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On the instability in Universe

VU THANH KHIÊT
Institut Henri Poincaré (*)

Ann. Inst. Henri Poincaré,

Vol. XV, n° 1, 1971,

Section A :

Physique théorique.

ABSTRACT. - With coordinate conditions which are different from
Lifshitz’s ones it is investigated the instability in a universe model locally
nonhomonogeneous which is the generalization of Shirokov and Fisher’s
model. The general equation for the density contrast E is obtained.
For the gravitational instability in the cases of uniform models containing
matter and blackbody radiation and of the oscillating model of Rosen
one gets E ~ t4/3 and respectively. The general equation for
thermal instability in the later stages of cosmic evolution is also obtained.
Basing on different investigations about the thermal conditions of inter-
galactic matter the numerical values of the growth rate of the density
contrast are calculated. All those results show the important role of

. 

thermal instability in the galaxy formation.

RESUME. - Avec des conditions de coordonnees qui sont différentes
de celles de Lifshitz, on a etudie l’instabilité d’un modele d’Univers locale-
ment non-uniforme qui est la generalisation du modele de Shirokov et
Fisher. On a etabli l’équation générale pour la variation relative de densité E.
Pour l’instabilité gravitationnelle du modele contenant matiere et rayon-
nement et du modele oscillant de Rosen, on a montre que E ~ t4/3 et

E ’" t2 respectivement. L’équation générale pour l’instabilité thermique
dans les périodes récentes de 1’evolution cosmique est aussi déterminée.
On a calcule les valeurs numeriques du degré de croissance de la variation
relative de densite en se basant sur les différentes investigations concernant
les conditions thermiques de la matiere intergalactique. Tous ces resultats
montrent le role important de l’instabilité thermique dans la formation
des galaxies. ’

(*) Laboratoire de Physique Théorique associe au C. N. R. S.



70 VU THANH KHIET

I INTRODUCTION

In Friedmann’s model of isotropic space, as in all relativistic cosmolo-
gical theories, matter is regarded as being distributed over the universe
in the form of a homonogeneous continuous medium. The best assump-
tion to make would be that matter is distributed in the form of individual

point (or very small) sources of the gravitational field, being dispersed
uniformly through space on the average only, like the molecules of an

_ 

ideal gas. For cosmological applications, the main interest formerly was
in the problem of smoothing out local inhomomogeneities in an average
space-time metric. As in the case of an electromagnetic field to receive
the equations of the macro field one must take the averages of the Einstein
equations of the microfield. To generalize the averaging method of
Shirokov and Fisher [1] we obtain the following Einstein equations for
our universe model locally nonhomonogeneous

where Cf, a term depending on the fluctuations of the microfield part of
the usual Einstein’s equations, appears as an addition to the « macroscopic
Einstein equations ». If the metric will assume the form

where r(r) = sin r (k = 1, closed), r (k = 0, flat), or sh r (k = - 1, open),
and

the equation (1.1) becomes

where 8 and p denote the energy density and the pressure of the assemblage
of matter and radiation respectively, G is the newtonian gravitational
constant, the dot denotes the differentiation with respect to t, and u and v

have the form
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where A1, A2, Bi and B2 are constants. We remark that in the equa-
tions ( 1. 3) and (1.4) we transfer the terms

to the left hand side: they may be interpreted formally as certain extra-
terms to the energy and pressure. It follows from the two equations (1. 3)
and (1.4) that 

.

where

If we put in (1.5) Ai = A2 = 0, Bi = B2 = y2, n = 4, we obtain the same
equations and the same results (when p = 0) as in [7]. If we put
Al = A 2 = ~ Bi = B 2 = 0, and, then, A 1 = A 2 = ~ ,

n = 6 we obtain the model with cosmological constant and the oscillating
model [18] respectively.

In this paper we shall investigate the instability in our universe model
(i. e. taking notice of equations (1.3) a (1.7)).

