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In active scalar polarimetric imaging systems, the illumination and analysis polarization states are de-
grees of freedom that can be used to maximize the performance. These optimal states depend on the
statistics of the noise that perturbs image acquisition. We investigate the problem of optimization of
discrimination ability (contrast) of such imagers in the presence of three different types of noise statistics
frequently encountered in optical images (Gaussian, Poisson, and Gamma). To compare these different
situations within a common theoretical framework, we use the Bhattacharyya distance and the Fisher
ratio as measures of contrast. We show that the optimal states depend on a trade-off between the target/
background intensity difference and the average intensity in the acquired image, and that this trade-off
depends on the noise statistics. On a few examples, we show that the gain in contrast obtained by im-
plementing the states adapted to the noise statistics actually present in the image can be significant.

© 2012 Optical Society of America
OCIS codes:  260.5430, 030.4280.

1. Introduction

Polarimetric images are obtained by measuring some
characteristics of the polarization state of the light
scattered by a scene. They can reveal contrasts that
do not appear in classical intensity images and have
found more and more applications in remote sensing,
biomedical imaging, and industrial control [1-3].
The technologies for developing such imagers are
now mature and it is, therefore, possible to address
their optimization. The criterion for this optimiza-
tion depends on the information that is expected
from the images. In this paper, we shall address the
problem of discrimination between two regions of a
scene that have different polarimetric properties,
by using imaging systems in which the illumination
and analysis states are controlled. One important
domain of application of these results is target
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detection. This issue has first been addressed in
the radar community [4—6]. Because of the specific
characteristics of radar systems, speckle noise was
implicitly assumed for modeling image variability.
More recently, optimization of the contrast in optical
polarimetric systems has been addressed [7-9]. In
particular, it has been shown that, in the presence
of additive noise, the optimal discrimination is
reached by performing a single acquisition of an in-
tensity image with optimized illumination and anal-
ysis states [10]. Furthermore, optimization in the
presence of spatial variations in the scene has been
addressed [11].

The purpose of the current paper is to present and
compare contrast optimization methods in images
perturbed by the three types of noise that are most
frequently encountered in optics: additive Gaussian
noise, representative of sensor noise, Poisson shot
noise that results from the quantum fluctuations
of the useful or ambient light flux, and Gamma



distributed speckle noise, encountered when illumi-
nating the scene with coherent light. To include them
in a common framework, we use the Bhattacharyya
distance as a measure of the contrast [12], and the
Fisher ratio as an easy-to-interpret approximation.
This framework will have the further advantage that
systems perturbed with different types of noise can
be compared. To the best of our knowledge, optimi-
zation of the contrast in the presence of dominant
Poisson shot noise and comparison of the optimal
states in the presence of these three types of noise
within a common framework have not yet been
addressed. The structure of the paper is as follows.
Section 2 is devoted to the derivation of the expres-
sions of the contrast with the Bhattacharyya dis-
tance and the Fisher ratio in the presence of the
three different considered types of noise, and to their
comparison and physical interpretation. Two ex-
amples of application of these results are given
and discussed in Section 3.

2. Polarimetric Contrast in the Presence of Different
Types of Noise

We consider active polarimetric imaging systems
that illuminate the scene with light whose polariza-
tion state is defined by a Stokes vector S and is pro-
duced by a polarization state generator (PSG) (see
Fig. 1). We use the Mueller formalism to represent
the polarimetric properties of the scene, which is as-
sumed to be composed of two regions: a target char-
acterized by a Mueller matrix M* and a background
characterized by a Mueller matrix M?. The Stokes
vector of the light scattered by the region a (or b)
is given by the equation

S, =M*S with u = {a,b}. (1)

The light scattered by the scene is analyzed by a
polarization state analyzer (PSA), which is a general-
ized polarizer whose eigenstate is the Stokes vector
T. The final output is a scalar intensity image,
in which, at each pixel of region a or b, the average
signal measured is

i, = ”—é‘)TTMus, 2)

where u = {a,b} and the superscript T denotes
matrix transposition. In this equation, S and T are
unit intensity, purely polarized Stokes vectors, I,
is a number of photons, and 7 is the conversion effi-
ciency between photons and electrons. It is seen in
Eq. (2) that, although i, is an intensity measure-
ment, its value depends on the polarimetric proper-
ties of the observed regions through their Mueller
matrices M* and on the polarization settings of illu-
mination and analysis through vectors S and T.

