lower compared to the one at 0 V and increase with time until the 
voltage of −120 V is no longer applied. �is behavior is also in agreement with the creation of new interface traps. 
�e trapping of more carriers gradually increases the silicon nitride �xed charge and consequently the absorption 
becomes higher with time while the e�ective index change decays.

�e in�uence of interface traps on the electro-optic response has been analyzed by means of simulations. A 
continuous interface trap density distribution in energy is usually found within the silicon band gap, which is 
commonly characterized by means of deep level transient spectroscopy (DLTS) using MIS structures. Values 
around 1–5·1011 cm−2/eV are usually obtained at midgap32, 33 but it should be noticed that the minimum interface 
trap density is generally found for stoichiometric or near stoichiometric silicon nitride �lms33. However, our 
samples have a nitride to silicon ratio [N]/[Si] of 1.5 and 1.7 for the tensile and compressive samples, respectively, 
far from the stoichiometric one (1.33). �erefore, the trap density could be higher. Furthermore, an increase of 
several orders of magnitude of interface traps33 and stored silicon nitride charge28 are measured when high volt-
ages are applied in MIS structures, reaching charge densities even above 1·1013 cm−2. Taking that into account, 
the interface trap parameters shown in Table 1, with typical capture cross sections reported in the literature32, 
and a �xed charge of 8·1012 cm−2 were considered in the simulations. In such a way, simulated values very close 
to those experimentally observed have been obtained, as it can be seen in Fig. 3. Both, the experimental and sim-
ulated e�ective index change (Fig. 3(a)) and optical absorption (Fig. 3(b)) are in the same order of magnitude. 
Furthermore, although it was not possible to include the time dependency and so the hysteresis e�ect is not 

(a) (b)

Figure 2. Experimental e�ective index change and absorption time evolution. (a) Time evolution of the 
absorption and e�ective index change for the soaking experiments. At the high voltage phase, shown in a 
dashed square, voltage was kept constant at −120 V during the �rst 60 minutes. �e recovery phase at 0 V was 
monitored during the subsequent hour. (b) E�ective index �t to the theoretical time dependency of Eq. (1) for 
the high voltage phase.



www.nature.com/scientificreports/

4SCIENTIFIC REPORTS | 7: 7241  | DOI:10.1038/s41598-017-05067-9

present in the simulations, the variation with the applied voltage is also in good agreement, thus supporting the 
in�uence and presence of interface states at the silicon-silicon nitride interface. Due to the fact that hysteresis has 
not been included, the only part of the experimental curve that could be simulated is the continuous one from 
120 V to −120 V. �erefore, in Fig. 3, the e�ective index change and absorption are normalized to the correspond-
ing values at 0 V of this part of the hysteresis cycle.

Annealing study. In order to further investigate how a change in stress a�ects the electro-optic performance, 
a subsequent annealing step was applied to the samples with both compressive and tensile stress making possible 
to study the same structures with di�erent stress magnitudes. Samples were heated at 500 °C during 30 min in 
atmospheric environment. �e measured intrinsic stress a�er annealing was −1.25 GPa and 530 MPa for the 
compressive and tensile samples respectively. Simulations have been carried out to evaluate the induced strain 
inside the waveguide structure. Figure 4(a) shows the εyy strain component for the compressive sample before 
annealing and Fig. 4(b) a�er annealing. Analogously, Fig. 4(c) and (d) show the results for the tensile sample 
before and a�er annealing respectively. Pockels e�ect should arise as a result of the silicon lattice asymmetric 
deformation. �erefore, as a way of evaluating the impact of the change in stress, the overlap between the strain 
gradient and the TE fundamental mode has been calculated using the following �gure of merit13, 25:
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where E refers to the electric �eld of the optical mode and εxx, εyy are the main strain components. �e annealing 
process has opposite e�ects for the tensile and compressive cases. While in the �rst one the stress is clearly 
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changes should be re�ected in the electro-optic performance. �e e�ective index change as a function of the 
applied voltage is shown in Fig. 5(a) for both compressive and tensile stress samples before the annealing process. 
It can be observed that despite the large di�erence not only in the sign of the applied stress but also in magnitude, 
a similar e�ective index change is found on the order of 10−4. Furthermore, although the compressive stress is 
around �ve times more intense than the tensile stress, = .

−

4 5
FOM GPa

FOM MPa

( 2 )

(419 )
, the e�ective index change is even 

slightly higher for the latter. �is would either indicate that Pockels e�ect does not play a determinant role on the 
results or, on the other hand, that tensile stress would be a much more e�cient way to enhance the Pockels e�ect.