II. THE GRAVITATIONAL INSTABILITY

Jeans [2] proposed that galaxies arise from gravitational instability in
a uniform gas. Using a physically impossible but convenient uniform
cloud as a zero-order state, he showed that the criterion for instability
is that the wavelength ~, of the perturbation obeys the inequality

Lifshitz and Khalatnikov [3] considered the perturbations of dynamical
models of the universe using the theory of general relativity. Their
results showed that a condensation due to the gravitational instability
cannot grow so fast during the time scale of the universe. Bonnor [4]
obtained the same result as Lifshitz by making use of non-relativistic
fluid mechanical equations when p = 0. Recently Peebles [5] proposed
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a new approach to the formation of galaxies in close connection with the
presence of a cosmic black-body radiation in a evolving universe [6].
This approach is similar to Bonnor’s [4] in the sense that the newtonian
gravitational theory was applied to the density fluctuation, while the
effect of radiation drag was taken into consideration and he did not
necessary postulate that the initial fluctuations were of a statistical origin.
It must be noticed, however, that the newtonian theory would not be
applicable at the early stage of the cosmic evolution where the radiation
drag plays a significant role. In this circumstance one must pay attention
to Lifshit’s relativistic theory [3] of the gravitational instability. In order
to eliminate the non-physical wave mode, Lifshitz introduced a particular
set of coordinate conditions so as to make the perturbed Einstein equations
tractable. Unfortunately however, his coordinate conditions are of such
a type that it is difficult to describe Lifshit’s formalism in the newtonian

language. Many other authors have investigated the density perturba-
tion in different particular cases as in [7] (k = 1, p = 0; k = 0, p = 0
and p = pe2/3). Irvine [8a] derived general relativistic fluid mechanical
equations imposing the generalized de Donder coordinate condition. A
similar approach is presented by Silk [8b] to the Godel universe. Pertur-
bations of a spatially homogeneous isotropic universe are investigated
in [8e] in terms of small variations of the curvature. Narai, Tomita et
Kato [9] have reformulated Lifshitz’s relativistic theory for the gravita-
tional instability in an expanding universe in such a way that the rewritten
formalism permits them to make a full comparison with Bonnor’s approach
based on the newtonian theory, and derived the differential equation
for the density contrast K = (80 is the unperturbed density of matter
and radiation), which is of the third order in general, but is reduced to
Bonnor’s equation of the second order in the case of dust-filled world
models. Field and Shepley [10] have studied the same problem by show-
ing that one of the three independant solutions for K (in the case of world
models with finite pressure) is not covariantly defined in the sense that it
can be eliminated by a suitable infinitesimal transformation of coordi-
nates ( 1 ). This suggests us that Lifshitz’s coordinate condition hot = 0
for the metric perturbation hij = is unsuitable except in the case of
dust-filled world models. Then what coordinate condition is suitable

( 1 ) In [11 ] [13] it is shown that the equations for the density contrast are in general
higher (fourth and even sixth) order differential equations with respect, to time which
have two physical solutions and fictitions ones. A fictitions solution is a solution that

can be eliminated by means of an appropriate transformation of coordinates [12] [13].



73ON THE INSTABILITY IN UNIVERSE

for the description of the density perturbation ? (2). Among three possible
wave modes, i. e. the density perturbation, the rotational wave and the

gravitational wave, only the first can have a spherical wave. Accordingly
we confine our attention to the spherical symmetric perturbation which
is specified in general by (3)

the former set of which, together with hoo = 0 constitutes Lifshitz’s coor-
dinate condition. On the other hand, it is easily seen from Lifshitz’s
analysis [3] that the perturbed radial 4-velocity but is non vanishing except
in the case of dust-filled world models (cf. 6u° = 5t~ = ~u3 = 0). This

means that the density perturbation ~E in the sense of Lifshitz is not the
Lagrangian perturbation in general. As it is shown in [12] [13] [14] the
most suitable coordinate condition for dealing with the spherically sym-
metric perturbation may be the Lagrangian condition such as

Moreover it is of interest to emphasize that in all the above mentioned
papers [2] a [15] it was studied only the different particular cases of universe
models without cosmological constant (i. e. with assumption = 0).

In this part we shall investigate the gravitational instability in our

universe model taking into account the conditions (2.2) and (2.3).

§ 1. Reduction of the perturbation equations.

The metric (1.2) can be written as

where

(~) In [15] Harrison used the coordinate condition

and investigated the solutions of irrotational motion.

