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Abstract

We carry out a study of the peristaltic motion of an incompressible micropolar fluid in a
two-dimensional channel. The effects of viscoelastic wall properties and micropolar fluid
parameters on the flow are investigated using the equations of the fluid as well as of the
deformable boundaries. A perturbation technique is used to determine flow characteristics.
The velocity profile is presented and discussed briefly. We find the critical values of the
parameters involving wall characteristics, which cause mean flow reversal.

1. Introduction

Expansion and contraction of an extensible tube in a fluid generate progressive waves
which propagate along the length of the tube, mixing and transporting the fluid
in the direction of wave propagation. This phenomenon is known as peristalsis.
It is an inherent property of many tubular organs of the human body. In some
biomedical instruments, such as heart-lung machines, peristaltic motion is used to
pump blood and other biological fluids. It plays an indispensable role in transporting
many physiological fluids in the body in various situations such as (i) urine transport
from the kidney to the bladder through the ureter, (ii) transport of spermatozoa in
the ductus efferentes of the male reproductive tract, (iii) movement of ovum in the
fallopian tubes, (iv) vasomotion of small blood vessels, (v) mixing and transporting the
contents of the gastrointestinal passage, and so forth. Peristaltic pumping mechanisms
have been utilised for the transport of slurries, sensitive or corrosive fluids, sanitary
fluid, noxious fluids in the nuclear industry, to name but a few examples. In some cases
the transport of fluids is possible without moving internal mechanical components as
is the case with peristaltically operated microelectromechanical system devices [18].
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The study of peristalsis in the context of fluid mechanics has received considerable
attention in the last three decades mainly because of its relevance to biological systems
and industrial applications. Several studies have been made analysing both theoretical
and experimental aspects of the peristaltic motion of a Newtonian fluid [5, 8, 19, 24].
Numerical studies have also been reported in the literature [4, 17, 22, 23]. In these
cases, the relevant fluid is assumed to be Newtonian. For a more detailed understanding
of peristaltic transport, we refer to the review articles by Jaffrin and Shapiro [10] and
Srivastava and Srivastava [21].

It is well-known that many physiological fluids behave in general like suspensions
of deformable or rigid particles in a Newtonian fluid. Blood, for example, is a
suspension of red cells, white cells and platelets in plasma. Another example is
cervical mucus, which is a suspension of macromolecules in a water-like liquid. In
view of this, some researchers have tried to account for the suspension behaviour of
biofluids by considering them to be non-Newtonian [3, 15, 16, 20].

Eringen [7] introduced the concept of simple microfluids to characterise concen-
trated suspensions of neutrally buoyant deformable particles in a viscous fluid where
the individuality of substructures affects the physical outcome of the flow. Such fluid
models can be used to Theologically describe polymeric suspensions, normal human
blood etcetera and have found applications in physiological and engineering problems
[1,2, 13]. A subclass of these microfluids is known as micropolar fluids where the
fluid microelements are considered to be rigid [6]. Basically, these fluids can support
couple stresses and body couples and exhibit microrotational and microinertial effects.
The main advantage of using a micropolar fluid model to study the peristaltic flow of
suspensions in comparison with other classes of non-Newtonian fluids is that it takes
care of the rotation of fluid particles by means of an independent kinematic vector
called the microrotation vector.

Girija Devi and Devanathan [9] studied the peristaltic motion of a micropolar fluid
in a cylindrical tube with a sinusoidal wave of small amplitude travelling down its
flexible wall for the case of low Reynolds number flow devoid of wall properties like
tension and damping. However, consideration of wall properties is essential in various
real situations. Mittra and Prasad [12] analysed the peristaltic motion of Newtonian
fluid by considering the influence of the viscoelastic behaviour of walls. They assumed
that the driving mechanism is in the form of a sinusoidal wave of moderate amplitude
imposed on the flexible walls of the channel. Dynamic boundary conditions were
proposed for the fluid motion due to the symmetric motion of the flexible walls which
were assumed to be either thin elastic plates or membranes [12]. The present study
attempts to understand the influence of sinusoidally varying walls on the peristaltic
motion of micropolar fluid in a channel using the dynamic boundary condition. Using
perturbation techniques, analytical approximate solutions for the stream function and
microrotation velocity have been obtained as a power series in terms of the small
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amplitude ratio. Results are discussed for various parameters of the flow and are
depicted graphically.