As it was previously shown, there is a pre-existing positive �xed charge near the interface between nitride 
and silicon, which arise primarily from nitride and silicon dangling bonds (the so called N and K centers). �e 
amount of this �xed charge and also the amount of interface traps can be strongly a�ected during annealing pro-
cesses. Di�erent studies have reported the passivation/depassivation of bulk defects due to hydrogen di�usion 
into the silicon nitride �lms a�er a heating process34, 35. Dangling bonds can be neutralized either by healing 

Energy level
Density 
(cm−2) σn (cm−2) σp (cm

−2) Energy level
Density 
(cm−2) σn (cm−2) σp (cm

−2)

Etrap − Ev (eV) Donor states Etrap − Ev (eV) Acceptor states

0.6 6·1012 10−18 10−18 0.2 8·1012 10−18 10−18

0.4 7·1012 10−13 10−13 0.4 7·1012 10−13 10−13

0.2 8·1012 10−11 10−11 0.6 6·1012 10−11 10−11

Table 1. Values of the interface trap parameters for the acceptor and donor states included in the simulations 
shown in Fig. 3.

)b()a(

Figure 3. Simulation and experimental results comparison. �e simulated (a) refractive index change and (b) 
absorption have been obtained taking into account the interface traps parameters depicted in Table 1.
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Si-N bonds or by an hydrogen atom, which creates new N-H and Si-H bonds and causes the decrease of the �xed 
charge in the �lm. �e opposite, meaning a dehydrogenation of the silicon nitride layer, would lead to an increase 
of dangling bonds if no more Si-N bonds are created instead.

�e strong in�uence of free-carriers is also con�rmed in the electro-optic response measured a�er the anneal-
ing process. �e e�ective index change for the sample with compressive stress (Fig. 5(b)) shows the characteristic 
peak and a completely analogous curve to that obtain in the simulations for lower concentrations of positive �xed 
charge (Fig. 1(c)), which arises during the annealing process. Although the existence of Pockels e�ect cannot be 
completely discarded, the obtained results strongly support that the measured e�ective index change is mainly 
originated due to the free carrier redistribution inside the waveguide. �e evolution of the hydrogen content into 
the silicon nitride �lm during the heating process is found to be di�erent depending on the deposition conditions 
and its composition34, 35. �is is also re�ected in the electro-optic results. While a clear change a�er the annealing 
can be observed in the sample with compressive stress, a linear behaviour is still found for the tensile stressed one 
(Fig. 5(c)), which means a lack of defect healing during the annealing in this case. In order to con�rm the rela-
tionship between the reduction of �xed charge and defect passivation, Raman measurements have been carried 
out for both samples before and a�er the annealing. �e spectral positions of the Raman peaks correspond to 
the vibrational frequencies of the molecules in the �lm. Position, area and width give information about atomic 
composition and bond arrangements.

Figure 4. E�ect of the annealing on the strain inside the structures. Simulated εyy strain component for: the 
compressive stress sample (a) before and (b) a�er the annealing process, tensile stress sample (c) before and 
(d) a�er the annealing process. �e annealing was performed at 500 °C during 30 minutes in atmospheric 
environment.
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Figure 5. Experimental results for the compressive and tensile stress samples under di�erent annealing and 
time measurement conditions. (a) Experimental refractive index change for the compressive and tensile samples 
before annealing. Comparison of results before and a�er the annealing for (b) the compressive and (c) tensile 
samples. (d) Results for the sample with tensile stress a�er annealing as a function of di�erent times steps per 
each voltage measurement. �e annealing process was performed at 500 °C during 30 minutes in atmospheric 
environment.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS | 7: 7241  | DOI:10.1038/s41598-017-05067-9

Raman results are depicted in Fig. 6 where the peaks related to the Si-H and Si-N bonds have been zoomed for 
clarity. Peaks have been identi�ed by means of a Lorentzian �tting. Area and peak position are shown in Table 2. 
Results show a great increase in the area of the Si-H and Si-N peaks for the compressive sample, especially the area 
of the Si-H(N3) bond has increased ~24 times, which indicates a �lm hydrogenation and experimentally con�rms 
the initial hypothesis of a positive �xed charge decrease due to the heating process.

On the other hand, the reason why it was not possible to observe the peak in the tensile sample (Fig. 5(c)) is 
also con�rmed by a general slight decrease in the hydrogen content of the �lm. It is possible to see in Table 2 that 
the area of the Si-N and Si-H bonds has remained almost constant or even decrease (with the exception of a small 
increase in Si-H(Nx) bonds), which again supports the initial hypothesis. Finally, the order of magnitude of the 
e�ective index change remains the same a�er the annealing step for both samples although measurements show a 
di�erence in stress due to the annealing of −40% and +26% respectively for the compressive and tensile samples. 
We attribute the change in the hysteresis e�ect found for both samples before and a�er the annealing (Fig. 5(b,c)) 
to be related to the dynamics at the interface. A relationship between bulk and interface passivation is found in 
silicon nitride �lms35. In our results, it seems to be a correlation between higher hydrogenation/passivation and 
a stronger hysteresis. �e time dependency found for the interface trap creation is quite slow and, therefore, an 
increase in the hydrogen bonds at this interface would slow the process of interface trap creation compared to a 
scenario where most of the dangling bonds are already created, giving rise to an increased hysteresis e�ect. �is is 
what we observe for the compressive sample a�er the annealing while the opposite is obtained for the tensile sam-
ple, in agreement with the reduction of H revealed by Raman results. �e in�uence of interface trap dynamics was 

(a) (b) (c)

(d) (e) (f )

Figure 6. Raman spectra. Top Figures show Raman spectra obtained for the compressive stress sample, where 
(a) shows the complete Raman spectra and Figures (b and c) show a zoom on the range where peaks related 
to Si-H and Si-N bonds are located respectively. Analogously, (d) shows the complete Raman spectra for the 
419 MPa sample and Figures (e and f) show a zoom on Si-H, Si-N related peaks.

