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Since brain structural connectivity is the foundation of its functionality, in order to

understand brain abilities, studying the relation between structural and functional

connectivity is essential. Several approaches have been applied to measure the role of

the structural connectivity in the emergent correlation/synchronization patterns. In this

study, we investigates the cross-correlation and synchronization sensitivity to coupling

strength between neural regions for different topological networks. We model the neural

populations by a neural mass model that express an oscillatory dynamic. The results

highlight that coupling between neural ensembles leads to various cross-correlation

patterns and local synchrony even on an ordered network. Moreover, as the network

departs from an ordered organization to a small-world architecture, correlation patterns,

and synchronization dynamics change. Interestingly, at a certain range of the synaptic

strength, by fixing the structural conditions, different organized patterns are seen at the

different input signals. This variety switches to a bifurcation region by increasing the

synaptic strength. We show that topological variations is a major factor of synchronization

behavior and lead to alterations in correlated local clusters. We found the coupling

strength (between cortical areas) to be especially important at conversions of correlation

and synchronization states. Since correlation patterns generate functional connections

and transitions of functional connectivity have been related to cognitive operations,

these diverse correlation patterns may be considered as different dynamical states

corresponding to various cognitive tasks.

Keywords: correlation, synchronization, neural mass model, functional network, small-world network

INTRODUCTION

Brain, as a combination of neural ensembles, generates oscillatory activities. These oscillations
can be recorded simultaneously from the neural masses with electroencephalography (EEG) and
magnetoencephalography (MEG). As the neural populations generate oscillatory activities, we can
model the brain dynamics as a system of coupled oscillators, and whenever a system of coupled
oscillators is considered, synchronization will be the ubiquitous phenomenon.

Synchronization has been broadly analyzed at the level of individual neurons (Bazhenov et al.,
2008; Bonjean et al., 2011; Feldt Muldoon et al., 2013). This phenomenon is slightly different in
mesoscale. Synchronization in mesoscale defines as a correlated activity of two neural masses or
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the correlated spikes in two regions. Since the activity of
each neural population is oscillatory, one can refer to neural
populations as oscillators, which their phase defined as the
state of each periodic oscillator. Phase synchronization indicates
the dependency between oscillation phases in different masses
or brain regions (Fell and Axmacher, 2011). In other words,
when phases of oscillators in two regions become correlated,
we can speak of phase synchronization. Two different types
of synchronization are in-phase and anti-phase. In-phase
synchronization defined as simultaneously firing patterns of
neurons, and anti-phase is considered as an increase in the
activity of a certain area of the brain, while the activity of others
decreases (Li and Zhou, 2011).

In order to measure the synchronization of synaptic activity
across distinct neural masses, it is possible to place multiple
electrodes in different parts of the brain and record LFPs.
The synchronized activity of the neural masses leads to large-
amplitude oscillations of the LFP which can be recorded from
outside of the scalp using EEG and MEG.

Analyzing EEG and MEG signals reveals that not only
the oscillatory activity of distinct neural populations can
synchronize, but also and more importantly behavioral or
cognitive states depend on this synchronization and changes in
correlation patterns of neural activity (Srinivasan et al., 1999; von
Stein et al., 1999; Schnitzler and Gross, 2005).

The critical factor in synchronization is coupling.
Connections between oscillators (units) transfer the activation
state of oscillators to each other, and this causes alterations
in the coupled oscillator phases. In order to quantify phase
differences between neural populations, neuroscientists measure
the correlation between pairs of neural masses activities.
The first approaches to measuring the correlation between
neurophysiological time series by recording simultaneously from
two distinct anatomical locations were made more than 60 years
ago (Brazier and Casby, 1952; Brazier and Barlow, 1956) and
offer a very general time series analysis. The most classical way
for time series analysis is to evaluate the correlation coefficient
between the dynamical activities recorded from separate brain
areas.

