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ABSTRACT 
The mechanism by which superthermal electrons generate turbulence inside and 
behind an oblique shock is studied, and the implications for electron injection are 
considered. It is shown that, whereas in quasi-parallel shocks the streaming instabil­
ity dominates, in superluminal shocks the waves are driven unstable by 
compressional anisotropies produced as a result of betatron acceleration of elec­
trons traversing the shock. The injection process, in the diffusion approximation, is 
controlled by the structure of the shock and the corresponding diffusion coefficient, 
and appears to be markedly different for quasi-parallel than for superluminal 
shocks, owing to the differences between the field-aligned and cross-field transport 
properties. The requirements for efficient injection are examined and found to be 
less stringent in quasi-parallel shocks than in superluminal shocks. A naive estimate 
suggests that efficient injection by this process may take place in superluminal 
shocks with Mach numbers in excess of ,..., 100, provided that the shocked electron 
plasma undergoes very effective collisionless heating. The implications of cross-field 
diffusion by field-line wandering for electron injection in perpendicular shocks are 
also discussed. 
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1 INTRODUCTION 

The injection and acceleration of electrons by collisionless 
shocks is a problem of considerable interest in astrophysics. 
Although the electrons provide our main in situ probes of 
shock acceleration in most astrophysical sites, the physics of 
electron injection and aCceleration is poorly understood. . 
Much work has been concerned with the acceleration of 
relativistic electrons (for recent reviews see Eichler 1992, 
1994; Blandford 1992, 1994; Biermann 1995). Ellison & 
Reynolds (1991) have studied the effects of shock non­
linearity on the spectrum of accelerated electrons, using 
Monte Carlo simulations. Reynolds & Ellison (1992) have 
subsequently shown that non-linear effects are reflected in 
the radio spectra of several young SNRs, and illustrated 
how this may enable one to estimate the magnetic field 
strength in those systems. The overall normalization of the 
electron spectrum is treated, in their analysis, as a free 
parameter. (For further discussions on non-linear effects, 
see Ellison 1994.) Achterberg, Blandford & Reynolds 
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(1994), and Reynolds (1994) have argued that the presence 
of sharp (unresolved) synchrotron edges in high-resolution 
radio maps of young, bright SNRs is indicative of enhanced 
turbulence ahead of the shock, which is one of the charac­
teristic features of diffusion shock acceleration models. 
Eichler & Usov (1992) considered electron acceleration in 
colliding wind shocks of Wolf-Rayet binaries, and the 
implications for radio and y-ray emission. Motivated by 
young SNRs where the shock is expanding into the progeni­
tor's stellar wind, Achterberg & Ball (1994) have carefully 
examined the conditions required for efficient electron 
acceleration in perpendicular shocks, and have applied their 
analysis to SN1987A and SN1978K. 

However, in most of those discussions, the injection of 
electrons from the thermal pool to mildly relativistic ener­
gies has been neglected. Of fundamental importance is the 
determination of injection efficiency as a function of shock 
velocity and obliquity (a related issue is the extent of elec­
tron heating in the shock). The synthetic radio images 
generated by Reynolds (1994) demonstrate that the mor­
phology of young SNRs reflects, essentially, this 
dependency of injection efficiency on shock speed and 
obliquity. Biermann & Cassinelli (1993) have argued that a 
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comparison of Wolf-Rayet stars and radio SNRs suggests 
that the injection efficiency of electrons in perpendicular 
shocks appears to be very sensitive to shock speed; the 
efficiency drops by several orders of magnitude when the 
shock speed becomes smaller than some critical value, 
which they estimated to be ~ O.03c. 

Electron injection at non-linear, parallel shocks has been 
addressed recently by Levinson (1992, 1994), and Bykov & 
Uvarov (1993). Both authors concluded (although on some­
what different grounds) that efficient injection requires 
relatively high Mach number shocks (but as we shall argue 
below, not as high as those required in the case of perpen­
dicular shocks). In Section 2.1 we generalize the injection 
mechanism mentioned above to quasi-parallel shocks. The 
rest of the paper is devoted to studying some aspects of 
diffusive accelerations (as opposed to drift acceleration) in 
perpendicular shocks. Specifically, we shall concentrate on 
the plasma physics associated with injection by self-gener­
ated turbulence from thermal to mildly relativistic energies, 
and examine the conditions under which efficient injection 
may take place, by solving the corresponding transport 
equation. The appropriate transport equation is derived in 
the Appendix. 