2. Mathematical model and the governing equations

wave length
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x\(x, t

FIGURE 1. Geometry of a two-dimensional peristaltic channel

Consider a two-dimensional symmetric flow of unsteady incompressible micropolar
fluid in an infinite channel of uniform thickness 2d, with a sinusoidal wave travelling
along the walls of the channel with speed c, small amplitude a and long wave length k
(see Figure 1). The walls are assumed to be flexible membranes. The governing
equations for the peristaltic motion of an incompressible micropolar fluid are given in
Cartesian form (by neglecting the body forces and body couples) [14] as

3M dv

du du du
at dx dy
dv dv dv

dv dv dv

dp /2/x + /c\ - dv
dx \ 2 J 3y

dy

= -2KV + Y^V + K\ — - —
aw

(2.1)

(2.2)

(2.3)

(2.4)

where u(x, y, t) and v(x, y, t) are the velocity components in the x and y directions
respectively, v (x, y, t) is the microrotation velocity component in the direction normal
to both the x and y axes and the origin is taken at the centre line of the channel
(Figure 1). Here J is the microinertia constant, fi is the viscosity coefficient of
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classical fluid dynamics, K and y are the new viscosity coefficients for the micropolar
fluids, p is the density of the fluid and V2 = 32/3;c2 + d2/dy2.

The displacement (r](x, t)) of the wall of the channel is given by

t)(x, t) = a cos (2n(x — ct)/k).

We assume that the walls are inextensible so that only lateral motion takes place and
the horizontal displacement of the wall is zero.

Thus the no-slip boundary conditions for the velocity and microrotation are

u = 0, v = 0

at y = ±(d + r](x, t)).
It may be mentioned that the main purpose of the present study is to understand the

dynamic interaction of the fluid and the walls in peristalsis. So the dynamic boundary
conditions are imposed on the fluid by the symmetric motion of the flexible walls,
which, following Mittra and Prasad [12], can be written as

dL{n) [du du du~\ /2U + K\ , dv
dx \_dt dx dy j \ 2 ) dy

at y = ±(d + rj(x, t)), where

"TTTT- + C-rrr. (2.5)
9;c

Here T is the tension in the membrane, m is the mass per unit area and C is the
coefficient of viscous damping force.

Introducing the stream function, * , in terms of

3 * 3 *
u = —, v = —— (2.6)

ay dx
and eliminating the pressure between (2.2) and (2.3), we get differential equations for
* and v. Using d and c as the characteristic length and characteristic velocity, these
equations are non-dimensionalised by introducing the following non-dimensional vari-
ables:
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After non-dimensionalisation, the accents are dropped and the governing equations
and boundary conditions, in non-dimensional form, are written as

3 -, -i i 2 + ui , , M i l
V *I* + 4* V HI 4/ V ty = [V V wl + —— V v (2 7)

dt y * * y 2Re Re
dv dv dv\ i -, -,->•>

h * * x — I = 2(1 - N )[V v] — TV M [ V z * + 2v]. (2.8)
dt dx dy J

The boundary conditions at y — ±(1 + r\(x, t)) are

vl/j, = 0, v = 0,

where

9x R*dx3 dt23x Redt8x'

r)(x, t) = ecos(a(A: — r)), e = a/d, a = 2nd/k, Re = pcd/ix, (A] = K/(A and

Tpd m 8fj.pcdJ

The parameters e, a and /?<. are the amplitude ratio, wave number and Reynolds
number respectively. These are the usual fundamental quantities observed in classical
peristaltic flow [8, 12]. The parameters /J-I and M are non-dimensional quantities due
to micropolar fluid flow. Also fi\ denotes the ratio of the viscosity coefficient for
micropolar fluids and the classical viscosity coefficient. It characterises the coupling
of (2.7) and (2.8). The parameter M can be thought of as a fluid property depending
upon the size of the microstructure. This is due to the factor (y//z)1/2, which has the
dimension of length. It can be noted that as K tends to zero, ^ becomes zero and (2.7)
and (2.8) are uncoupled. Further, when K and y are zero, that is, when \A\ becomes
zero and M tends to infinity, (2.7) and (2.8) reduce to the classical Navier-Stokes
equations. We note that Ri is the modified Reynolds number and involves the quantity
J (microinertia constant), where J is the square of a length typical of microstructure,
and it is reasonable to assume that i?( « 1 [11, 14]. In view of this, the effect of
microinertia is neglected and /?; is taken to be zero in the following analysis.

The parameters K2, K$ and m\ are the non-dimensional quantities related to the
wall motion through the dynamic boundary condition (2.9). The parameters K2

and Ki respectively represent the dissipative and rigiditive feature of walls, whereas
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wii indicates the stiffness property of walls. The choice K2 = 0 implies that the walls
move up and down with no damping force on them and hence indicates the case of
elastic walls. The rigid nature of the walls is represented by K3, which depends upon
the wall tension.

