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On the Instability of Leap-Frog and Crank-Nicolson

Approximations of a Nonlinear Partial

Differential Equation

By B. Fornberg

Abstract. It is well known that nonlinear instabilities may occur when the partial differen-

tial equations, describing, for example, hydrodynamic flows, are approximated by finite-

difference schemes, even if the corresponding linearized equations are stable. A scalar model

equation is studied, and it is proved that methods of leap-frog and Crank-Nicolson type

are unstable, unless the differential equation is rewritten to make the approximations

quasi-conservative. The local structure of the instabilities is discussed.

1. Introduction. There are many theorems, based for example on Fourier or

energy methods, which can be used to find precise stability conditions for difference

approximations of linear partial differential equations with constant coefficients.

By stability, we mean that the L2-norm of the difference approximation does not

increase in time faster than a fixed exponential function even if the mesh is refined.

Many of the results for equations with constant coefficients can be carried over

to the case of variable coefficients. It is often sufficient to freeze the coefficients and

consider only the local stability properties to get an estimate of the over-all stability.

However, as yet very little has been proved about the stability for approximations

of nonlinear equations. It turns out that the properties of the linearized equations

are not at all sufficient for determining stability.

The first example of pure nonlinear instability was given by N. A. Phillips [4]

for a difference approximation of the barotropic vorticity equation for two-dimen-

sional flow. Richtmyer [5] gives another example, which can also be found in

Richtmyer-Morton [6]. It is very similar to that of Phillips, but here a model equation

is studied:

A solution for the leap-frog approximation of (1) is found, which increases expo-

nentially with the number of time steps. In this paper, we shall also study approxima-

tions of (1), which, more generally, can be rewritten as

du  ,   0 du    .   ..       „.    du

(2) o7+2^+(1-Ö)"^=°'

for any value of the (real) parameter 0. This equation is approximated by finite-

difference equations of leap-frog or Crank-Nicolson type. We use the difference
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approximations for d/dx, which make the corresponding approximation for the

linear equation

(3) du/dt + du/dx = 0

energy-conserving. In Lemma 2, we prove that this means that the difference operator

for space derivatives is antisymmetric. The main purpose of this paper is to add to

the understanding of nonlinear instability by showing that, under a slight restriction,

a necessary and, for Crank-Nicolson also a sufficient, condition for stability in the

nonlinear case is that 0 = 2/3. We shall also discuss the effect of adding smoothing

operators to improve stability. The discussion in Section 4 indicates that instabilities

occur only when the solution alternates around zero.

2. Notations and Preliminaries. The mesh sizes in the x- and ¿-directions are

denoted by h and k, respectively, and their ratio by X = k/h. The translation operator

E is defined by Eg(x) = g(x -\- h), and by Q we denote a difference operator of the

form Q = 2~L"i—v aiE' which approximates d/dx. Since we are only concerned with

real solutions to Eq. (2), we restrict ourselves in the following to operators where

the o,'s are real numbers. The centered, forward and backward difference approxima-

tions, D0, D+ and 7J_ of d/ó% respectively, are defined by 2hD0 = E — E~l, hD+ =

E - I and hD. = / - E~\

The symbol or the Fourier transform of Q is the analytic function Q(b>h) =

The solution of the difference approximation in the point x, t is denoted by

c(x, t). By ¡Xjc)¡, we denote the doubly infinite sequence ••• s(x — h) s(x)

s(x + h) • ■ ■ . If ris an operator (or a constant), T{s(x)} means {Ts(x)}.