There are several competitive processes that may give rise 
to electron energization in quasi-perpendicular shocks. 
Galeev (1984) proposed a mechanism whereby electrons 
were accelerated in the ion precursor through the inter­
action with ions reflected from the shock. The acceleration 
efficiency in this process depends on the distribution and 
the relaxation of reflected ions upstream, which is still an 
open issue, in particular in very high Mach number shocks. 
Non-resonant scattering in the shock by non-linear, small­
scale structure in the ramps may also be important. In this 
paper we shall not consider such processes, and will focus 
merely on injection into the first-order Fermi process. 

2 ELECTRON INJECTION BY SELF­
GENERATED WAVES IN OBLIQUE SHOCKS 

2.1 Electron injection in quasi-parallel shocks 

We now generalize the injection mechanism proposed by 
Levinson (1992,1994) to quasi-parallel shocks. We suppose 
that the anisotropy of the electron distribution function is 
small. To second order in V _Iv, where V_is the upstream 
fluid velocity and v is the velocity of a resonant electron, we 
obtain from equation (A3), after averaging over pitch angle, 
an equation for the isotropic part of the distribution, 10' 

a/o a 2 . 2 a/o 1 dV a/o 
V---(K cos I/I+K sm I/I)----P-=O 

az az II .L az 3 dz ap , (1) 

where 1/1 is the angle between the shock normal and the 
magnetic field, K.L is the cross-field diffusion coefficient 
given by equation (A4), and KII is the field-aligned diffusion 
coefficient, and is given by equation (4) of Levinson (1992). 
We also have an equation relating the anisotropic part of 
the electron distribution function, II> to 10, 

all = _ v cos 1/1 a/o 

all 2vs az 
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Here Vs is the pitch angle scattering rate (see equation A6). 
The above equations must be supplemented by an equation 
for the growth rate of the whistler instability and an equa­
tion describing the evolution of the wave spectral 
intensity. 

The linear growth rate for whistlers can be written as 
(Melrose 1986) 

x pv X -+--p- 1-- X , [ 
3 ( al v~ a/) ( 11 )21 

all v2 11l1 ap 1111 p~p, 
(3) 

where Vw = (mplme)1/2v A, v A is the Alfven velocity, PR is a 
resonant momentum, given by PR = m/J.e Ik I IlX I, where Qe is 
electron gyrofrequency, X is the cosine of the angle between 
the wavevector and the direction of the magnetic field, and 
ne is the electron density of the background plasma. Substi­
tuting equation (2) into equation (3), and assuming that the 
electron distribution is a power law, we find, using the analy­
sis of Levinson (1992), that growth occurs when the 
upstream velocity satisfies 

V COS2 1/1 + /12 sin2 1/1 
> v 

- Ixlcosl/I ¢ 
(4) 

omitting factors of order unity (see Levinson 1992 for 
details). In the 'last equation /1 = K .LIKII ':::'. rg vslv, where rg is 
the gyroradius of a resonant electron. Typically, /1« 1. At 
angles for which tan 1/1« /1, the last term on the right-hand 
side of equation (4) can be neglected. It then follows from 
equation (4) that in this regime the condition for wave 
growth is given, to a good approximation, by equation (9) of 
Levinson (1992) with v", replaced by v¢ cos 1/1. Moreover, in 
this limit, cross-field diffusion can be neglected. The 
assumption that I, is small holds when V JV > cos 1/1. The 
foregoing analysis then indicates that when the angle 
between the shock normal and the magnetic field 
1/1 > cos -1(V JV), the anisotropy of the electron distribution 
function inside the shock is predominantly due to the 
streaming of electrons along field lines. When 1/1 exceeds 
this value, the anisotropy along field lines is too small to 
derive instability. The upstream turbulence in this case 
should be due to other processes. We can now use the 
equation for the spectral intensity (see equation 12) 
together with equation (1) to determine the field-aligned 
diffusion coefficient. The result is 

2V nerg 
KII':::'. , 

nne cos 1/1 
(5) 

where ne=4npyo(p) is the total number density of cosmic­
ray electrons with momentum greater than p, and ne is the 
electron density of the bulk plasma. We see that the diffu­
sion coefficient is inversely proportional to the density of 
injected electrons, which leads to a negative feedback (Lev­
inson 1994). Equation (5) generalizes the result obtained 
earlier for strictly parallel shocks. In view of this negative 
feedback, we anticipate that the injection efficiency will be 
also insensitive to obliquity. 
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1020 The injection of electrons in oblique shocks 