We seek to optimize the discrimination between
the target of interest and the background. The de-
grees of freedom available to perform this optimiza-
tion are the polarization states S and T. In our case,
the discrimination ability depends on the statistical
properties of the noise that perturbs the acquisition.
However, it is not easy to determine a numerical cri-
terion that quantifies this discrimination and that
is comparable for different types of noise statistics.
This issue has been addressed, for example, in [12].
It has been shown that, for such real-world discrim-
ination tasks as target detection and object seg-
mentation, the Bhattacharyya distance is a good
candidate, although it is only approximate in gener-
al, and that it is preferable to the Fisher ratio and
Kullback—Leibler divergence.

The Bhattacharyya distance is an asymptotic ex-
ponent on the probability of error in discrimination
problems [13,14]. Let us consider two probability
density functions (pdfs) P%(x) and P?(x). In our case,
these pdfs correspond to the noise statistics of the
pixels in regions a¢ and b. If N denotes the size of
the sample, the probability of error in deciding
whether the observed data has been generated with
P¢(x) and P?(x) behaves as exp[-NB] as N tends to
infinity [14]. Considering our two sets of data defined
by their pdfs P*(x) and P?(x), the Bhattacharyya
distance is defined as

B=-In [/ [Pa(x)Pb(x)]l/zdx} 3)
D

with D as the definition domain of P* and P?. Please
note that the definition in Eq. (3) is valid for contin-
uous random variables defined by probability distri-
bution functions. When dealing with integer-valued

Intensity image |
with high contrast

Fig. 1. (Color online) Principle of active scalar polarimetric imaging. PSG, polarization state generator; PSA, polarization state analyzer.
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random variables, such as the Poisson noise ad-
dressed in this paper, the integral in Eq. (3) has to
be replaced with a discrete sum. The Bhattacharyya
distance is thus a scalar value that quantifies the si-
milarity between the pdf P¢(x) and P?(x). It belongs
to the interval [0; +], is equal to zero when the pdfs
are identical, and infinite when the pdf supports do
not overlap.

Another possible way of quantifying discrimina-
tion is the Fisher ratio, expressed as follows:

)2
— (ma mb) , (4)
var, + vary
Where m, = [pxP*(x)dx and var, = fD x2P% (x)dx—

m2, with u = {a,b}. The Fisher ratio is equlvalent
to the Bhattacharyya distance when the noise is
Gaussian. For Poisson and speckle noise, it has been
shown that the Bhattacharyya distance is more effi-
cient as a measure of discrimination [12]. However, it
has to be kept in mind that neither the Bhattachar-
yya nor the Fisher ratio are ideal scalar measures
of discrimination capability. Indeed, except for the
case of Gaussian noise, these criteria only approxi-
mately satisfy the following desirable property:
any scene configuration that leads to the same ex-
pression of the measure leads also to exactly the
same performance for any optimal signal processing
algorithm [15]. However, they have the advantage of
being simple to calculate, and thus to optimize, for
the considered types of noise. This is why we will
use them in the following.

In this section, we will determine the expressions
of the Bhattacharyya distance for the three types of
noise sources of interest: Gaussian additive noise,
Poisson shot noise, and Gamma distributed speckle
noise. We will then show that, in the case, important
is practice, where the polarimetric properties of the
two regions to discriminate are close to each other,
the Bhattacharyya distance is well approximated by
the Fisher ratio, whose expression makes it easy to
compare the three considered noise configurations.