Lemma 1. If Re Q = 0 for all real values of w/z, then Q can be written as Q =

D0P, where

N

P =  2Z<*,h2\D+D-)v.
v-0

Proof of Lemma 1. Let z = e'ah, a real. Then Q(œh) = p(z) = aNzN + aN-lzN~1

4- • • • + a-Nz~N. By assumption, all coefficients a. are real and Re(p(z)) = 0. Hence,

/z(l) = p(— 1) = 0, which shows that (z — l/z) can be factored out, i.e., p(z) =

(z — l/z)-q(z). Let g(z) = bii^z"'1 + • • • 4- /3i-wz1_JV, b. real. We want to show

that b. = rz_„, v = 1,2, • ■ • , N — 1. Observing that Re(z — l/z) = 0 for \z\ = 1,

it follows that Im(<7(z)) = 0. We can write q(z) in the form q(z) = r(z) -\- s(z), where

r(z) = cN-xzN~l + • • • + cxz + c0

is a polynomial with real coefficients and s(z) is a sum of cosines,

siz) = 2b-x cos uih 4- • • • 4" 2bx-tf cos(A/ — l)bih.

Hence, Im í(z) = 0 and, thus, Im z*(z) = 0 for z with \z\ = 1. Im r(z) is a harmonic

function, and since it is bounded inside the unit circle it must be identically zero.

Therefore, the equation r(z) = i is not solvable, which contradicts the fundamental

theorem of algebra unless r(z) is a constant. This proves the lemma.

Lemma 2. Let Q be some difference approximation of 3/âx such that the Crank-

Nicolson scheme

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEAP-FROG  AND  CRANK-NICOLSON APPROXIMATIONS 47

(4) (/ + kQ/2)vix, t + k) = U- kQ/2)vix, t),

or the leap-frog approximation

(5) vix, t + k) — vix, t — k) = 2kQvix, t),

is L2-energy-conserving for the linear equation (3). Then, Q can be written in the form

Q = D0P, where

P= £a.h2"(D+D-)".
v-0

Proof of Lemma 2. The Crank-Nicolson equation (4) is energy-conserving if

and only if the absolute value of the Fourier transform of the implicit operator

(/ + kQ/2)~ \I — kQ/2) is equal to one for all real co/z, i.e.,

1 - kQ/2
1 + kQ/2

= 1.

If we write kQ/2 as a + ib (a and b real) and square, we get (1 + a)2 + b2 = (1 — a)2

+ b2, i.e., a = 0 and Q is pure imaginary. Lemma 1 can now be used.

Let v(x, t) = £(/V"1 in the leap-frog approximation (5). We get

£ - 2kQiwh)i, -1 = 0.

In order that the method be energy-conserving (or even stable, since the roots cannot

depend on k or h individually), it is necessary that no root of this equation has an

absolute value greater than one. By the relations between roots and coefficients,

the product of the roots is —1, and, hence, they are of the form e'iT/2±''\ where t)

is real. Their sum is then 2i cos r¡, i.e., Q is pure imaginary. The result now follows

from Lemma 1.

3. Main Theorem.

Theorem.   Let Q be of the same form as in Lemma 2. It is now used to approximate

d/dx in the Crank-Nicolson scheme

vix, (4i) + 7 Qvix, t + k)2 + k(1 ~ 6)vix, t + k)Qvix, t + k)

(6) 4 2

= v(x, t) - — Qvix, t)2 - *(1 ~ 6) vix, t)Qvix, t)

and the leap-frog approximation

il)       vix, t + k) - vix, t - k) 4- kdQvix, t)2 4- 2£(1 - 8)vix, t)Qvix, t) = 0

of Eq. (2). If P satisfies P{r(x)\ ^ {0}, where \r(x)} is the sequence

(8) \rix)}  =   • • • 0 -e € 0 -e € 0 • • •  , €9^0,

then 8 - 2/3 is a necessary condition for stability. For the Crank-Nicolson scheme

(6), 0 = 2/3 is also a sufficient condition for stability.

Proof of the Theorem.   Assuming that v(x, t) in Eq. (6) has the form

vix, t) = r<x)-ait)
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and using Q = D0P, we obtain, after some rearrangement of terms,

rix)-iait + k) - ait)) + (a(i + A:)2 4" ait)2)

■ \j-P(rix 4- h)2 - rix - h)2) + X(1 ~ g) •#■(*)• f(r(* + A) - Hx - A))J = 0.