3. Analysis

It may be noted that the flow is quite complex because of nonlinearity and the
coupled behaviour of the governing equations and the boundary conditions. Thus to
solve (2.7) and (2.8) for the velocity field and microrotation, we attempt an approximate
solution as a power series in terms of e (ratio of amplitude to mean breadth of the
wavy wall). The pressure gradient is taken as

U
Further, it may be pointed out here that although the peristaltic motion is caused by
a single harmonic wave, the velocity field will consist of all harmonics due to the
nonlinearity of the equations. Thus we assume * and v are given in the following
form:

t (^(y)e + 4>i(y)e)

y (fcoOO + tfaOOe2"*-0 + 4>v{y)e-'u"<*-')) + o(c3), (3.1)

(fcoOO + feOO*2"*"0 + faOOe-2"*1"0) + o(e3). (3.2)

Here the asterisk denotes complex conjugate and *o00 and vo(y) correspond to the
plane Poiseuille flow, where e = 0. Substituting (3.1) and (3.2) in (2.7) to (2.9) and
collecting the terms of various powers of e and also different harmonics, we get the
differential equations for different orders of 4* and v (Appendix A).

Since zeroth-order differential equations correspond to plane Poiseuille flow of
micropolar fluid, where 6 = 0, the equations can be easily solved along with the
corresponding boundary conditions for ty) and v0 with a constant pressure gradient
(dp/dx)0- Thus we get

„ , ^VN (cosh(NM)-cosHNMy)\
1) + 2K )

nh(NMy)-ysmh(NM)\
V°~K{ sinh(WM) )
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where K = (Re/(2 + (ii))(dp/dx)0 is the Poiseuille flow parameter for the micro-
polar fluid.

For pure peristalsis (free pumping), which means that the flow is generated by wall
motions only, the pressure gradient (dp/dx)0 = 0. This implies that K = 0, which
gives ¥0(y) = 0, vo(y) = 0.

The time mean flow u(y) is defined as the velocity averaged over the period of
oscillation (r) of the wave propagation imposed on the flexible walls,

* Jt=o oy 2

Here / ( 2 ) means d2f /dy2. In the following we shall discuss the case of free pumping
only. In that case, we have

«00 = j4&\y) + o(€3). (3.3)

It is clear from the equations corresponding to the order of e2 that to calculate <foo for
the free pumping case, we need the expression for (p\ and £i. The governing equations
for 0i and £] for the free pumping case reduce to

£* (a^ - 0,(2>) , (3.4)

2(1 - N2) (|,(2) - a%) - 2N2M% - N2M2 (0<2) - a2^) = 0

and the boundary conditions are

(3.5)

where 6, = i{K3a
3/Rl - w,a3) + K2a

2/Re.
It is clear from (3.3) that to determine u(y) up to the second order of e, we need the

expression for ifeo- Thus in the following we give the equations governing 4>2o only,
for the case of free pumping,

2(1 - N2)S$ - 2N2M2^ - N2M2^ = 0,

with boundary conditions
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and

± y

(0

(3.7)

Solutions for 4>\(y), t;i(y) and (fooOO are given in Appendix B and u(y) is calculated
from (3.3).

4. Numerical results and discussion

In the following we study the effects of various parameters on the time mean flow
for the case of pure peristalsis only. The time mean flow, u(y), approximated up to
order e2, is given by (3.3). It may be noted that, apart from the usual dimensionless
parameters of peristaltic flow, Re (Reynolds number), a (wave number) and e (am-
plitude ratio), in this case the flow also depends upon the following non-dimensional
quantities:

(1) the micropolar fluid parameters ^i\ and M; and
(2) the wall parameters K2, AT3 and m:, which describe the viscoelastic behaviour

of the flexible walls.

We mention here that /xt and M characterise the coefficient of viscosity (K) and of
gyroviscosity (y) respectively. An increase in K is reflected in the coupling parameter
fj.i, while an increase in y results in decreasing values of M. Also the expression for
u(y) reduces to the Newtonian case [12], as /xi -> 0 and M -> oo.

The parameters K2 and #3 represent respectively the dissipative and rigiditive
features of the walls while mi indicates the stiffness property of the walls. The choice
K2 = 0 implies that the walls move up and down with no damping force on them and
hence indicates the case of elastic walls. The rigid nature of the walls is represented
by K3. In our analysis we assume that there is no stiffness in the walls and this implies
mx = 0. It may be noted from (2.5) that these three quantities cannot be taken as zero
simultaneously.