A. Gaussian Additive Noise

When the intensity backscattered by the source is
low enough, the noise from the detector may have
a variance larger than that due to the photon shot
noise. In this case, the dominant source of noise
can be considered additive and Gaussian with a var-
iance independent of the intensity of illumination.
The intensity detected by the sensor is then accu-
rately modeled as a Gaussian random variable of
mean i, [see Eq. (2)] and with a variance ¢? indepen-
dent of i,,, and the Bhattacharyya distance between
the statistical distributions on the target and the
background is [12]
(ia - ib)z
8¢

In this particular case, the Bhattacharyya distance is
proportional to the Fisher ratio, and constitutes a
true contrast measure [15].

Bgau = (5)
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The distance in Eq. (5) can be expressed in an al-
ternative form that will be useful in the following.
Let us define the following intermediate matrices:

a b
oMM

M -MP
5 = :

5 (6)

By using these two matrices, Eq. (5) can be written

e (17DS)*

o (7)

Bgau(S,T) =

We can see that, in the presence of Gaussian noise,
the contrast depends only on the difference D be-
tween the Mueller matrices of the target and the
background.

In order to optimize imaging, it is interesting to
determine the illumination and analysis polarization
states (S and T) that maximize this contrast. In the
case of Gaussian noise, Eq. (7) shows that the highest
value of Bg,,(S,T) is obtained for

(Sgau: Tgau) = arg max{[T7DS|}. ®)

B. Poisson Shot Noise

When the photon flux backscattered by the scene is
large enough, or when the detector noise variance is
very low, the photon shot noise arising from the dis-
crete nature of the photons arriving on the detector is
the dominant source of noise in the image. In this
case, the light coming from the region u can be mod-
eled as a Poisson random variable of mean i, [see
Eq. (2)]. In the presence of this type of noise, there
does not exist any rigorous definition of the contrast,
that is, any single function of the average intensities
on the two regions a and b that represents the per-
formance of any signal processing algorithm [12].
However, the Bhattacharyya distance provides a
good estimation of the contrast. It takes on the fol-
lowing expression [12]:

—%(@_ @)2. ©)

By using the two matrices M and D defined in Eq. (6),
Eq. (9) can be written

2
Booi(S,T) = ik ( VITMS + TTDS - VTTMS - TTDS) .
(10)

It is observed that, contrary to the case of additive
noise, in the presence of Poisson shot noise, the
contrast depends not only of the difference D be-
tween the Mueller matrices of the target and the
background but also on their sum M, that is, on the
average Mueller matrix of the whole image. The po-
larization states that maximize the contrast in the
presence of Poisson noise are



(Sptm Tpoi) = arg n;%X[Bpoi(Sa T)] (1D

It is important to notice that, in many cases, the
Poisson shot noise due to the useful signal, that is,
to the light coming from an active source and scat-
tered by the scene, is not the only source of noise.
There may be additive noise sources coming from
the detector or from the ambient light (for simplicity,
we will assume that this latter contribution is unpo-
larized, so that its intensity does not depend on the
PSA setup). Let us assume that the noise source
obeys a Poisson statistic and corresponds to a mean
number of electrons equal to i,,. The signals mea-
sured from the two regions of the scene are i, =
nly/2 x TTM*S + i, and the expression of the
Bhattacharyya distance is obtained by replacing in
the above equations the term TTMS with TTMS+

2i, /(o).
C. Gamma Noise

In the two previous subsections, we assumed that il-
lumination was incoherent. In this case, partially de-
polarizing Mueller matrices arise from the sum of
many incoherent contributions from one resolution
cell. If the illumination is coherent, with a coherence
length larger than the interaction length inside the
materials that constitute the scene, then this sum is
coherent within an area called “speckle grain,” whose
size and shape depends on the characteristics of the
imaging system. If the speckle grain is resolved by
the sensor, the spatial statistics of the intensity is ex-
ponential. If a pixel of the sensor covers L speckle
grains, the statistics are Gamma with order L [16].
Thus, in general, the intensity measured by the sen-
sor is Gamma of order L and spatial mean equal to
the intensity that would be obtained under incoher-
ent illumination, that is, nl,/2 x TTM*S [17]. In si-
tuations where this noise source is dominant with
respect to detector and shot noises, the expression
of the Bhattacharyya distance is [12]