(~) This condition is the same as the one employed by Sach and Wolfe [7] but they have
put hoo = 0 at the sacrifice of the diagonality of the perturbed metric, i. e. 0.
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Let us now assume a spherically symmetric disturbance of the type (2. 2).
Then the perturbed metric takes the form

where

Similarly we have

Let us assume further that the linear approximation is appropriate. Then
it follows from equation (2.7) and UiUi = - 1 that

Moreover, the variation of the energy-momentum tensor T~ for a perfect
fluid leads us to

by the use of equations (2.7), and, in general, the variations of u and v
are bu and 6v. On inserting Eqs (2 . 6) and (2. 9) into the perturbed Einstein
field equations (cf. (1.1))

we obtain
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where

The above four equations are the perturbation equations which hold
under any coordinate condition.

On imposing the Lagrangian coordinate condition (2.3), it follows

from Eq. (2.14) that

On the other hand, Lifshitz’s original analysis [3] for the density pertur-
bation suggests us that h 1 = 6£ and h2 = 6p can be represented by

where X and Y are functions of t only, and Q is the function of r such as

or

in which n is a positive constant corresponding to the wave number. On

inserting Eq. (2.17) into Eq. (2 .1 b) and by making use of Eq. (2.18) we
obtain (cf. hoo = - bv)

where we have used the reasonable requirement that 5v==OifM=~= 0.
An insertion of Eqs (2.17) and (2.19) into Eq. (2.13) permits us to derive

Similarly we can reduce Eqs (2.11) and (2.12) to
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and

where we have used Eq. (2.20) in the derivation of Eq. (2.22). If we
introduce the density contrast

we can derive from the perturbed equations (2.21) and (2.22) together
with Eqs. (2.2), (2.4) and (2.20) the following differential equation for E

or

where

and

The differential equation (2.24) is of second order (4) and it is reduced to
the Bonnor’s newtonian equation [4] when k = 0, p = 0 and u = v = 0.

§ 2. Solving the obtained equation for density contrast E.

To solve equation (2.24) exactly is not easy. In order to deal with

the evolution of the universe in a realistic manner, we must take account

of respective behaviours of matter (specified by Em and pm) and radiation

(4) Thus under Lagrangian coordinate condition, fictitious (non physical) solutions
are eliminated automatically.
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(specified by 6,. = 3 pr - (5) at various stages of the cosmic evolution.
It is generally believed that the discovery of the cosmic black-body radia-
tion of T = 3 °K (at present) has supported the big-bang cosmology in
the sense of Gamov and Dicke [6]. In this part, however, we are not
concerned with such a realistic evolution. We use the Zeldovich’s equa-
tion of state [17]

and in many cases of physical interest in which the pressure is appreciable,
v has a constant value (1 ~ v ~ 4/3 [15]). To estimate approximately
the growth rate of E we assume that

and we consider the density perturbation such as (6)

Then Eq. (2.24) can be approximated so that {’)

the solution of which is of the form

Therefore if we assume that

we obtain

When a = 1/3 (radiation-filled model) we have

At the later stages of the universe evolution, when 0

(5) And even of cosmic rays (see part III).
(6) This approximation is well satisfied [8b].

(7) In this case E = - .
s
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For uniform model universes containing matter and blackbody radia-
tion [16] we have

where ( = (1 + ~ut)1~2.
Then a ~- t2~3, and, therefore, from (2.31) we get

and

For oscillating universe [18], in the case k = 1, À. = 0, a = 1/3 and assuming
E « B [18], we get

and, therefore,

Thus we have investigated the gravitational instability in our universe
model and we have obtained the general differential equation (2.24)
for the density contrast E. Moreover we have the expression for E in
different cases. Some of our results have showed that the density contrast
grows with time with a velocity greater than Lifshitz’s. Especially in the
case of oscillating universe, in the expression for E, there is a term which
is proportional to t2. Thus our universe model appears to offer more

advantage over other nonstatic models in the problem of gravitational
instability.

III. THE THERMAL INSTABILITY

The importance of thermal instability as another possible mechanism
for galaxies formation has been emphasized. In [19] Bonnor has shown
that in the world models with zero cosmological constant, the nebulae
cannot have resulted from gravitational instability following perturba-
tions of magnitude predicted by ordinary statistical theory. Therefore

Bonnor considered that models of general relativity with long time-scales

require £ # 0. In [20] Gamow has suggested that the large fluctuations

required might have arisen from turbulence of the cosmic medium.