This equation is satisfied, for example, if a(t) and r(x) satisfy the following recursion

relations

(9) ait + k)- ait) = C | (ait + k)2 + ait)2),

(10) Trix) =  -Crix),

where

(11) Trix) = 2(1 - 8)rix)Pirix + h) - r(x - A)) + 0/>(r(x 4" A)2 - r(x - A)2)

and C F^ 0 is some constant.

The approximation is certainly not stable if we can find a bounded sequence

which satisfies (10). By starting the recursion (9) with plus or minus one, the sequence

a(t) and, hence, the solution v(x, t) will eventually explode. A rough estimate of the

rate of divergence can be obtained by observing that Eq. (9) can be regarded as a

difference approximation of the ordinary differential equation

a'(t) = (C/4AK02,
a(0) = ±1, the sign to be chosen such that C-a(0) > 0.

The solution of this equation diverges to infinity already at the finite time t = Ah/C.

A suitable choice for the solution of (10) turns out to be the sequence in Eq. (8):

{rix)}  =   ■•• 0 -e«0 -eeO •••  ,        e ?¿ 0.

We find that Pjz-(x)} = KP{r(x)}, where KP is a constant factor depending only

on P. To see this, we observe that {rix)} has period 3 and that P is symmetric. The

values of P{rtx)} at r(x) = 0 and ±e have to be calculated. The value at rix) = 0

is zero, while the other two values differ only by sign. Thus we find

{rix + h)2 - rix - h)2}  =  ■ ■ ■ 0 e2 -e   0 e2 -e   0 • • •  ,

i.e.,

{Pirix 4- A)2 - rix - h)2)}  =  -eKP{rix)}

and

{Pirix + A) - rix - A))}  =  {Prix + A)} - {Prix - A)}

=  • • •  -2eKP tKP eKP -2eKP eKP tKP -2tKP ■■■.

Hence,

{rix)-Pirix + A) - rix - A))}  =  • • • 0 -eKP e2KP 0 -eKP t2KP 0 • • •

= t-KMx)\.

Therefore,

T{rix)}  = 2(1 - 8)-e-KP{rix)}  - 8-t-KP{rix)}

= (2 - 38)-e-KP{rix)}
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which satisfies (10) if we choose the constant C to be

(12) C =  -(2 - 38)-t- KP.

According to the assumptions, KP ^ 0 and e 7e 0. Thus, C ^ 0 if 0 ^ 2/3, and the

proof of this part is complete.

We shall now prove that 0 = 2/3 is sufficient for stability. With 0 = 2/3, Eq. (6)

can be written as

k k
(13) vix, t + k) + - Rvix, t 4- k) = vix, t) — - Rvix, t),

o 6

where R denotes the operator

Rvix, t) =  D0Pvix, t)2 4- vix, t) D0Pvix, t).

Squaring and summing both sides gives

IK-, t + k)\\2 + y6 \\Rvi-,t + k)\\2 - [|K, OH2 4- y6 \\Rvi-, f)||2]

= -| (vi- ,t + k), Rvi-, t 4- *)) - | (v(-, t), Rvi-, t)).

Hence, (v(- , t), Rv(- , t)) = 0 is sufficient for Instability, i.e.,

(v(-,t), D0 £a,h2\D+D_Yv(-,t)2

N \

+ v(-,t) Do 22<x,h2"(D+D-)'vi-,t)) = 0.

This follows immediately from repeated partial summation.

We now turn to the leap-frog case. Assuming again that

vix, t) = rix)-ait),

Eq. (7) gives

rix)-iait + k) - ait - k)) + ait)2

■ I y PiKx + A) 2 - rix - h)2) + X(l - 0>(*)P(z-(x + A) - r(^ - h))\ = 0

which is satisfied if

(14) ait + k) - a(t - k) = C | a(f)2,

(15) 7H*) = -C-z-ix),

where J is to be understood as defined in Eq. (11). The proof now proceeds exactly

as in the Crank-Nicolson case, since Eqs. (9) and (14) are equivalent and (10) and

(15) are equal.