)

where r = i, /i, with i, defined in Eq. (2). If we now
introduce the two matrices M and D into Eq. (12), the
expression of the Bhattacharyya distance becomes

1{ /TTMS + TTDS
B,..SST)=LIn|=| /o ——
gam (S, T) 2| V17Mus —17Ds
N TTMS - TTDS
TTMS + TTDS

This distance can be rewritten as

(12)

(13)

By (@) = L | 500 |. 14

with

1+ [1-x
g(x)_ 1_x+ 1+x7

Since the function g(x) is even, it is sufficient to study
it as a function of |x| = |TTDS|/TTMS. We have
plotted in Fig. 2 the evolution of B, (x) in function
of |x|. The curve shows that B,y (x) is an increasing
function for |x| € [0; 1] which means that the highest
value of the Bhattacharyya distance is obtained
when the value of |x| is maximal. Consequently,
the states of illumination and analysis that maxi-
mize the Bhattacharyya distance verify the following
equation:

_TTDS

B 15
*=1s 19

(16)

|TTDS|]

(Sgamv Tgam) = arg Hsl,ax|:TTMS

T

It is observed that, in this case again, the contrast
depends on both matrices M and D.

D. Comparison of the Contrasts in the Presence of
Different Noise Sources

In order to compare the expressions of the contrast
in the presence of the three considered types of
noise sources, it is interesting to consider the case
where, for all pair of polarization states (S,T),
ITTMS| > |TTDS|, that is, the difference of the Muel-
ler matrices has a low contribution compared to their
sum. That situation is of particular interest since it
corresponds to a small difference in the Mueller ma-
trices of the target and background, and, therefore,
to the investigation of the detection limit. In this
case, we can perform a first-order Taylor expansion
of Egs. (10) and (13) in terms of the ratio TZDS/
TT’MS, and obtain approximate values of the
Bhattacharyya distances for Poisson and Gamma
noise sources:

CI)

o8+

06}

04

02

1 1 1
1] 01 02 03 04 05 06 07 08 0s 1

1] 1

M=TDS|/ TMS
Fig. 2. Evolution of By, (x) in function of |x| = |TTDS|/TTMS
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nly (TTDS)?
4 TTMS

1 (nly/2 x TTDS)?

17
2 41, /2 xTTMS ' 17

Bpoi(S> T) =

_ 1 (ylp/2xT'DS)*

- 2(ly/2 x TTMS)?/L°
(18)

TTDS)2

L
B T)~—
an(S.T) 25 (TTMS

These two expressions are, in fact, proportional to
Fisher ratios [see Eq. (4)]. Clearly, the term nl,/2 x
TTDS present at the numerator of the two expres-
sions represents the difference of mean intensities
in the two regions. In the presence of Poisson noise,
the denominator is equal to nl,/2 x TTMS, which can
be seen as the average intensity scattered by the
scene and, thus, because of Poisson statistics, as
the variance of the fluctuations (which are approxi-
mately the same for the two regions since they have
similar polarimetric properties). Slmllarly, the de-
nominator of Eq. (18), [;1[ 0/2 x TTMS]?/L, is the var-
iance of the fluctuations in the scene in the presence
of Gamma noise of order L.

Comparing these approximate expressions with
that of B,,, in Eq. (7) gives insight into the influence
of M on the optimal states. In the presence of additive
Gaussian noise, the matrix M does not contribute to
the value of the Bhattacharyya distance, which de-
pends only on the matrix D. In the presence of Pois-
son and Gamma noise sources, the Bhattacharyya
distance does not depend only on D but also on the
average intensity through the term T MS. It is thus
likely that the illumination and analysis states that
optimize the contrast will depend on the noise source
that affects the image. Namely, in the presence of
Poisson and Gamma noise, the optimal states will
be the result of a compromise between maximization
of the term T”DS and minimization of TTMS.