Another suggestion is one of Terletsky [21] that ordinary gas theory may
be quite inadequate to deal with very large masses of gravitating gas and

Terletsky considered that such large masses are liable to much larger
fluctuations than those predicted. In [22] the gravitational instability
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is studied on the basis of statistical physics method and it is shown the
possibility of large fluctuations ; it is found also some values of masses of
galaxies in the newtonian cosmology but with the assumption that ~, =1= 0.

Attemps to apply thermal instability to galaxy formation were made by
Hoyle [23] and Gold and Hoyle [24] and Field [25]. Field examined

thermal instability under the condition that the incoming and outgoing
energies balance each other in the imperturbed state. However he

neglected the self-gravitation of disturbances (as in [26]) and also the
pressure perturbation for thermal instability (see also [27]) in an expanding
universe. In [28a] it is investigated the stability of perturbations in the
thermodynamics parameters of an isotropic expanding universe which
contains matter and radiation in equilibrium but the effects of gravitation
are neglected. In [15] [28b] the thermal instability is studied in an expand-
ing medium in the newtonian world model. In [29] the stability of a
uniform medium is discussed including thermal and magnetic effects.
To investigate the thermal instability we must well know the thermal

conditions of the imperturbed universe model. Although the thermal
history of the universe and the temperature of intergalactic matter is not
yet well known, several theoretical investigations have been made. For

generality we assume that our universe is composed of three components :
gaseous matter, radiation and cosmic rays (8). At early stages of the
universe the coupling among these three components are strong and
energy exchanges among them take place in the form of diffusion. In

the present part, we are concerned only with the later stages of the universe,
when gas, radiation and cosmic rays are nearly independant and the heat-
loss functions of the medium are determined only by the local properties
of the medium. A general hot intergalactic medium at 109 °K was envi-
saged by Gold and Hoyle [24]. However in [31] it has been shown that
this model must be incorrect. Another estimate for the temperature of
intergalactic matter was given by Field [25] who obtained a temperature
of 5.10~ °K from considerations of thermal instability leading to the
formation of galaxy clusters. In [34] it is given a brief review of the problem
of the temperature of intergalactic matter and favored a temperature of
about 105 °K, maintained by a cosmic-ray heating which balances losses
by bremsstrahlung and recombination radiation in the plasma, assumed
to be pure hydrogen. Gould and Ramsay considered the various processes
which determine the temperature of intergalactic matter and considered

(8) In [28a] [30] it is proposed a model of universe filled by radiation and dustlike matter.
But one must take into account even the role of cosmic rays (see, for example [32] [33]).

ANN. INST. POINCARE, A-XV-1 6
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the possible existence of a quasi-equilibrium state whereby a thermal
balance arises in a time less than the cosmic expansion time. A somewhat
different and more general approach to the problem is taken by Ginzburg
and Ozernoy [33] who considered the variation in the temperature of the
intergalactic medium as the universe expands.

In this part we shall investigate the growth rate of thermal instability
in our universe model at the later stages under the thermal conditions which
are consistent with the results of Ginzburg and Ozernoy and others.

§ 1. The equations characterizing the unperturbed state.

In our universe model, matter conservation is expressed by the equation
of continuity as

where the semicolon indicates covariant differentiation, Ui and Wi are
the four-velocities for gaseous matter and cosmic rays whose number
densities are pm and pc respectively. The energy-momentum tensor T~
will be decomposed conveniently into three components associated with
gaseous matter (m), radiation (r) and cosmic rays (c) as

Because of homogeneity and isotropy, the energy-momentum tensor T(m)f
in the unperturbed state will be given by the same expression as that of a
perfect gas

where 8m and pm are the energy density and pressure of gaseous matter.
As we are interested only in the behaviour of gaseous matter, the explicit
expressions for and T~~~ k are unnecessary.