Finally, we observe that this main theorem may be generalized to be valid for

the corresponding approximations of du/dt + (8/n)dun/dX + (1 — 8)un~\du/dx) =

0, where n is an even positive integer. All parts of the proof follow through exactly

in the same way. 0 = 2/3 generalizes to 0 = zz/(n + 1).
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4. Numerical Results, Conclusions. In Fornberg [2], the behavior of the leap-

frog scheme for the case P = I — identity operator and 0 = 1 was studied. The

choice of 0 = 1 is natural because it corresponds to a conservation form. It gives

rise to comparatively few arithmetic operations and conserves the sum of the solution

over the mesh points for successive time levels. This holds even for more general

equations than (1). The conservation of the sum is important, for example, when,

in a practical computation, a correct shock speed is wanted. Although the pattern

(8) seemed to be the one which gave the strongest divergence, we found in the paper [2]

that explosions more often were characterized by locally raising and wandering

spikes in schemes with values around zero. When a certain local combination of

values happens to appear in the solution, this process starts, and waves of the new

and bigger amplitude spread over the mesh. This may repeat on a larger scale when

the critical combination of values again happens to occur. (See Diagrams 1 and 2.

Here the Crank-Nicolson scheme is used instead of the leap-frog scheme, but the

diagrams are almost identical to those for the leap-frog scheme in [2].) Soon even

the linear stability limits are passed. If all values of the solution have the same sign

and are not too close to zero, the stability seems perfect, as is indicated in Diagram 3.

Similar test runs for 0 = 0 and P = /and for 0 = 0 or 1 and P = I - (l/6)h2D+D.

(corresponding to fourth-order accuracy in space) show the same stability. Probably,

this property of stability of solutions bounded away from zero is quite general. Of

course, the solution must not be so far away from zero that the linearized stability

condition is violated. In [2], (0 = 1, P = I) we also studied the influence of a boundary

condition equal to zero, and proved that it was sufficient for making the scheme

divergent. Theoretically, there exist bounded solutions even in this case, but a small

number, in practice only one, of small perturbations made the solution divergent.

From Eq. (2), we can form a differential-difference equation

(16) ^-^ + -2Qvix, t)2 + (1 - 8)uix, t)Qvix, t) = 0,

where only the x-direction is made discrete. For 0 = 2/3, it is quasi-conservative in

the sense that

(17) id/dt)\\vix, t)\\2 = 0,

which is arrived at by taking the scalar product of (16) with v(x, t) and using partial

summation (Q = D0P, P symmetric). In spite of (17), the approximation (7) with

0 = 2/3 diverges, as is proved by Kreiss and Öliger [3] and is also seen from Diagram

4, in both cases for P = I. However, this instability is not as serious as the one we

obtained for 0 t^ 2/3 and is also of a somewhat different nature. In the same way as

(17) was derived from (16), we find that the scalar product between two successive

time levels for the scheme (7) is invariant in time. This shows that (7) cannot diverge,

unless v(x, t) changes considerably between successive time levels. This was not

necessary for divergence when 0 ^ 2/3.

In order to increase the chance for stability and especially to avoid divergence

for 0 ;¿ 2/3 from the pattern {r(x)} defined in Eq. (8), it is natural to apply smoothing

to the difference scheme. Since {r(x) \ is just multiplied by a constant Ks if a smoothing

operator, which replaces the values v(x, t) at some time level by
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Svix, t) =  ¿ ß.h2"iD+D-)"vix, t)
y-0

is applied, it can easily be estimated how much smoothing is necessary for keeping

this special pattern from increasing. A smoothing of this type can be applied, for

example, to the new values obtained when a time step is completed, or we can apply

the smoothing operator to the earliest time level involved when the solution on a

new time level shall be evaluated. For S to be a reasonable smoothing operator,

Ks should be slightly less than one. It follows from Eqs. (9) and (14) that, apart

from terms which are 0(t2), the amplitude of {r(x)¡ (or — {rix)}) in a single time

step is increased by the factor

1 + \C\-\= 1 +^*p.X-|2- 3«|-|c |.