2.2 Electron injection in perpendicular shocks 

In superluminal shocks, particles, once they have been 
swept downstream by the shock, cannot recross the shock 
into the upstream region by sliding (or diffusing) along 
magnetic field lines. Shock recrossing may only be accom­
plished by cross-field diffusion, which requires sufficiently 
strong scattering behind the shock. In the absence of cross­
field transport, particles traversing the shock can gain 
energy through the shock-drift mechanism (for reviews see 
Toptyghin 1980; Drury 1983), but the maximum energy gain 
is limited to I':.EIE of order a few. In order to produce 
power-law distribution behind the shock, particles must 
scatter (diffuse) back and forth across the shock many 
times. Diffusive acceleration of relativistic particles in per­
pendicular shocks has been considered by Jokipii (1982, 
1987), who was particularly concerned with the dependence 
of the acceleration rate on shock obliquity. More recently, 
Achterberg & Ball (1994) have reconsidered this problem in 
the context of young supernova blast wave expanding into a 
stellar wind. They have discussed, in some detail, cross-field 
transport of electrons induced by both resonant scattering 
and field line wandering, and the applications to the radio 
emission from SN1978K and SN1987A. However, they have 
addressed neither the physics of injection, which is crucial 
for the determination of the overall normalization of the 
electron spectrum, nor the generation of turbulence ahead 
and behind the shock. 

In this section, we focus on electron injection from ther­
mal to mildly relativistic energies by self-generated waves in 
perpendicular shocks. The idea behind the mechanism pro­
posed below is fairly simple: first, it should be noted that the 
thickness of the shock is typically of order a few ion gyro­
radii, which is much larger than the gyroradius of thermal 
electrons (by roughly a factor of [mpT +!mJ +e]I/2, where 
THis the downstream temperature of a species C(). There­
fore, thermal electrons will see the shock as a smooth 
transition rather than a plane discontinuity, and the adia­
batic approximation is applicable. Now, as a result of 
compression of the magnetic field in the shock, the perpen­
dicular momentum of an electron traversing the shock will 
increase such that the first adiabatic invariant p~/2B is pre­
served (the betatron effect). Consequently, an isotropic 
electron distribution transmitted through the shock will 
develop compressional anisotropy (depicted in Fig. 1), 
resulting in generation of whistler waves when P <P A == mp VA 

or Alfven waves when P>PA (e.g. Melrose 1980). The 
excited waves, in turn, would give rise to pitch-angle scatter­
ing, thereby maintaining the anisotropy at a level at which 
wave growth is balanced by energy-loss processes. The reso­
nant scattering will also induce cross-field transport, causing 
electrons inside the shock to diffuse in the upstream direc­
tion. This injection mechanism is essentially similar to the 
one proposed for quasi-parallel shocks (see also Section 
2.1), but with one important difference; whereas in parallel 
shocks the injection efficiency increases with decreasing v" 
by virtue of the shock non-linearity and the fact that the 
field-aligned diffusion coefficient is inversely proportional 
to v" in perpendicular shocks the efficiency increases with 
increasing v" because the cross-field diffusion is propor­
tional to VS' This leads to a positive feedback which may 
suppress the injection efficiency considerably, except, per-

P-L 

Figure 1. Schematic contour plot of a compressional distortion 
distribution. 

haps, for very high Mach number shocks. Consequently, the 
conditions required for effective electron injection are 
expected to be more stringent in perpendicular shocks. 

We now consider a quantitative demonstration of this 
mechanism. For simplicity, we consider the idealized case of 
a planar shock propagating in the - z direction. Because, as 
mentioned above, the shock thickness largely exceeds the 
gyroradii of injected electrons, the electron distribution 
function is effectively independent of gyrational phase, 
allowing one to average the transport equation over this 
coordinate (e.g. Blandford & Eichler 1987; Schlickeiser 
1989). In the case of relativistic electrons for which the 
gyroradius exceeds the shock thickness, finite gyro-orbit 
effects may become important, unless, perhaps, the effec­
tive scattering rate ahead and behind the shock is extremely 
large, as often assumed. Even though the adiabatic theory is 
not applicable in this case, the magnetic moment is still 
preserved to a good approximation when a particle crosses 
the shock (Toptyghin 1980), and self-generation of Alfven 
waves by the compressional distortion distributions behind 
the shock will still take place. 