When we model a network of neural masses with a coupled
oscillatory system, the correlation and synchronization between
masses are nearly close concepts. Due to the fact that they
both provided essentially the same information about the
system of coupled oscillations (Mezeiová and Paluš, 2012). If
two neural ensembles have a high correlation, this coherency
will synchronize them. Besides, synchronized masses not only
have a high correlation but also their phases are similar. For
example, complete synchronization is always associated with
high correlation between both amplitude and phase of two
oscillators, which eventually lead oscillators to have identical
states. Consequently, the correlation between neural populations
measures the likelihood of their synchronization. However, we
cannot use these twomeasures interchangeably. Owing to the fact
that correlation and synchronization view the system coherency
from different perspectives.

Furthermore, the correlation between brain regions besides
other statistical dependencies indicates functional interactions

known as “functional connectivity.” Simply put, functional
connectivity between two locations is the existence of a
correlation or synchronized dynamic activity (Friston, 1994).
Many studies have been done to analyze functional connectivity
in both micro-scale and mesoscale using synchronization and
correlation measures (Ponten et al., 2009; Hlinka and Coombes,
2012; Stam et al., 2016).

Pearson correlation coefficient as the most widely used
measure of functional connectivity examines the linear statistical
dependence between variables. Functional connectivity can
mainly be prescribed by correlation coefficient matrix which can
be quantified by thresholding in order to define edges (with
some thresholding techniques). Although in this paper we do
not refer to the correlation matrix as functional connectivity, it is
important to remember that correlation patterns describe activity
at the functional level.

In this paper, our objective is to show how the topology of
the network, i.e., structural connectivity (and coupling between
units) can affect the correlation between units and the formation
of synchronization patterns. For this purpose, we make use
of a classical neural-mass model (Wilson and Cowan, 1972)
and simulate neural dynamic in a way we could manipulate
the coupling strength between areas. Thus, our primary goal is
evaluating the sensitivity of correlation to the coupling strength.
Using neural mass modeling, we assess network dynamics and
measure the correlation coefficient between every two units.
Correlation between units as a measure of statistical dependency
represents functional connectivity. Here we are not interested
in analyzing functional connectivity, instead, our focus is on
studying synchronization behavior by considering different
coupling coefficients and different topological networks.

The paper is organized as follows. First, we describe the
theoretical framework which is used to simulate the dynamics
of each structural unit of the neural system. Then we introduce
different topological networks which are taken as structural
connectivity. Later the simulation details are described and
finally, we bring some achievements in this study and show the
result of the simulation.

MATERIALS AND METHODS

Wilson-Cowan Model
Dynamical models based on individual neurons’ behavior are
computationally inefficient for large-scale simulations. Some
techniques have been proposed to reduce computational
complexity, including employing neural mass models (Beim
Graben and Rodrigues, 2012). These models apply mean-field
approximations and describe the activity of the population as an
average activity of all neurons within the population. Each neural
masses or populations of neurons generate a mesoscopic unit,
which serves as a node in large-scale brain networks (Gray and
Robinson, 2013; Roy and Jirsa, 2013).

For simulation, we consider the Wilson-Cowan
neurodynamic activity-based model for each node (Wilson
and Cowan, 1972). The Wilson-Cowan model is one of the
most influential models in computational neuroscience which
describes the activity of each neural population as mean firing
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rate of its excitatory and inhibitory subpopulations by using
the mean-field approximation and non-linear differential
equations. These excitatory and inhibitory cells within each
population are assumed to be in close spatial proximity with
dense interconnections, so there would be a path between any
two cells, which means that there wouldn’t be any isolated cell
within the population.

As indicated in Figure 1, each node consists of a
population of excitatory neurons, which is coupled with a
population of inhibitory neurons. Furthermore, network
structure units are coupled through the excitatory units.
The equations for the classical Wilson-Cowan model are as
follows:

τE
d

dt
Ek = − Ek + S

[

aE

(

cEEEk − cEIIk − θE + Pk + υ

N
∑

l=1

CklEl

)]

τI
d

dt
Ik = − Ik + S [aI (cIEEk − cIIIk − θI)]

Where, subscripts E and I indicate excitatory and inhibitory
neurons, respectively. Ek is the average activity of the
excitatory population of the kth node, Ik is the average
activity of kth node inhibitory cells. The average activity
can be defined as the portion of cells in the population
which are firing per unit time. Excitatory population
membrane time-constant is τE and inhibitory population,
membrane time-constant is τI . S is a sigmoid response
function which transforms current into discharge rate, for
each subpopulation with a specific input and time membrane
constant.