We shall now consider the following two cases for the wall properties:

(i) elastic wall (K2 = 0);
(ii) dissipative wall (K2 ^ 0).
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FIGURE 2. Distribution of u with y for a = 0.5 (K2 = 0, K3 = 1.0, mi = 0)

Case (i): K2 = 0. This corresponds to elastic walls where the dissipative effects
are neglected. In this case we numerically study the effects of fluid parameters and a
(wave number) on the mean flow characteristics, by taking K^ = 1.0 and m\ = 0.0 in
a channel where € = 0.1.

Figures 2 and 3 show the effect of /Z], M and Re on the time mean flow, induced
by the travelling waves on the flexible walls, when a = 0.5 and a = 2.0 respectively.

The effect of y (the coefficient of gyroviscosity) is observed by comparing the
graphs for M = 1 (Figures 2 (a), (c) and 3 (a), (c)) and for M = 10 (Figures 2 (b), (d)
and 3 (b), (d)). It is seen here that u(y) is large for higher values of M (M = 10).
Further, when M = 1, the flow is almost like a plug flow and u(y) is almost constant.
However, for M = 10, the plug flow is observed in most parts of the channel and u(y)'
sharply decreases to zero near the walls. In the case where M = 10, the variation with
respect to fii is not very significant.

To see the influence of the Reynolds number (Re), we have considered the two
cases Re = 1 and Re = 10. It is seen that u{y) decreases as Re increases. Further,
it is observed that while the qualitative behaviour of u(y) with respect to fi\ and M
remains similar in the two cases for Re, the effect of fxt is more significant at low
Reynolds number, when M = 10.
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FIGURE 3. Distribution of u with > fora = 2.0 (K2 = 0,K^ = 1.0, m! = 0)

The same analysis is repeated with a = 2.0. The pictorial representation for this
analysis is given in Figure 3. Comparing Figures 2 and 3, it is observed that u(y)
increases with an increase in a.

In Figure 4, we see the effect of K3 on u(y) for the case of pure peristalsis with
elastic walls (K2 = 0), by taking a = 1, Re = 10 and m, = 0. It is observed that
as ^3 increases, «(1) increases and M(0) decreases. In fact u(y) remains positive
throughout the channel until K3 attains a critical value Kic, for which M(0) = 0, and
after that it starts showing flow reversal behaviour at the middle of the channel, that is,
when y = 0. It is seen from Figure 4 that the value of Kic depends upon n,\ and M.
It increases as (i\ increases and decreases with M. As larger values of K3 correspond
to higher rigidity of the flexible boundary walls, one can conclude that higher rigidity
of the walls is required for mean flow reversal to take place in the case of micropolar
fluids.

Case (ii): Dissipative wall (A2 5̂  0). In the next two figures (5 and 6), we see the
effect of the dissipative nature of the walls (K2 £ 0) on the flow reversal by taking
K3 = 1 and m\ = 0. To see this effect, ii(l), that is, time mean flow at the boundary
is plotted versus a (wave number). While it is observed that no flow reversal takes
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FIGURE 4. Mean velocity distribution for a = 1.0, Rt = 10.0 (K2 = 0, nti = 0 )

place at the boundary for smaller values of K2 (M = 1, Figure 5), for any value of a,
u(l) is negative for larger values of K2 and it keeps on decreasing as a increases.

Thus the dissipative nature of the walls causes flow reversal at the boundary. This is
observed for various values of \t\, M and Re. We note that in the case of non-dissipative
walls this phenomenon was not observed. The effect of the coupling parameter /ii| is
to decrease the values of ii(l) and the effect of M is not very significant (Figures 5 (a)
and 6 (a)). The effect of Rc is to decrease the value of M(1) at small values of K2

and a. At large values of K2 the reverse effect is observed at all values of a, except
in the case of fj.\ = 10 and M = 10 (Figure 6 (b)). This peculiar behaviour of M(1)
(Figure 6 (b)) is due to the combined effect of fii and Re as w(l) decreases with /ij
and increases with Re for larger value of K2.