For a strictly perpendicular shock, the steady-state trans­
port equation for the electron distribution, averaged over 
gyrational phase, reduces to (see Appendix) 

(6) 

where U(z) is the local flow velocity, K.l is the cross-field 
diffusion coefficient and is given by equation (A4), J1 is the 
cosine of the particle's pitch angle, and Vs is the pitch-angle 
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scattering rate given by equation (A6). We have neglected 
terms involving gradients along the shock front (i.e. in theX 
and Y directions). Note that the last term on the LHS can be 
written as 

1 0 dP1. f 
P1. Op1. P1. dt ' 

with dp 1./dt = (p 1./2B)dB/dt (which follows from the conti­
nuity of the electric field across the shock, i.e. 
UB = constant), representing the betratron effect. In the 
absence of cross-field transport, i.e. Vs = K1. = 0, equation (6) 
can be readily solved analytically. The distribution is con­
stant along the characteristic P 1. (z), with P 1. (z = 0) 
determined by the distribution upstream. If the upstream 
distribution is isotropic then the transmitted distribution is a 
compressional distortion, and is unstable. This would lead 
to rapid generation of turbulence inside the shock which 
would scatter the electrons, and would limit the anisotropy. 
In this case one can solve equation (6) using standard per­
turbation theory, whereby the parameter vs-\dUldz) serves 
as the smallness parameter. Averaging over pitch angle 
gives, to the lowest order, the standard convection-diffu­
sion equation, 

oio 0 oio 1 dU oio 
U---K1. ----P-=O. 

OZ OZ OZ 3 dz 0 P 
(7) 

Subtracting the latter equation from equation (6), we 
obtain, to the next order, an equation for il> 

oi, /1 dU oio 
-=---P-
0/1 3vs dz op· (8) 

Note that if vs(/1) is symmetric (which is the last case here)i, 
is an even function of /1 such that (to first order) the electron 
distribution io + i, is a compressional distortion. We can 
employ now the expression obtained for i, in order to com­
pute the linear growth rate for whistlers inside the shock. 

The linear growth rate is given by equation (3). By 
employing equation (8), we can now express the growth rate 
in terms of the isotropic part of the distribution function 

2 f' n k 2 4 oio 
Yw= -- d/1(l-/1)p v-

2ne _, op 

(9) 

For a given wavevector, the dominant contribution to the 
integral comes from electrons propagating opposite to its 
direction, namely, those for which the pitch angle satisfies 
X/1<O. For a power-law distribution,joocp-"; «()(~4), and 
assuming that Vs is a slowly varying function of /1 (except 
maybe for small/1), the integral on the RHS of equation (9) 
can be performed analytically. To a good approximation, we 
find that the condition for wave growth (i.e. Yw > 0) is 

..x.. 1 ~ 1 > v~ =2Pe-' (Ve)2, 
3vs dz v v 

(10) 
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(note that dU/dz<O), where Ve is the electron thermal 
speed and Pe is the ratio of thermal electron pressure to 
magnetic pressure. Since Pe inside the shock is anticipated 
to exceed unity as a result of heating, condition (10) will be 
satisfied for electrons having v> Ve. Now, in the absence of 
any energy-loss processes (e.g. non-linear mode coupling, 
wave convection) other than damping by thermal electrons, 
the waves will reach a steady state wherein Yw = O. The pitch­
angle-scattering rate can then be readily found using 
equation (10). In terms of the shock thickness Lsh = UI 
(dUldz) and the gyroradius of electrons with v = U, namely, 
rg(U _) = U .In.e, it takes the form 

(11) 

where it has been assumed that Lsh is of the order of the 
downstream thermal ion gyroradius. The assumption that 
non-linear processes can be ignored is likely to break down 
when the ratio of wave energy density, e." to the energy 
density of the background magnetic field, eB = B 2/8n, which 
for whistlers is given approximately by (Levinson 1992; see 
also Appendix) e.,/eB ~ (4/n) (vJn.e), approaches unity. This 
happens when the electron momentum approaches 
PA =mpvA- Electrons with higher momenta will generate 
Alfven waves that will give rise to pitch-angle scattering at a 
rate ~n.e. 

The waves produced in the shock will be convected down­
stream by the fluid. The associated energy flux is U e.,. (One 
way to obain this result is by Lorentz transforming the wave 
electromagnetic field from the fluid frame into the shock 
frame and then calculating the corresponding Poynting 
flux). The resultant energy loss rate must balance the net 
linear growth rate. This is described by the equation 

(12) 

Equations (7), (9) and (12) can be integrated now for a 
given shock. profile in order to yield the distribution of 
injected electrons inside and downstream of the shock. The 
structure of the shock is expected to be complicated on 
these scales because the ions cannot be treated as a fluid. 
Nevertheless, it may still be possible to define an average 
flow velocity U(z), and assume that, to some extent, the 
thermodynamic variables follow the fluid equations. This 
will be done in a follow-up paper (Levinson 1995, in 
preparation). Here, we estimate Vs by replacing %z with 
Lsh in the last equation, and again assume that poi/op ~ f. 
This yields 