S (x) =
1

1+ e−x

The parameters a and θ are related to sigmoid function,
a determines the position of the maximum slope, and
θ is the value of the maximum slope of the sigmoid
function, which are different for excitatory and inhibitory
sub-populations.

External input Pk, internal terms scaling by synaptic weights
cEE, cIE, cEI , cII and long-range coupling term ν

∑N
l=1 CklEl

are inputs of response function S. The parameter Pk is the
activity coming from distant, known as the external perturbation
or external stimulus to the excitatory sub-population, here
present the input noise. Synaptic weights c represent coupling
coefficients within each population (Figure 1). Long-range
coupling term

∑N
l=1 CklEl is the input activity of neighbors

which combines single units to form a network. This network
represented by an adjacency matrix Ckl (here considered as
structural connectivity) and delineate propagation of neural
activity along long-range tracts (i.e., white matter tracts). The
coupling term’s aim is to transform the entering activity (from
the rest of the network) to a proper form for the model
equations. Finally, the whole long-range coupling term is scaled
via the overall coupling coefficient ν . In other words,
coupling coefficient ν determines connections strength between

FIGURE 1 | (Upper) Each neural population i contain excitatory and inhibitory

subpopulations (Ei and Ii, respectively) which are interconnected by synaptic

weights cEE , cIE , cEI, cII. Nodes connected through their excitatory units.

Furthermore, external input Pi stimulate excitatory units. (Lower) Schematic

representation of the regular ring lattice network where each node is

connected to six neighbors.

units, whereas synaptic weights scale connections within each
unit. For the further mathematical description, please refer
to Wilson and Cowan (1972), Borisyuk and Kirillov (1992),
and Decker and Noonburg (2012).

Parameter Choices
A primary feature of the Wilson-Cowan model is that it exhibits
different dynamical behavior and stable equilibria (Wilson and
Cowan, 1972; Cowan et al., 2016). Depending on the chosen
parameter, dynamic behavior ranges from resting in steady states
to limit cycle oscillations. In this simulation, the variables of
interest are E and I, i.e., excitatory and inhibitory activities.
The fixed parameters values are aE = 0.8, ai = 0.8,
θE = 2.0, θi = 8.0, τE = 0.125, τi = 0.25 and set of
synaptic weights cEE = 8, cIE = 8, cEI = 16, cII = 4,
which are determined in a way that each isolated individual unit
displays limit cycle oscillations. Also for each unit, there is an
input noise Pk from Brownian noise sample. Mathematical and
dynamical analysis of a single Wilson-Cowan unit have been
done in detail by Wilson and Cowan (1972) and many others
(Borisyuk and Kirillov, 1992; Ledoux and Brunel, 2011; Decker
and Noonburg, 2012).

It is important to note that in the network, each unit
can display many different dynamic patterns from limit
cycles with a different range, frequency and central point
to fixed stable point. This is due to the coupling of units
and connectivity effects. Since by connecting Wilson-
Cowan units, a number of parameters drastically increases,
mathematical analysis of a network ofWilson-Cowan units needs
elaborate computations. Besides non-linearity of differential

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 105

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nazemi and Jamali Structural Connectivity Influences Correlation/Synchronization

equations makes arduous mathematical challenges. Thus,
mathematical analysis is replaced by numerical methods
(Latham et al., 2000; Maruyama et al., 2014; Neves andMonteiro,
2016).

The specific characteristic of this model is that it exhibits
oscillatory behavior, individual nodes oscillate intrinsically, and
synchronization of these oscillators leads to network oscillations.