Before annealing A�er annealing

Vibration type
Centre 
(cm−1)

Area 
(105 cm−2)

Centre 
(cm−1)

Area 
(105 cm−2)

AAfter

ABefore

Compressive

Si-H(N2Si) 2205.1 1.61 2188.6 2.81 1.74

Si-H(N3) 2321.1 0.157 2301.1 3.75 23.9

Si-N bending 972.1 18.6 972.4 34.2 1.84

Si-N stretching 1 942.3 6.59 942.5 12.2 1.85

Si-N streshing 2 822.9 4.59 822.5 10.1 2.20

Tensile

Si-H(N2Si) 2198.9 26.7 2198.8 25.8 0.97

Si-H(Nx) 2625.2 16.5 2620.5 25.1 1.52

Si-N bending 970.4 30.1 971.2 22.1 0.74

Si-N stretching 1 941.3 9.80 941.9 7.89 0.80

Si-N streching 2 822.7 7.64 823.0 6.39 0.84

Table 2. Lorentzian �tting results for the compressive and tensile stress samples before and a�er the annealing 
process.
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also analyzed by measuring the electro-optical response for di�erent time steps. Figure 5(d) shows the e�ective 
index change for the tensile sample a�er anneling taking into account a time step of 1, 3.5 and 10 minutes between 
each voltage measurement. It can also be seen that longer time steps give rise to smaller e�ective index changes 
due to the higher amount of interface traps created.

Conclusion
In summary, the obtained results con�rm that carrier e�ects can play a prominent role in the performance of 
strained silicon devices. We have demonstrated that the trapping properties at the interface between the silicon 
and silicon nitride have a strong in�uence on the electro-optic static response. �e role played by the charge inter-
change with the silicon nitride �lm has also been recently suggested24. In that case, the transfer of positive charges 
from the silicon nitride �lm to the silicon waveguide was proposed to be the main origin of the electro-optic 
response. In our case, however, experimental results supported by simulations indicate that the silicon nitride 
charge is a�ected by the trapping dynamics at the interface resulting in a hysteretic response and the possibility of 
having saturation e�ects. In addition, the impact of the magnitude and nature of the applied stress has also been 
analyzed. Identical samples but with opposite tensile and compressive intrinsic stresses have been characterized. 
A further annealing was also carried out to change the magnitude of the applied stress. However, in all cases, we 
did not see any correlation between the electro-optic response and the applied stress that precludes a signi�cant 
contribution of the Pockels e�ect. By contrary, the measured electro-optic response was consistent with variations 
of the silicon nitride �xed charge and the interface trapping properties, which was also con�rmed by Raman 
measurements.

Methods
Simulations. Silvaco software was used to simulate the device performance. The influence of interface 
traps was simulated by using the Atlas package. Fermi-Dirac statistics and a concentration-dependent lifetime 
Shockley-Read-Hall generation-recombination model were used. �e fundamental mode and associated e�ec-
tive index change and absorption losses due to free carriers was calculated by the Laser module. Stress distribu-
tion inside the structures was obtained using the Athena package specifying the silicon nitride intrinsic stresses 
experimentally measured. �e strain and the �gure of merit of eq. (2) was calculated with Matlab from the stress 
components and the electric �eld of the mode obtained with Silvaco.

Fabrication. Devices were patterned on a silicon-on-insulator (SOI) wafer with a 220 nm top silicon layer 
and with a p-doping silicon concentration of 1015 cm−3 and a buried oxide of 2 µm. �e deposition of the silicon 
nitride �lms was performed by using a parallel-plate PECVD (Applied Materials Centura 5200) at 400 °C with a 
13.56 MHz RF generator and NH3 and SiH4 as a gas phase precursors. Samples were annealed at 500 °C on a tubu-
lar furnace (Carbolite) during 30 minutes in atmospheric environment.

Characterization. �e silicon nitride intrinsic stress was characterized with a thin-�lm stress measurement 
instrument (Tencor model FLX- 5400) by measuring the wafer curvature before and a�er the annealing. Raman 
spectra were obtained with a confocal Raman spectroscopy equipment (Witec Alpha300RA model) with an 
excitation laser working at 532 nm and a spot size of 1 µm. Scans were performed with a laser power of 39 mW 
and two accumulations of 30 seconds.
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