(13) 

where nc=4np3i(P) is roughly the total number density of 
injected electrons with momentum >p. This result general­
izes equation (11). (When v exceeds [mp/meJVA' the term 
V~/V2 in the parentheses on the right-hand side of the last 
equation must be replaced by VA/V.) Evidently, the scattering 
rate of injected electrons with sufficiently small velocities is 
limited by collisionless damping of waves by the background 
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(note that dU/dz<O), where Ve is the electron thermal 
speed and Pe is the ratio of thermal electron pressure to 
magnetic pressure. Since Pe inside the shock is anticipated 
to exceed unity as a result of heating, condition (10) will be 
satisfied for electrons having v> Ve. Now, in the absence of 
any energy-loss processes (e.g. non-linear mode coupling, 
wave convection) other than damping by thermal electrons, 
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equation (10). In terms of the shock thickness Lsh = UI 
(dUldz) and the gyroradius of electrons with v = U, namely, 
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rate ~n.e. 

The waves produced in the shock will be convected down­
stream by the fluid. The associated energy flux is U e.,. (One 
way to obain this result is by Lorentz transforming the wave 
electromagnetic field from the fluid frame into the shock 
frame and then calculating the corresponding Poynting 
flux). The resultant energy loss rate must balance the net 
linear growth rate. This is described by the equation 
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Equations (7), (9) and (12) can be integrated now for a 
given shock. profile in order to yield the distribution of 
injected electrons inside and downstream of the shock. The 
structure of the shock is expected to be complicated on 
these scales because the ions cannot be treated as a fluid. 
Nevertheless, it may still be possible to define an average 
flow velocity U(z), and assume that, to some extent, the 
thermodynamic variables follow the fluid equations. This 
will be done in a follow-up paper (Levinson 1995, in 
preparation). Here, we estimate Vs by replacing %z with 
Lsh in the last equation, and again assume that poi/op ~ f. 
This yields 
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where nc=4np3i(P) is roughly the total number density of 
injected electrons with momentum >p. This result general­
izes equation (11). (When v exceeds [mp/meJVA' the term 
V~/V2 in the parentheses on the right-hand side of the last 
equation must be replaced by VA/V.) Evidently, the scattering 
rate of injected electrons with sufficiently small velocities is 
limited by collisionless damping of waves by the background 
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1022 The injection of electrons in oblique shocks 

electrons, whereas that of more energetic electrons is 
limited by wave convection. It is also expected from equa­
tion (7) that the injection efficiency will depend quite 
sensitively on the downstream electron temperature (in 
contrast to the injection in parallel shocks). In fact, inspec­
tion of equation (11) suggests that efficient injection may 
take place when the ratio of the diffusion length of thermal 
electrons to shock thickness, 

(14) 

where Ms is the sound Mach number, and ')I is the adiabatic 
index, is not much smaller than unity. In deriving the last 
equation, we have used equation (13) and assumed that 
nJne ~ 1 for thermal electrons just behind the shock. Condi­
tion (14) might be satisfied for strong shocks when the 
downstream plasma is in rough equipartition; that is, when 
the downstream electron temperature approaches the Ran­
kine-Hugoniot value, r;. This, in turn, requires very strong 
coupling via collective processes between ions and electrons 
in the shock, which might be accessible in high Mach num­
ber shocks (Cargil & Papadopoulos 1988), as also indicated 
by X-ray observations of young SNRs (e.g. Draine & McKee 
1993). To elucidate the Mach number required for efficient 
injection, we employ a rudimentary shock model. We con­
sider a strong shock; that is, high Alfven and sound Mach 
numbers, and suppose that the equation of state is h = 

(')I/y -l)P, where h is the specific enthalpy and P is the 
pressure. The adiabatic index is taken to be constant across 
the shock. The jump conditions then yield (e.g. Draine & 
McKee 1993), kT;=(2(')I-1)/(')I+1)2)mpU~. Let us 
assume further that the electron temperature downstream 
is a fraction 11 of r;. We then find f3e+ =(2')1(')1 _1)2/ 
(')I + 1)3)f3e_I1M ;. Substituting these results into equation 
(14) gives 

~ ~ 2')1(')1 _1~3 (me) f3e_112M;. 
U _Lsh 3(')1 + 1) mp 

(15) 

Under the physical conditions anticipated, f3e- ~ 1. Taking 
')I = 5/3, we find that the Mach number required for efficient 
injection is 

Ms;:::IO011-1. (16) 

Thus, even when electrons undergo substantial heating 
behind the shock (i.e. 11 ~ 1), very high Mach numbers are 
required. 