Cross-Correlation
Traditionally, cross-correlation is a useful method for comparing
time series. By using cross-correlation, we will be able to quantify
the similarity between time series recorded from distinct neural
populations. In this study cross-correlation between brain areas
(nodes) is quantified via the Pearson correlation coefficient (r).

Pearson correlation coefficient indicates a statistical
association between two variables of interest by measuring
their linear relation. Since Pearson correlation coefficient is
based on the method of covariance, it is considered as the best
method of measuring the relationship between two continuous
variables. Despite the fact that there are some other methods for
quantifying correlation (Levine et al., 2017), here we only use
Pearson cross-correlation.

The values of cross-correlation ( r) are between −1 and +1
indicating positive and negative association, respectively, and
r = 0 refers to the uncorrelated state. Correlation matrix is a
symmetric matrix derived from measuring pairwise correlation
coefficient of all nodes activity time series.

As mentioned above, cross-correlation and synchronization
are close concepts. However, they are not transposable. Cross-
correlation measures liner dependency but synchronization
evaluates non-linear relations. Moreover, correlation provides an
information about the association between every two oscillators,
while the synchronization (derived from Kuramoto order
parameter) have generally used to quantify the coherency among
a group of oscillators.

Correlation outcome of this simulation is represented in two
forms, one is correlation matrix depicted in a heat map, and
the second is mean correlation coefficient for all units. General
features of correlation matrices are that they are symmetric and
their diagonal elements are one.

Since our objective is studying the effects of coupling on the
correlation between units, the simulation outcomes are r(ν). The
resulting r(ν) values are computed after the system went to its
steady state and averaged over all simulations.

Networks
A structural network represented by a graph whose verdicts
are neural populations and its edges are inter-population
connections. Neural populations are collections of neurons with
assumed close spatially distribution and with adequate size to
valid mean-field approximation. The graph is represented by
C = Ckl; where Ckl = 1 if there is a connection between
population k and population l, otherwise Ckl will be zero.

In this research, three different connectivity topologies are
taken as structural connectivity (Ckl), regular, full connected and
random. First, we start with a regular ring lattice network with
50 nodes where each one is connected to all of its six nearest

neighbors. Another structural connectivity is induced by adding
shortcuts to this ring. First, we add shortcuts in a regular way,
then we add edges randomly. Note that adding regular shortcuts
is different from random one. By adding random, the network
exhibit small-world property which is similar to human brain
organization but by adding regular one the system still remains
regular but in the higher dimension. We also investigate fully
connected network (Figure 2). Although the all-to-all network
is far away from brain topological structure, it can exhibit the
influence of increasing density of the graph on the activity
patterns, so it is worth taking into account. In all cases, networks
are undirected of size 50 and each node represents a population
of excitatory and inhibitory neurons.

In the computational approach to modeling mesoscale neural
networks, the spatial extent of neural populations is abstract,
which can range from micro-columns to the whole brain (Sanz-
Leon et al., 2015). In this research, we refer to neural populations
as brain regions and assume that 50 of it can cover a whole
cortical area.

Simulation
As mentioned above, the excitatory unit’s activity is the key
variable, and it represents the whole unit activity. For analyzing
effects of network topology on the activity and correlated
activities, we simulate for different connectivity strengths so the
outcome of simulation would be mean of network activity, E(ν),
and mean of the correlation coefficient, r(ν). Furthermore, the
spectrum of the network activity (E(ν)) is analyzed using Fast
Fourier transformation techniques.

For each coupling strength coefficient ν , simulation is
repeated 90 times and resulting E (ν) and r(ν) values are
computed by averaging over all simulations.

RESULTS

Ordered Network
We begin by considering the case in which network has a ring
lattice structure and every unit is coupled to its six nearest
neighbors.

Coupling coefficient has a significant effect on the correlation
between units. As shown in Figure 3 various correlation patterns
are induced by changing the coupling coefficient. Based on the
resulting correlation behavior, we categorized coupling ν in four
intervals: weak, medium, strong, and ultra-strong.