3. Application Examples

We analyze in this section two examples that illus-
trate the importance of taking into account the noise
statistics to determine the optimal illumination and
analysis states. The first one is simple and involves
only nondepolarizing media. The second one involves
depolarizing media and is representative of such
applications as remote sensing or imaging through
turbid media. In these two examples, the condition
TTMS > TTDS is verified, so we will be able to use
the Fisher ratio approximations of Egs. (17) and
(18) to interpret the obtained results.

A. Example 1: Linear Diattenuators

Let us assume that the target and the background
behave as linear diattenuators. This is a polarimetric
property present in many biological materials [18].
The Mueller matrices of such kind of objects are of
the form [19]
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P(y,d) = (19)

1 1 dvl
1+d (d P, )
In this expression, v, = (cos y,sin 7,007 is the re-
duced Stokes vector of the linear eigenstate with azi-
muth y and transmission #,,, = 1. The orthogonal
eigenstate of reduced Stokes vector -v, has trans-
mission tyip = (1-d)/(1 +d), and d = (tmax = tmin)/
(tmax + tmin) corresponds to the diattenuation.
Furthermore, P, = ol + (1-a)v, V , where I is the
3x3 1dent1ty matrix and a = 1- d2)1/ 2. We consider
the case where, in a suitably selected coordinates
system, M® = P(¢/2,d) and M® = P(-¢/2,d), which
means that the angle between the two diattenuators
is equal to ¢ and they have the same diattenuation.
In this case, it is easily shown that

1 dcose 0 0
1 | Dcose a+(1-a)cos?e 0 0
“1+d| o 0 a+(1-a)sinZe 0 |’

0 0 0 a
0 0 dsine 0

zi O 0 . (1-a)cosesine 0 20)
14+-d| dsine (1-a)cosesine 0 0
0 0 0 0

Let us first consider the case of additive Gaussian
noise. From Eq. (20), it can be shown that the optimal
contrast is obtained when S and T are linear and par-
allel. Let us denote 6 their azimuth. The expression
of the Bhattacharyya distance is

1] ql
Bgan =3 [6(1 +d)
+ (1 -a)cos e cos 20)}2.

2
} {sin ¢ sin 26(d
21

It interesting to analyze the case where d = 1, and ¢
is very small, so that cos e~1 and sine~e¢. In
physical terms, that is a situation where the back-
ground is fully polarizing, and the target is fully po-
larizing, as well, but in a direction that makes a
small angle € with the background. In this case,
one obtains an expression of Bg,, whose maximum
is reached for 6, = 30° This result can be found
after cumbersome but elementary calculations. The
value of 6,,; as a function of ¢ for different values
of d is plotted in Fig. 3. On this graph, it is easy to
visualize the evolution of the optimal illumination/
analysis state: when ¢ is small, its azimuth is around
30°. As & increases, 0, also increases but more
slowly, so that when ¢ = 90° (the two diattenuators
are orthogonal), 6,,, = 45°, which means that the
optimal state is parallel to one of the diattenuators.

When the image is perturbed with Poisson noise,
the states that maximize By, are linear and parallel,
too. The expression of the contrast is given by Eq. (9)
with



Fig. 8. Variation of 6, as a function of ¢ for different values of
diattenuation coefficient d in the presence of Gaussian additive
noise (Subsection 3.A).