For the sake of completeness, we consider the implica­
tions of cross-field transport by field-line braiding for 
electron injection. A rigorous treatment of cross-field diffu­
sion due to field-line wandering in different scattering 
regimes is given by Achterberg & Ball (1994). The corres­
ponding diffusion coefficient depends in general on the 
power spectrum of the magnetic fluctuations. In the case of 
the narrow-band spectrum, it can be approximated as (Joki­
pii 1966), 

K.L = vLc(bB/Bo)2, 

where Lc is the correlation length and is of the order of the 
dominant wavelength, Bo is the mean field, and bB is the 

corresponding amplitude of the fluctuations. In the case of 
a broad-band power spectrum K.L is reduced by some factor, 
Rq 2: 1, associated with the decorrelation of field lines owing 
to finite perpendicular correlation distance (Achterberg & 
Ball 1994). By applying the same analysis as in the preceding 
example, we obtain 

which implies again that when Te + approaches r; (in which 
case [Te+/Te_]1/2Ms-l ~ 1), 

is required for efficient injection. Thus, the presence of 
large-amplitude, long-wavelength modes may help to raise 
the injection efficiency. Such modes may be an inherent part 
of the shock structure. A fair estimate of this effect, how­
ever, requires extensive numerical simulations, and a better 
understanding of the shock culture. 

3 SUMMARY AND CONCLUSION 

We have considered electron injection by self-generated 
turbulence in oblique shocks, and examined the conditions 
required for efficient injection. In the following, we sum­
marize the main results of this investigation. 

In contrast to quasi-parallel shocks, in superluminal ones 
shock recrossing must involve cross-field transport, which 
requires vigorous scattering. Electrons traversing the shock 
undergo betatron acceleration owing to the compression of 
the magnetic field in the shock, giving rise to compressional 
distortion distributions inside and just behind the shock. 
Shock distributions are unstable and would lead to genera­
tion of resonant waves which would, in turn, reduce the 
anisotropy via pitch-angle scattering, keeping it at a level at 
which the net growth rate is balanced by convection of 
waves downstream. The pitch-angle scattering also induces 
cross-field transport, causing the electrons to diffuse in the 
upstream direction. The resultant cross-field diffusion 
coefficient appears to be proportional to the pitch-angle 
scattering rate, thereby giving rise to a positive feedback 
which strongly suppresses the injection efficiency, and ren­
ders it sensitive to the Mach number and the extent of 
collisionless electron heating inside and behind the shock. 
Efficient injection requires the diffusion length of thermal 
electrons downstream to be not much smaller than the 
shock length-scale (which, in the absence of shock smooth­
ing owing to back reaction of accelerated protons, is 
expected to be of the order of thermal ion gyroradius). This 
condition might be satisfied in very high Mach number 
shocks. NaIve estimate suggests that the implied sound 
Mach number should exceed 100. This seems to be compat­
ible with the conclusion of Biermann & Cassinelli (1993), 
namely that the electron injection efficiency drops by 
several orders of magnitude in perpendicular shocks when 
the shock velocity becomes smaller than about 0.03c. 
Quantitative determination of the spectrum of injected 
electrons is the subject of numerical simulations. The sim-
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plest treatment is to solve equation (7) numerically, using 
the diffusion coefficient computed in equation (13), for dif­
ferent shock parameters. Such analysis will be presented 
elsewhere. 

Field-line braiding can relax the requirements for effi­
cient injection if intense, narrow-band power-spectrum 
turbulence with coherent length of the order of the shock 
thickness, is present. In any case, very effective heating of 
the shocked electron plasma is necessary. 

As already mentioned in Section 2.2, the adiabatic 
approximation breaks down for energetic particles for 
which the diffusion length exceeds the shock thickness. 
Nevertheless, it is still true that the magnetic moment of 
these particles will be preserved (Toptyghin 1980) when 
crossing the shock from the upstream to the downstream 
region. Thus, the same mechanism that governs the genera­
tion of downstream turbulence by injected electrons, as 
discussed above, may be applicable to relativistic electrons. 
The generation of upstream waves in perpendicular shocks 
is still an unresolved issue. One plausible mechanism is the 
generation of waves by the reflected ions (Galeev 1984). 
The interaction of electrons with those waves may also give 
rise to electron energization in the ion precursor. However, 
a fair estimate of the efficiency requires self-consistent sim­
ulations. Even in the absence of upstream turbulence, 
efficient acceleration may still be possible, as suggested by 
Tzhong (1989). We have performed test-particle simula­
tions to examine the acceleration of electrons in 
perpendicular shocks, in the presence of and in the absence 
of upstream turbulence. We find that, although the 
presence of a turbulence precursor helps to raise the accel­
eration efficiency significantly, a non-negligible fraction of 
particles can gain energy, by several orders of magnitude, 
also in the absence of scattering upstream. Detailed results 
of these simulations will be reported elsewhere. 