Obviously, for weak couplings, oscillators will not have a
significant effect on each other, so the correlation between units
is low too. In this case, the resulting correlation matrices in
all repetition are nearly the same, low positive and negative
correlations occur randomly between units, and there is no
specific pattern in those, so mean and variance of correlation
coefficients are low too (Figure 4A). In this case, the system is
not synchronized globally nor locally.

As we increase ν , correlation behavior changes drastically.
Surprisingly, for coupling coefficients in a particular interval,
correlation matrix shows different patterns as we repeat the
simulation for specific coupling coefficient, i.e., in this range the
resulting correlation matrix in each repetition is totally different
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FIGURE 2 | Illustration of the four topologies which are taken as structural connectivity architectures and their adjacency matrix (bottom). (A) Ring lattice network. (B)

Ring lattice network after adding ten edges regularly. (C) Ring lattice network after adding 40 random edges. (D) Complete network.

FIGURE 3 | Schematic of different cross-correlation matrices across the coupling coefficient growth of the ordered network. Cross-correlation values range from +1

(red) to −1 (blue). For weak couplings, the resulting cross-correlation matrices are nearly random, but for the medium level of couplings in each repeat of simulation

correlation exhibit completely different patterns. These various patterns show different correlated and synchronized clusters. For the strong level of couplings the

system exhibit two-phase behavior which by repeating simulation cross-correlation matrices exhibit only two patterns of synchronization. If we increase coupling

further, each unit leaves the limit cycle and rests in a fixed point. Thus, the correlation between units vanishes.

from others. Consequently, the average correlation can take
different values and variance of them is high (Figure 4A).

For most correlation matrices the uncorrelated state rarely
happens. Instead, units had high positive or high negative
correlations between themselves, which means that the system
can generate some synchronized clusters, i.e., local synchrony.
In high positive correlation areas, we have complete in-phase
local synchronization, and in high negative correlation areas, we
have complete anti-phase local synchronization. Furthermore,
this synchronization of local clusters could not lead to global

synchronization. The scale of this local synchrony varies from 4
masses to half of the network.

It is important to note that, in each repeat (run) due to
different initial states E0, I0, and the existence of Brownian
random input Pk, the result is dissimilar from another repeat,
which shows the sensivity of the system to its initial conditions.
In mathematics and physics, this phenomenon is called chaotic
behavior.

If we increase ν further, this chaotic behavior switches to
another regime. “Strong” level of coupling between network
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FIGURE 4 | Average and variance of cross-correlation as a function of the coupling coefficient for different structural connectivity: (A) Ring lattice network. (B) Ring

lattice network after adding ten edges regularly. (C) Ring lattice network after adding 40 random edges. (D) Complete network. The x-axis in all subplots express

coupling coefficient ν and the y-axis is average cross-correlation. Each dot represents different realizations of the system.

units causes the system to have “two-phase” behavior. For ν in
this level, correlation matrices for all repetitions show only two
patterns. Which means that, there is just two main attractors and
starting from each random initial state, the system would end
up in one of these two phases. In fact, for strong couplings, a
symmetry breaking occurs. One shows a high positive correlation
between all units, which lead the global synchronization in
the system. And the other shows high positive correlation for
structurally connected nodes and their near neighbors along
with high negative correlation for structurally unconnected
nodes (Figure 4A). Because of this symmetry breaking, in some
repetitions, we have complete global synchronization and in
others the system exhibit local synchrony within half of the
network populations.

For higher couplings in “ultra-strong” level, individual
oscillators leave the limit cycle regime, relaxed in a steady state
and stop oscillating, due to excessive input. In this situation,
their activity time series will not exhibit any oscillation so
there wouldn’t be any correlation between nodes and all entries
of cross-correlation matrix will be near zero indicating an
uncorrelated phase and no synchrony (Figure 4A).

The videos in the Supplementary Material show the
evolution of node dynamics and correlation coefficient during
the time, the samples are taken every 200 steps, and correlation
matrix in each snapshot is calculated for the last 200 steps.