: nl,

I, = 2(1+d)[(1+a)+2d cos(e — 20)
+ (1 - a)cos?(e — 20)],

iy = 2(1{i-d) [(1 + a) + 2d cos(e + 20)

+ (1 - a)cos?(e + 20)]. (22)
By deriving this expression, it can be shown that the
highest contrast is reached when the relation sin(e +
20) = —sin(e — 26) is verified. The states that maxi-
mize By, have thus an azimuth 6., = +45°. Inter-
estingly, this value is independent of the values of
e and d. Thus, in the general case, the optimal states
are different in the presence of Poisson and Gaussian
noise sources. They are equal only when the two dia-
ttenuators are orthogonal (¢ = 90°), and the optimal
azimuth for Poisson noise is always larger than that
for Gaussian noise. This is understandable since, in
the case of Poisson noise, one has not only to maxi-
mize the term T7DS but also to minimize the term
TTMS. This minimization is achieved with azimuth
as close as possible to orthogonality with respect to
the diattenuators that constitute the scene. Precise
computation shows that the optimal compromise is
reached for an azimuth of 45°, which is independent
of e.

When the image is perturbed with Gamma noise, it
is easy to understand that, to maximize the contrast
[Eq. (12)], we have to cancel one of the intensities i,
or I, since this will lead to an infinite contrast. This
can be done by taking S and T orthogonal, one of
them being parallel to one of the diattenuators. This
configuration allows us to have a region with an in-
tensity almost null and, due to the nature of the
Gamma noise, leads to an infinite contrast because
there is no noise in this region.

We have represented in Fig. 4(a) the variation of
azimuth of the optimal states as a function of the dia-
ttenuator angle ¢, in the presence of the three sources

—
— Gamma noise
== == Poisson noise

Gaussian noise

___________

1 1 1 1 1 /]
1] 2 40 &0 80 100 120 140 160 180

€
(a)
O 0T, ..
) 't R

¥ %l
(L' gan ’ ﬂ"m)

(T, )

P(+£-2)
&
P(-<£/2)

(b)

Fig. 4. (Color online) (a) Variation of 6, as a function of ¢ in the
scenario of Subsection 3.A, for diattenuation d = 1, in the presence
of Gaussian, Poisson, and Gamma noise sources. (b) Azimuth of the
optimal states for the three types of noises, ¢ = 20°, and d = 1.

of noise. Figure 4(b) provide a visual representation
of these azimuths when & = 20°. Finally, we have
represented in Fig. 5 the evolution of the Bhattachar-
yya distance with ¢ in the presence of the three con-
sidered noise sources. In each part of Fig. 5, the three
curves correspond to the contrasts obtalned with the
states (Sgaua gau) (Spma p01)y and (Sgama gam) As ex-
pected, the curve corresponding to the states optimal
for the noise source actually present in the image is
always above the others. Note that, in the case of
Gamma noise [Fig. 4(c)], we have considered that S
and T are partially polarized (||s|| = [|t|]| = 0.99) in
order to obtain a finite value of the contrast. One also
observes that the highest contrast is always reached
for the value ¢ = 90°: in this configuration, the two
diattenuators are orthogonal and thus easy to distin-
guish. The optimal states are the same in the pre-
sence of the three different noise sources (see
Fig. 4): they have an azimuth of 45°.

B. Example 2: Depolarizing Scene

In the real world, another polarimetric property that
is also commonly encountered is the depolarization.
Some materials are even characterized only by this
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Fig. 5. (Color online) Evolution of the contrast with parameter ¢
in the presence of (a) Gaussian noise, (b) Poisson noise, and
(c) Gamma noise, in the scenario of Subsection 3.A, for d = 1.

Figure (c) has been obtained with S and T partially polarized
(|Is|l = |It]] = 0.99) in order to have contrasts that are not infinite.

property [20]. In this example, we consider that the
target and the background regions are mainly depo-
larizing and thus their Mueller matrices are diagonal
with the following values:

1184 APPLIED OPTICS / Vol. 51, No. 8 / 10 March 2012

yo_| 0 03545 0 0

| o 0 035+p 0 |
0 0 0 0.2

(23)

08 0 0 0
0 07 0 O

b __

M=1469 0o o7 o |
0 0 0 045

where p is a real-valued parameter. They represent
media with anisotropic depolarization properties.
Such type of Mueller matrices can be obtained when
observing biological media that are mainly depolar-
izing [21]. If we compute the M and D matrices, we
have