If L + is the heating rate and L - is the cooling rate per unit volume and
unit time in the rest frame, then from the equation

the equation of energy balance for the matter is written as

From (3.3) and (3.5) we get
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Moreover from (1.2) and (3.2) and Einstein’s field equations in our uni-
verse we get (cf. part II)

where the dot denotes the time derivative and

In the imperturbed state, we can reduce equation (3.6) to (cf. part II)

and, equation (3.1) expressing matter conservation is reduced to

Because we shall be interested only in the later stages of the universe, we
can suppose

and, as in part II, let us assume that

Furthermore, for gas, we have the equation

where y is the effective value of the ratio of specific heats (y ~ 5/3).
Then from (3 .11 )-(3 .14) the equation (3.10) can be written as (9)

The solution of this equation describes the thermal history of the universe.

(9) We can deduce this equation from the fundamental equation of thermodynamics.
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§ 2. The equation describing
the growth of density contrast.

Now let us assume that there has occured a density perturbation in our
universe as in part II. Then the perturbed part of the equation (3.6)
can be written as (taking notice of (3.13))

In practical application, matter conservation given by equation (3 .1 )
can be written approximately as (cf. (3.12))

and the perturbed part of this equation is

From (3.16) and (3.17) we get

Furthermore if we use the relation (3.14), the equation (3.18) reduces to
the simple form

As is shown in part II the general equation for the density contrast is

Because

then

Taking notice of (3.21) and (3.12)2014(3. 14) we can reduce equation (3.20)
to the form (in the linear approximation)
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From Equations (3.19), (3.22) and the equation of state which is

we eliminate and 6T~ and obtain the following equation for the density
contrast

where

denote the differentiation of (L + - L - ) with respect to T~ at constant p~
(isochoric) and at constant pm (isobaric) respectively. In the derivation
of Eq. (3.24) we used (cf. (3.11), 3.12))

Equation (3.24) is of the third order with respect to time. This property
is the same as the equation describing perturbations in a homogeneous
medium in newtonian hydrodynamics (see [15]). Two among the three
orders come from the acoustic mode (the gravitational instability is related
to this mode) and the additional order comes from the thermal mode (the
thermal instability is related to this mode).

§ 3. The growth of the thermal instability.

To solve equation (3.24) exactly is not easy. Therefore we shall be
satisfied with studying the characteristics of the thermal instability in
equation (3.24) by an approximate treatment as in part II (cf. (2.29) and
(3.12), (3 .13)). Then we have, approximately (10)

eo) Equation (3.26) describes the gravitational instability considered in part II. For
convenience we shall omit the indice m at p~, Tm, p~.
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Therefore from (3.24) we obtain the following equation for thermal insta-
bility ( 11 )

The integration of which is formally written as

where the lower limit of integration is the time when the perturbation has
occured. As it is easy to see from (3 . 28) the numerical values of the growth
rate of density contrast depend on the thermal conditions of matter in
universe. We shall calculate the growth rate of density contrast basing
on different investigations about the thermal history of the universe during
the time intervals, in the first case from t l = 8.10~ years (pi = 1,6.10-1 cm - 3)
to t2 = 10g years (p2 = 1C* ~ cm* ~) and, in the second case from ti = 8 .10’
years to t3 = 2 .108 years {p3 = 2 .10- 2 cm- 3) (12).

1) We shall first study the growth rate of density contrast on the basis
of Ginzburg and Ozernoy’s investigations [33]. As it is shown in [33]

where

and

In [33] it is assumed the wide temperature range 104 °K-106 °K at the

epoch when p = cm- 3. We shall calculate the growth rate of D
at the radiatively cooling stage i. e. assuming that ( 13) (L + - L - ) ~ ( - L - )

e 1) The equation (3 . 27) can be reduced exactly by assuming isobaric conditions through-
out intergalactic space (see, for example [24] [25] [27]), i. e. 5p = 0. In this case from (3. 22)
we have exactly = 0. But here we do not prefer this procedure.