As mentioned above, for some couplings, by repeating
simulation, correlation coefficient matrix exhibit completely
different patterns (Figure 3). But how is its overall behavior?
In Figure 5 we can see the average correlation coefficient
matrices over 90 repetitions for some specific coupling
coefficients ν.

For low couplings, on average, directly connected nodes have
a positive correlation between each other, and other nodes are not
correlated or have a negative correlation. By increasing coupling
ν , besides directly connected nodes, we will have a positive
correlation between each node and its k-nearest neighbors. This
k is increasing of coupling ν . As ν increases, each node correlates
positively with its k-step near neighbors and negatively or it is
uncorrelated with other nodes, i.e., positive correlation occur
between node within clusters and others are uncorrelated or
have a slightly negative correlation. As mentioned above, for the
medium level of ν , correlation matrix shows various patterns.
Here average matrices do not exhibit those patterns, they
only continue the previous process where nodes are positively
correlated with more near neighbors and are uncorrelated with
nodes in the farthest side of the ring network. Importantly there is
no significant negative correlation at all. Furthermore, for ultra-
strong couplings, the average correlation matrix indicates zero
value between all nodes where there isn’t any correlation between
units as they don’t oscillate anymore.
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FIGURE 5 | Average cross-correlation matrices for different structural connectivity: (A) Ring lattice network. (B) Ring lattice network after adding ten edges regularly.

(C) Ring lattice network after adding 40 random edges. (D) Complete network.

We have also investigated the power spectrum of data using
fast Fourier transform (FFT) which is shown in Figure 6. On
the left, power spectrums for different couplings are plotted
separately, and on the right, power spectra overlay. In fact, both
plots express one concept. It must be noted that this power
spectrum is not normalized.

The power spectra of mean excitatory activities for
different coupling strengths in the Figure 6 indicates a
significant difference between ultra-strong and other weaker
couplings.

Below a critical coupling ν , the spectrum of excitatory
activity for each coupling coefficient has a major peak (main
power) in a specific frequency near 1Hz, in the delta band,
and power-law decay with the same exponent near 2. Increasing
coupling until critical ν , moves peak of the power spectrum
to the left while provoking a dramatic power growth, i.e., as
the coupling between units becomes stronger, the frequency of
activity oscillations decline while their amplitude rise. Weak
couplings lead to high frequency and low amplitude oscillations,
but strong couplings induce low frequency with high amplitude
oscillations. In other words, in this case, as coupling increased
the power peak shifted to lower frequencies but oscillations
had higher power (high energy). This phenomena happened
as a result of increasing coupling strength between units. For
weak coupling, each unit produce weak oscillations with high
frequencies, which means that the oscillation of each unit has
small amplitude and fluctuates rapidly. But when the impact of
units on each other increase system shows synchronization and

equivalently units act similarly and produce oscillations with low
frequency and big amplitude.

Increasing ν again after this critical value lead to a significantly
different behavior. For ultra-strong couplings, there is no peak
and the spectrum is close to flat before starting a power-law
decay, as for this couplings each unit leaves limit cycle and stop
oscillating.

Ordered Network With Regular Shortcuts
In this part, structural connectivity, Ckl, is changed by adding 10,
20, 30, 40, and 50 edges as shortcuts orderly, i.e., not randomly,
by each shortcut, a couple of nodes with the longest distance are
connected. In all cases, the resulting networks still have a regular
organization.

Since the mean correlation behavior does not change
significantly by adding regular shortcuts, the results for only
one case have been mentioned. The average and variance of
correlation coefficients as a function of coupling ν for a 10
number of shortcuts is shown in Figure 4B.

In all cases before the two-phase regime mean correlation
is an increasing function of coupling. Furthermore, for all
number of shortcuts this increase obey power-law function
with roughly the same exponent and patterns of correlation
have not changed significantly by adding these shortcuts to the
network. Similarly, average correlation matrices are like ring
lattice networks (Figure 5B).