0.75 0 0 0
o | 0 0525402 0 0
| o 0 0525+p/2 0 |
0 0 0 0.325
0.05 0 0 0
D 0 0.175-p/2 0 0
0 0 0.175-p/2 0
0 0 0 0.125

(24)

In order to simplify the discussion, we introduce the
following notation for the matrices M and D:

_(Mp O _ (Do 0
M_(O M)’ D_(O D (25)

where M and D are 3 x 3 diagonal matrices. This
formalism allows considering the reduced form of
the Stokes vectors S = (1,s")T and T = (1,t7)7,
where s and t are unit norm, three-dimensional
vectors.

We represent in Fig. 6 the variation with p of the
Bhattacharyya distance obtained in the presence
of each type of noise. In each of the subgraphs, we
have represented the three curves obtained with
the optimal states for Gaussian, Poisson, and
Gamma noise. Figure 7 shows the evolution of the
ellipticity of the optimal states S and T with the
parameter p.

Let us first consider that p = 0. By writing Eq. (5)
with the parametrization defined in Eq. (25), we ob-
tain Bg,, = |[Doo + t'Ds|*. It is seen in Eq. (24) that
Dy, is positive and D is diagonal with maximal coef-
ficient Dy = Dyy = 0.175 > 0. In order to reach the
highest contrast, the term t”Ds has to be large and
of the same sign as D, which leads to t and s linear
and parallel: the optimal states Sg,, and Tg,, are
thus parallel and linear with any value of azimuth
since Dll = D22

In the presence of Poisson and Gamma noise, the
optimal states S and T are also linear with any value
of the azimuth, since Dll = D22 and M]_]_ = M22.
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Fig. 6. (Color online) Evolution of the Bhattacharyya distance

with the parameter p in the presence of (a) Gaussian noise, (b) Pois-
son noise, and (¢c) Gamma noise, for the scenario of Subsection 3.B.
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However, they are not parallel but orthogonal. In-
deed, we have |TTMS| = |My, + t'Ms| and |TTDS| =
|Doo + t'Ds|. As Dy is small compared to the coeffi-
cients of D, taking S and T parallel or orthogonal (i.e.,
t = sort = —s) yields almost the same absolute value
of |t"Ds|, but has a larger influence on |t”Ms|. Since

the value of t'Ms is minimized by taking S and T
orthogonal to each other (t = —s), the optimal states
in the presence of Poisson and Gamma noise are
orthogonal. ~

As the parameter p increases, the coefficients Dy
and Dy, decrease and the coefficients M; and M,
increase. The coefficients D33 and Ms3, associated
to the response to circular polarizations, remain con-
stant. In the case of Gaussian noise, as soon as D33 >
D11 (p > 0.1), the optimal states Sg,, and T, become
circular with the same sense of rotation (for the
same reason as before). This evolution can be seen
in Fig. 7, where the optimal ellipticity goes from 0
to —45° for p = 0.1. In Fig. 6, we can see that, for
p 2 0.1, the optimal contrast becomes constant. This
is because the optimal states S,,, and Tg,, are circu-
lar and the coefficient D33 is independent of p. In the
presence of Poisson and Gamma noise sources, for
p = 0.1, the optimal states remain linear and ortho-
gonal because, even if the term |TTDS| is smaller
for the linear polarization than for the circular one,
the term |TT”MS| is also smaller when states are
linear. ~
_ However, as p becomes larger, the terms D;; and
D5 become sufficiently small to overcome the advan-
tage of having larger terms M; and My, and the op-
timal states S, and T, become circular with the
same sense of rotation. It can be seen in Fig. 7 that
this happens for p > 0.115, where the ellipticities of
Spei and Ty, become equal to —45°. This change of re-
gime is also observable by a discontinuity of contrast
evolution in Fig. 6(b).