(12) Here we adopt p = 10- 5 cm - and t = 10’° years as the density and the age of
the present universe.

e3) For simplicity, the growth rate of density contrast was calculated either only in
the case L - = L f f (see [24] [25] [26] [28b] [29]), or in two separate cases L - = and

L - = L fb (see [27]). This simplification, in our standpoint, is unreasonable.
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and that T = 104 °K at the epoch p = 10 - 3 cm - 3. For the sake of

numerical estimation, let us assume that (14)

and integrate equation (3.15). From (3.15), (3.25) and (3.30) we get

where a = 2,6.106, ~8=2,88 and const = - 0,09. From (3 . 28) and

(3.32) with complicated calculations we get

and, therefore,

Now we shall take into account even the heating processes and assume
that T = l,2.105 °K at the epoch p = 2 .10- 2 cm-3 (1 s~. Moreover

to make another rough estimation, let us assume that the unperturbed state
expands nearly adiabatically under balance between the heating and the
cooling, i. e., from (3.15),

where const = 1,63.106. Then from (3.28), (3.30) and (3.35) we get

Here it should be noticed that during the time interval considered here
the density of the unperturbed universe decreases by a factor 8.

2) Now we shall calculate the growth rate of thermal instability on
the basis of Gould and Ramsay’s investigations about the temperature
of intergalactic matter [32]. Gould and Ramsay make quite different
assumptions for the effective heating and cooling processes in comparaison
with Ginzburg and Ozernoy’s investigations. Especially they showed
that the energy loss due to inelastic collisions of electrons with He and

esoecially He + is more than two orders of magnitude larger than the

( 14) The adopted form of a is exact for the case of flat universe (k = 0) and is applicable
to the case of closed and open universes (k = ± 1) during non very long time intervals.

We used this value of temperature for the sake of comparaison with the results
obtained below.
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contribution from electron-proton bremsstrahlung and radiative recombi-
nation at the temperature around 10~ °K. As in [32], see fig. 1) in the
temperature interval from 1,1.105 °K to 5,5.105 °K we get (16)

and

with the assumption as in 1), from (3.28), (3.31), (3.35), (3.37) and (3.38)
we get

and, therefore,

Here it should be noted that during the time intervals considered here the
density of the unperturbed universe decreased only by factor 1,6 and 8.

3) Recently in [35] it is shown that the matter in an expanding universe
cannot be heated and kept at temperatures higher than 105 °K. If this

result is admissible, we can use the Michie’s expression for the cooling
rate [29a]

and this formula is correct for temperature interval between l,5 .104 oK
and In this case assuming T = 8.104 °K at the epoch
p = 1,6.10’~ cm-3 (17), we get

and, therefore,

4) Finally we remark that for generality we can take into account the
heat loss due to thermal conductivity (see, for example, [15] [28a] [28b]).

e6) The expression (3.37) is extrapolated from figure 1 in [32].
e 7) We used this value ot temperature so that in all time interval considered here, the

temperature T  8.104 °K, i. e. is smaller than 105 °K corresponding to the result in [35].
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In this case, in analogy to newtonian cosmology (see [15]), equation (3.27)
becomes (cf. Eqs (40) and (41 ) in [15])

where K is the coefficient of thermal conductivity and K ~ 10- 6 T5/2
(see [2~]). Then generally we get

and, therefore, in general the thermal conductivity diminishes the density
perturbation. But it is easy to verify that in all cases considered here

the contribution of the thermal conductivity to the growth of density
contrast is insignificant. But assuming the expression (3.28a) we can
discuss approximately about the minimum size of the density contrast
which can grow by the thermal instability. Indeed the number n in equa-
tion (3.28a) denotes the wave number of perturbations normalized by a,
that is, a/n is the size of perturbations. Thus the minimum size of pertur-
bation is given by

From that, for example for p = 1,6.10’~ cm-3 and T = 1,88. lO~K
(from (3 . 30)) we have the minimum size of 4,6. l020 cm, or we have

for minimum masses. This result coincides with those calculated in
newtonian cosmology by other methods (see, for example [5]).

§ 4. CONCLUSION

We have investigated the thermal instability and have obtained the
general equation for the growth rate of density contrast (see Eqs (3.28)
and (3.28a)). We have calculated the numerical values of the growth
rate of density contrast in different cases. We remark that the reliable
estimation of the rate of the density perturbation requires more detailed
information about the thermal history of the unperturbed universe, because
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the results depend strongly upon the models (see Eqs (3 . 34), (3 . 36), (3 . 40),
(3 . 43)) (i 8). However we can conclude that the fact that thermal insta-

bility can suppress the absolute decrease of density by expansion as shown
in those results will be sufficient for the formation of galaxies, because then
the gravitational instability will be followed in the case of large scale distur-
bances (see [29]).
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