At the same time, smoothing reduces it by the factor Ks. To prevent our special

solution from diverging, we choose S such that Ks satisfies

(18) zïaSl- i-KP-X-\2 - 30|-|e|.

If we apply smoothing to the earliest involved time level at each step, (18) can be

used for two-level schemes, but the factor 1/4 has to be changed to 1/2 for three-

level schemes, for example for the leap-frog scheme.

The estimate in Eq. (18) on smoothing, which is necessary to keep our special

solution bounded, has been tested for both Crank-Nicolson and leap-frog equations.

Choosing 0 = 1, e = 0.1, X = 1/4 and the operators P = I, S = I + a(£)+D_),

i.e., KP = 1, Ks = 1 — 3a and applying S1 to the earliest involved time level in every

step, Eq. (18) suggests a = 1/480 for Crank-Nicolson and a = 1/240 for leap-frog.

The amplitudes without smoothing are also calculated in the table below.

Method

Number of Time Steps

0 50 100       140       150       159       163       170       300

C-N

1-f

1/480 0.100 0.100 0.100 0.099 0.099 0.099 0.099 0.099 0,097
0 0.100 0.144 0.262 0.763 1.460 9.486 —         — —

1/240 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0 0.100 0.143 0.260 0.743 1.381 5.684 158.2 >1016' >1010'

The use of the Crank-Nicolson scheme involves, in every time step, the solving

of a system of nonlinear equations. In the example above, this could not be done

beyond the 159th time step.

It is not quite clear whether the dissipation as a function of the original amplitude,

as given by Eq. (18), is sufficient for stability in the case of more general initial values.

In the experiment reported in Diagram 5, random initial values between —0.1 and

0.1 on the first two time levels were used to start a leap-frog scheme with 0=1,

X = 1/4 and a = 1/240. The norm of the solution remained almost unchanged

during the last 2000 time steps.
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It is probable that the best way to proceed in a practical case is to use a quasi-

conservative scheme and add only a small dissipative term. For the real hydrodynamic

equations, quasi-conservative schemes are well known (A. Arakawa [1]). To minimize

the number of arithmetic operations, and increase the chance for a correct shock

speed, if shocks are present, the choice of 8 = 1 might be preferable, especially if

the solution is not close to zero. There seems to be no great danger in choosing 8 ¿¿ 2/3

provided we add a rather small dissipative term, for example, of a size suggested by

(18), in critical regions. Kreiss and Öliger [3] have shown that in the case 0 = 0,

P = I — (h2/6)D+D_, it is sufficient to add a small dissipative term, such as

(A4/6)/J+i>- \DQv\ D+D.v, to satisfy the condition (d/dt) \\d(x, t)\\2 g 0, and test

runs carried out by them with leap-frog type time differencing indicate stability

around zero.

Finally, we observe that the transformation of the independent variables

x' = x 4- at,       t' = t,

where a is a constant, transforms Eq. (2) into

(20) ¿Í2+JÍ) + ^^ + i0! + (1 _ m + u)d-^+JÛ m o.
dt 2       dx dx

This equation has the same form as (2), but the solution has been translated by the

constant a. In this way, the solution can be bounded away from zero, if it originally

was around zero, and stability problems can be avoided. Actually, however, this

type of transformation is used in meteorological applications in the opposite direction,

i.e., to eliminate a constant flow and then calculate only the remaining oscillations

around zero. As we have seen above, this makes the introduction of a dissipative

mechanism necessary.
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