In summary, adding regular shortcuts does not change the
overall behavior of our system. Maybe because adding regular

Frontiers in Computational Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 105

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nazemi and Jamali Structural Connectivity Influences Correlation/Synchronization

FIGURE 6 | Power spectra for the mean activity of excitatory populations for different coupling coefficients ν . (Left) Power spectra are plotted separately. (Right)

Power spectra overlay. Although it is not a normalized form of the power spectrum, it is still showing that oscillations main power occur in delta-band.

shortcuts does not change the ring lattice network topologically,
notably it does not decline path length.

Ordered Network With Random Shortcuts
Empirical networks are unlikely to have an ordered structure.
Recent studies indicate that, human brain structural network
along with C. Elegans (Watts and Strogatz, 1998), mouse brain
network (Oh et al., 2014; Rubinov et al., 2015), cat and macaque
(visual) cortex (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004)
have small-world architecture (Chen et al., 2008; Hagmann et al.,
2008; van den Heuvel and Sporns, 2011). Small-world topology
facilitates information segregation and integration which are
essential for brain function (Liao et al., 2017).

Starting from a ring lattice network where nodes are
connected to six near neighbors, then add new edges randomly.
These new random edges are like shortcuts which connect
distant units and reduce path length dramatically. In this
paper, we add 5, 10, 20, 30, 40, 50, and 60 shortcuts. By
adding these random shortcuts, the network does not have
a regular organization anymore, instead shows a small-world
architecture.

In comparison to the ordered network, here the system
showed more varied patterns of correlation for the medium
level of couplings, but these correlations are not high mostly.
Which means that the system can be locally synchronized
but not globally, and more importantly the system does
not have a complete synchronization. Figure 4C shows that
after adding forty shortcuts to the network, no bifurcation
occurs.

The average cross-correlation in Figure 7A shows an
interesting difference between ordered and random ring lattice.
If we look closer to high couplings level, we will notice the effects
of random edges. In strong couplings, correlation of the ring
lattice without any shortcut (red line) reaches the maximum

of one, but as we attach more shortcuts to the network the
correlation strength declines, i.e., maximum correlation reduces
as the number of shortcuts increase. The strength of correlation
for a different number of links and coupling coefficients in
Figure 7B indicates this wane.

Although correlation patterns are diverse, they don’t exhibit
high positive and high negative cross-correlations. In fact,
negative cross-correlations infrequently occur in comparison to
an ordered network. Thus, the variance of the results for different
couplings and a different number of edges is almost very low
(Figure 7C).

As we mentioned above, the correlation becomes zero when
oscillators leave limit cycle. Figure 7A shows that by adding
more edges, this phenomenon happens in the lower couplings.
The brisk decrease shifts to the left as edges attached to the
ordered network. Furthermore, the increase in correlation from
weak couplings to medium and high couplings happens more
smoothly, despite the ordered network where correlation rise
sharply to its maximum level.

Moreover, in comparison to the ordered ring lattice network,
random shortcuts lead the average cross-correlation matrices
to have a less negative correlation (Figure 5C). Consequently,
anti-phase synchrony rarely is observed.

Complete Network
We also investigate the correlation behavior in the complete
network (Figure 4D). In this case, we deal with a dense network,
so the impact of the density of the topological structure on the
activity and correlation state can be seen.

According Figure 4D for the medium level of couplings, the
variance of the cross-correlation states is small so the complete
network does not exhibit any significant dissimilar correlation
pattern, despite ring lattice network. Furthermore, there isn’t any
two-phase behavior for strong couplings.
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FIGURE 7 | Cross-correlation for ring lattice network with random edges. (A) Average cross-correlation coefficient for a different number of random edges. The radius

of circles represents the variance of the results. For better comparison, we also plot the average correlation of regular ring lattice network (red line). (B) An alternative

representation of part (A) results. Average cross-correlation heat-map where the x-axis is the number of new random edges and y-axis is coupling coefficients. (C)

The variance of cross-correlations heat-maps where axis are same as part (B).

It is important to note that, complete network receive
inputs in higher order. For example, each unit in ring
lattice network receives inputs from its six neighbors,
but for complete network, units’ inputs come from
frothy nine other units. Consequently, complete network
exhibits high correlation and global synchronization for
lower orders of couplings in comparison to our previous
networks.