In the case of Gamma noise, the optimal states
Sgam and Ty, remain linear and orthogonal because,
even if the term |T7DS| becomes very small, the in-
crease of terms M¢, and M$, allows almost annulling
the intensity in region a. That leads to a fairly low
noise in this region and, thus, to a higher Bhatta-
charyya distance than the one obtained with the cir-
cular polarization. The evolution of the ellipticities of
the couple (Sgam, Tgam) represented in Fig. 7 confirms
this conclusion: they remain the same and equal to
zero for any value of p.

Figure 8 shows images of a target characterized
by a Mueller matrix M? and a background character-
ized by a Mueller matrix M? for p = 0.14, in the pre-
sence of Gaussian, Poisson, and Gamma noise
sources. For this value of p, the optimal states asso-
ciated with the additive Gaussian noise and the
Poisson noise are circular and with the same rotation
sense, which is why the images of the two first
columns are similar. It is seen in this figure that the
contrast can be significantly increased if we take the
appropriate states of illumination and analysis.

As a summary, we have analyzed in this section the
respective influence of the difference between the
two Mueller matrices and the average intensities
coming from each region of the scene. In the presence
of Gaussian noise, only the difference of the Mueller
matrices plays a role in the expression of the
Bhattacharyya distance. On the other hand, in the
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resence of Gamma noise, it is often preferable to re-
duce the intensity of one of the regions in order to
reduce the noise variance, even if this also reduces
the difference between the Mueller matrices. The
Poisson noise corresponds to an intermediate config-
uration. As a consequence, the optimal illumination
and analysis states can be different in the presence of
Gaussian, Poisson, or Gamma noise, even for the dis-
crimination of simple depolarizing objects. Taking
into account the statistics of the noise affecting the
image is, thus, of great importance in such applica-
tions as imaging in turbid media.

(Sgau, Tgau)

(Spoi Tpoi)

(Sgam: Tgam)

Gaussian noise

(b) B=153  (c) B=0.15

Poisson noise

d) B=1.43 (e) B=1.43 (f) B=1.01
Gamma noise . . d ;
(g) B=0.01 B=0.01 (i) B=0.06

Fig. 8. Images in the presence of (a)—(c) Gaussian, (d)—(f) Poisson,
and (h)—(j) Gamma noise of a target characterized by a Mueller
matrix M? and a background characterized by a Mueller matrix
M® (p = 0.14), for the scenario of Subsection 3.B. In each case,
the image is obtained with optimal states computed with the hy-
pothesis of the presence of Gaussian, Poisson, and Gamma noise
(respectively from left to right). The number of photons by pixel is
I, = 100 and the standard deviation of the Gaussian noise is equal
to 10. The Gamma noise is of order L = 1.
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(Color online) Evolution of the ellipticities of the optimal states S and T with the parameter p, for the scenario of Subsection 3.B.

4. Conclusion

Considering three types of noise statistics frequently
encountered in optical images (Gaussian, Poisson,
and Gamma), we have demonstrated that the opti-
mal illumination and analysis polarization states re-
sult from a trade-off between the target/background
intensity difference and the global intensity in the
image. The optimal trade-off between these two ef-
fects depends on the noise statistics, and the gain
in contrast obtained with the adequate setup is sig-
nificant. With the advent of versatile and electrically
driven polarimetric imagers, the issue of parameter
optimization becomes crucial. The results obtained
in this paper show that, to perform this task effi-
ciently, the dominant sources of noise have to be care-
fully identified and taken into account.

This work opens up many perspectives. First, we
considered in the present study only noise sources
coming from the sensor and from fundamental fluc-
tuations of the light (Poisson and speckle noise). It
will be interesting to consider other important
sources of noise, such as defects of the polarization
modulation components, and consider cases where
different types of noise are simultaneously present.
We are currently investigating these issues. Second,
the study made in this paper relies on the knowledge
of the Mueller matrices of the target and of the back-
ground. Since they are unknown in practice, some
iterative strategies to determine the optimal con-
trasts have to be investigated.

G. Anna’s Ph.D. dissertation is supported by the
Délégation Générale pour 'Armement (DGA).
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