5. Conclusion

In the present study an analysis of peristaltic transport of a micropolar fluid in a
channel with dynamic boundary conditions has been presented. It is observed that
u(y) decreases when ix\ increases and as M decreases. The phenomenon of flow
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FIGURE 6. Effect of viscous damping on «(1) (AT3 = 1.0, mx = 0.0)

reversal takes place in the centerline of the channel due to rigidity variation in the
boundary walls, when viscous damping is zero. The critical value of K$ increases with
an increase in /xj and it decreases as M increases. For non-zero viscous damping, flow
reversal is found at the channel walls. Furthermore, these flow variables approach
behaviour in accordance with classical theory as the microstructure loses its behaviour.
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Appendix A.

The governing equations for vj/o and v0 are

2(1 - = 0,
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with boundary conditions given by ^ ^ ( ± 1 ) = 0, u o (±l ) = 0. The governing
equations for <pi and £j are

2(1 - /V2) (£,(2) - a2?,) - 2W2M2£, - N2M2 (<f>(2) - a2tf>,) = 0,

with boundary conditions given by

^ i M l / _ t ( 3 ) / i i \ . . 2 ^ ( 1 ) / i i \ i •

± vf (±1)) = «„

where Si = i{K^a /R2 — mia3) + K2a /Re- The governing equations for </>2o and £20
are

2 + Mi ^(4) , Mi t(2) - ' « / . ,.(2) ^ . ^ ( y x O

2(1 - W2)^2 ) - 2N2M2$2o - N2M2ct>$ = 0,

with boundary conditions given by

(0

± y ( 0 , (

- V>(±D ±
2

The governing equations for <p22 and £22 are

f
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2(1 - N2) (f2
(2) - 4a2^) - 2N2M%2 - N2M2 (*g> - 4a2<t>22) = 0,

with boundary conditions given by

- v<2)(±l)/4,

2ia*o
(2)(±l)022(±l) + ^

+ 2/a [(<p\

-^*O)(±l)0,(±l)-^-(f«>(±l)±
Z lKe \ )

Appendix B.

The solutions to (3.4H3.5) are

4>x (y) = A3 sinh ay + A^smhfiy + axAx sinh rxy + 02^2 sinh r2y,

£, (y) = A x sinh rxy + A2 sinh r2y,

where

—Si + axAxrx(r
2 — fi2) cosh rx + a2A2r2{r\ — fi2) cosh r2

a (fi2 — a2) cosh a
Sx — axAx rx (r

2 — fi2) cosh rx — a2A2r2(r
2 — fi2) cosh r2

4 = fi(fi2 -a2) cosh fi '

ax = -2N2/(r2 - fi2), a2 = - 2 y V 2 / ( r 2
2 - fi2),

Ax = ReN
2M2(sinh r2)/2dx, A 2 = — ReN

2 M2 (sinh rx)/2dx,

d\ = (rx + (Tx — T2— ot2)rx) sinh r2 cosh rx

— (r\ + (Tx — T2 — oc2)r2) sinh rx cosh r2,

Sx = RSX — 2N2(rxAxcosh rx + r2A2cosh r2),
1/2 / / / N̂ / \ 1 / 2

, r2 = [(-Xx - y] X2 - 4X2\ 12\ ,

XX = TX-T2- (a2 + fi2), X2 = a2fi2 - Txa
2 + T2fi

2,

TX=N*M2/(1-N2), T2 = N2M2/(l-N2) and fi2 = a2-2iaRe/(2+fxx).

https://doi.org/10.1017/S1446181100013304 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013304


[ 15] The peristaltic motion of micropolar fluid 259

The solutions to (3.6H3.7) are

fco(y) = C2 sinh(NMy)

where

- 2N2G2{y) -^lcosh(NMy) + ^ ^ + C,,

Civ
)

2(l-/V2)sinh(WM)
,2C3 = -0.5D, - C,(l) + 27V2G2(1) + ^ ^ c o s h r W M ) - —L-^-Cu

£>, = 4>f\l) + 0,(2)(1), D2 = f,*(I)(l) + £,(1)(1). £>3 = 0r(2)d) - </>,(2)(D

= fj f(y)dy,

and

F(A,B) =

, r\) + A>A\a\{r'2 - 02)F(p, r*)

- r2)F(a, r,) + A,A\a^'2 - r2)F(ru p*)

\{r'2 - r2)F(ru r\) + AxA\axa\{r'2 - r2)F(ru r*)

- r2
2)F(a, r2) + A2A\a2{P'2 - r2)F(r2, p*)

'(rx
t2 - r2)F(r2, r\) +A2A2'a2a2'(r2'

2 - r\)F{r2, r'2)] ,

sinh((A + B)y) sinh((A - B)y)

(A + B)[(A + B)2 - N2M2] (A - B)[(A - B)2 - W2M2]'
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