Several important processes have been neglected in our 
analysis, some of which may be of importance in perpendic­
ular shocks. In particular, the interaction of electrons with 
the turbulence generated by reflected ions, non-resonant 
interactions in the shock, and second-order Fermi accelera­
tion by the self-excited waves themselves. Such processes 
may become relatively more important in low and moderate 
Mach number shocks, as suggested by measurements of the 
fluxes of high-energy particles in the earth bow shock. How­
ever, as suggested by our analysis, first-order Fermi 
acceleration may dominate in high Mach number shocks 
such as young supernova blast waves, or shocks in extra­
galactic radio sources. Again, a fair estimate may require 
extensive numerical simulations of shocks. 
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APPENDIX A: DERIVATION OF THE PITCH­
ANGLE SCATTERING EQUATION IN THE 
PRESENCE OF CROSS-FIELD DIFFUSION 

The derivation of the transport equation has been made by 
several authors. A rigorous derivation in the absence of 
cross-field diffusion is due to e.g. Skilling (1975), (see also 
Schlickeiser 1989). Webb (1985) has extended it to the gen­
eral relativistic case. Cross-field diffusion has been treated, 
under the assumption of strong scattering, by e.g. Earl, 
Jokipii & Morfill (1988), Webb (1989), who modelled 
wave-particle interactions with a Krook scattering oper­
ator, which was inappropriate for describing diffusion in 
momentum space through resonant, small-angle scattering. 
Below, we follow the derivation of Skilling (1975) (see also 
Blandford & Eichler 1987 and references therein), but we 
include cross-field diffusion in a manner discussed by Mel­
rose (1980). 

We denote by b(x) the unit vector in the direction of the 
local magnetic field, and choose a coordinate system (XI' X 2, 

X3) such that X3 is measured along b. The momentum and 
pitch angle of the particle are denoted by p and cos -1/1, 
respectively. We assume that the distribution of waves is 
cylindrically symmetric with respect to the magnetic field, 
i.e. kl = k2 = k.1' It is convenient to transform into a frame in 
which the scattering is elastic. In the case of scattering by 
waves, this would be the frame in which the wave electric 
field vanishes. Because the phase velocities involved are 
typically much smaller than the fluid velocity, the corres­
ponding frame is essentially the fluid frame. In this frame 
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plest treatment is to solve equation (7) numerically, using 
the diffusion coefficient computed in equation (13), for dif­
ferent shock parameters. Such analysis will be presented 
elsewhere. 

Field-line braiding can relax the requirements for effi­
cient injection if intense, narrow-band power-spectrum 
turbulence with coherent length of the order of the shock 
thickness, is present. In any case, very effective heating of 
the shocked electron plasma is necessary. 

As already mentioned in Section 2.2, the adiabatic 
approximation breaks down for energetic particles for 
which the diffusion length exceeds the shock thickness. 
Nevertheless, it is still true that the magnetic moment of 
these particles will be preserved (Toptyghin 1980) when 
crossing the shock from the upstream to the downstream 
region. Thus, the same mechanism that governs the genera­
tion of downstream turbulence by injected electrons, as 
discussed above, may be applicable to relativistic electrons. 
The generation of upstream waves in perpendicular shocks 
is still an unresolved issue. One plausible mechanism is the 
generation of waves by the reflected ions (Galeev 1984). 
The interaction of electrons with those waves may also give 
rise to electron energization in the ion precursor. However, 
a fair estimate of the efficiency requires self-consistent sim­
ulations. Even in the absence of upstream turbulence, 
efficient acceleration may still be possible, as suggested by 
Tzhong (1989). We have performed test-particle simula­
tions to examine the acceleration of electrons in 
perpendicular shocks, in the presence of and in the absence 
of upstream turbulence. We find that, although the 
presence of a turbulence precursor helps to raise the accel­
eration efficiency significantly, a non-negligible fraction of 
particles can gain energy, by several orders of magnitude, 
also in the absence of scattering upstream. Detailed results 
of these simulations will be reported elsewhere. 