In general, cross-correlation matrices do not exhibit any
significant negative correlation between neural masses. Thus,
maximum correlation achieves for lower couplings. So as
coupling increases, correlation matrix without exhibiting
negative correlations goes to the full correlated phase smoothly,

where all of the neural masses have a positive correlation and
complete synchronization (Figure 5D).

DISCUSSION

A network of neural masses can display synchronized patterns.
The network architecture is one of the critical factors which
determine ranges of this synchrony if it is local or global, in-
phase or anti-phase, strong or weak. In this study, a neural mass
model is utilized to investigate the overall network behavior at
the mesoscopic scale. We investigated the effect of topological
structure on correlation and synchronization between neural
populations.
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Our results highlight that, even on an ordered network,
correlation is sensitive not only to coupling but also to initial
state and external noise. For weak and ultra-strong couplings,
this sensitivity diminishes, but for medium and strong couplings
this sensitivity is maximum so we can see different correlation
patterns and two-phase behavior, respectively. This chaotic
behavior happens because of two reasons: First, for only a specific
range of coupling coefficient, the system becomes extremely
sensitive to initial conditions, which suggests that the coupling
strength is crucial to this chaos. Second, the topological structure
of the network forces the system to form different correlated
clusters and produce local synchrony, since the clustering
coefficient of the ring lattice network is high. We omit technical
analysis of chaos in our system and encourage readers to look at
(Alligood et al., 1997; Sprott, 2003) for further studies.

For medium and strong couplings the network can generate
local synchronization in clusters and global in-phase synchrony.
This in-cluster (local) synchronization leads to more local
functional activity and thus more modular functional
connectivity. Furthermore, the frequency distribution of
oscillators slightly shifted toward lower frequencies with high
amplitude as the coupling between them become stranger.
Oscillations occurred mainly in beta-band.

As the network structure departs from ordered architecture
and exhibits small-world organization, two-phase behavior
vanishes and the network exhibit more harmonic oscillations.
So we can predict that, for the human brain with small-
world modular structure, the two-phase behavior is unlikely.
Furthermore, due to structural complexity, more variant
correlation and synchronization states emerged.

The clustering coefficient of the ring lattice network is higher
that small-world topology. In ordered lattice network high
correlated clusters are created.While in the small-world network,
the strength of correlation between clusters diminishes compared
to ordered lattice network. Therefore, it is safe to deduce that
higher clustering coefficients in structural connectivity results in
a stronger correlation between clusters.

Results from all-to-all network indicate that in a high
densely network negative correlation and uncorrelated state
are unlikely, in contrast to regular and small-world networks.
Thus, we can predict that by increasing the density of the
structural network, the state of correlation and synchronization
among neural population shifts to high correlated masses and

complete synchronization. One can conclude that correlation
and synchronization are depend on two properties of the
topological structure of the network: coupling coefficient among
neural assemblies and density of the network.

We also computed synchronization via phase locking index
(Kuramoto order parameter) (Kuramoto, 1975, 1984) and found
(result not shown) that for each topological structure the overall
synchronization behavior was the same as the average correlation
coefficient, showing that correlation and synchronization are two
sides of the same coin.

Cognitive performances are thought to emerge from the
dynamic changes of functional connectivity and functional
networks obtained from the correlation between anatomically
distributed yet connected cortical areas (Fornito et al., 2012;
Braun et al., 2015; Liang et al., 2016). Consequently, studying
correlation patterns demonstrate the brain performance to meet
its cognitive demands.

Variations in brain functionality have been related to cognitive
operations. In this study, we indicated a link between brain
structural connectivity and its functional organization. We
showed that both coupling strength (topological variations)
and external noise are significant factors of synchronization
behavior and lead to alterations in correlated local clusters.
We found the coupling strength to be especially important
at conversions of correlation and synchronization states.
The results suggest that each of the various correlation
patterns in this paper can be taken as an attractor and may
express dynamic changes of neural activities for a cognitive
state.
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