Several important processes have been neglected in our 
analysis, some of which may be of importance in perpendic­
ular shocks. In particular, the interaction of electrons with 
the turbulence generated by reflected ions, non-resonant 
interactions in the shock, and second-order Fermi accelera­
tion by the self-excited waves themselves. Such processes 
may become relatively more important in low and moderate 
Mach number shocks, as suggested by measurements of the 
fluxes of high-energy particles in the earth bow shock. How­
ever, as suggested by our analysis, first-order Fermi 
acceleration may dominate in high Mach number shocks 
such as young supernova blast waves, or shocks in extra­
galactic radio sources. Again, a fair estimate may require 
extensive numerical simulations of shocks. 
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APPENDIX A: DERIVATION OF THE PITCH­
ANGLE SCATTERING EQUATION IN THE 
PRESENCE OF CROSS-FIELD DIFFUSION 

The derivation of the transport equation has been made by 
several authors. A rigorous derivation in the absence of 
cross-field diffusion is due to e.g. Skilling (1975), (see also 
Schlickeiser 1989). Webb (1985) has extended it to the gen­
eral relativistic case. Cross-field diffusion has been treated, 
under the assumption of strong scattering, by e.g. Earl, 
Jokipii & Morfill (1988), Webb (1989), who modelled 
wave-particle interactions with a Krook scattering oper­
ator, which was inappropriate for describing diffusion in 
momentum space through resonant, small-angle scattering. 
Below, we follow the derivation of Skilling (1975) (see also 
Blandford & Eichler 1987 and references therein), but we 
include cross-field diffusion in a manner discussed by Mel­
rose (1980). 

We denote by b(x) the unit vector in the direction of the 
local magnetic field, and choose a coordinate system (XI' X 2, 

X3) such that X3 is measured along b. The momentum and 
pitch angle of the particle are denoted by p and cos -1/1, 
respectively. We assume that the distribution of waves is 
cylindrically symmetric with respect to the magnetic field, 
i.e. kl = k2 = k.1' It is convenient to transform into a frame in 
which the scattering is elastic. In the case of scattering by 
waves, this would be the frame in which the wave electric 
field vanishes. Because the phase velocities involved are 
typically much smaller than the fluid velocity, the corres­
ponding frame is essentially the fluid frame. In this frame 
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the Vlasov equation can be written (to order U/v) as 

of + (v + U)V _ (pV)U of at op 

(AI) 

where v and p are the particle velocity and momentum, 
respectively, U is the shock velocity, w" (s,p,k) is the prob­
ability per unit time for gyromagnetic emission (absorption 
of a photon in a mode (J in the range d3k/(2n? (see Melrose 
1980 for explicit expressions for this quantity), N(k) is the 
corresponding occupation number, and 

(A2) 

where k ~ is the component of the wave vector perpendicular 
to the magnetic field, and tij"= «()ij - bib). The last term on 
the RHS of equation (A2) describes the shift of the centre 
of gyration across the field as a result of the emission of a 
photon with wavevector k (see Melrose 1980 for detailed 
discussions). Under the assumption that the distribution 
function is independent of gyrational phase, we can average 
equation (A2) over this coordinate. This yields 

(A3) 

where Vs is the pitch-angle scattering rate, and is given by 

Vs(P)=I J (~:~3 (tlrflw"(s,p,k)N(k). 
s 

The second term on the left-hand side of equation (A3) 
describes the cross-field diffusion. The corresponding diffu­
sion coefficient is 

(A4) 

Consequently, cross-field diffusion requires the presence of 
off-axis waves. In equations (A3) and (A4) rg=p ~/(m/J.e) is 
the particle's gyroradius, and tlo( being the change in the 
pitch angle as a result of emission (absorption) of a pho­
ton, 

(AS) 

(we have used the fact that OJ« Qe ~ kllv). Thus, unless the 
excited waves are confined to a narrow cone around the 
magnetic field, we can approximate the cross-field diffusion 
as K ~ ~ r~v" which is a well-known result. For whistlers, the 
scattering rate is given explicitly by (Melrose 1980) 

2 2 JI ()2 ne W(kR, x) Il 
vs(P,Il) = m 2 1 1 dx 2 1--1 1 X , 

eC P 11 -I X 11 
(A6) 

where kR = meQe/P Illx I, X being the angle between the 
wavevector and the magnetic field, and 

Bw=JI dX Joodk W(k,X) 
-I 0 2 

is the energy density in whistlers. 
Equation (A3) is sufficiently general to describe transport 

in oblique shocks. We have neglected the contribution aris­
ing from the potential drop across the shock ramp which is 
expected to be small for the energetic particles under con­
sideration. 
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