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ON THE INSTABILITY OF MATCHING QUEUES

BY PASCAL MOYAL AND OHAD PERRY1

Université de Technologie de Compiègne and Northwestern University

A matching queue is described via a graph, an arrival process and a
matching policy. Specifically, to each node in the graph there is a correspond-
ing arrival process of items, which can either be queued or matched with
queued items in neighboring nodes. The matching policy specifies how items
are matched whenever more than one matching is possible. Given the match-
ing graph and the matching policy, the stability region of the system is the
set of intensities of the arrival processes rendering the underlying Markov
process positive recurrent. In a recent paper, a condition on the arrival inten-
sities, which was named NCOND, was shown to be necessary for the stability
of a matching queue. That condition can be thought of as an analogue to the
usual traffic condition for traditional queueing networks, and it is thus nat-
ural to study whether it is also sufficient. In this paper, we show that this is
not the case in general. Specifically, we prove that, except for a particular
class of graphs, there always exists a matching policy rendering the stability
region strictly smaller than the set of arrival intensities satisfying NCOND.
Our proof combines graph- and queueing-theoretic techniques: After show-
ing explicitly, via fluid-limit arguments that the stability regions of two basic
models is strictly included in NCOND, we generalize this result to any graph
inducing either one of those two basic graphs.
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1. Introduction. We consider a continuous-time matching queueing system
in which items of different classes arrive one by one and depart in pairs. Specifi-
cally, we assume that any item is either matched with exactly one other item imme-
diately upon arrival, and both items leave the system, or is stored in a buffer until
it is matched. Since matchings are pairwise, such a matching model can be repre-
sented via an undirected graph, in which each node represents a class of arrivals,
and an edge between two nodes represents that items of the two corresponding
classes can be matched together. A matching policy describes the matching rule
whenever more than one matching is possible for an incoming item.

The model just described is closely related to the discrete-time stochastic match-

ing model introduced in [23], in which items enter the system at discrete time
points, and their class is drawn upon arrival from a given probability distribution
on the set of classes. We elaborate on the relation between the two models below.

Matching models in the literature. Matching queueing models arise directly
in several applications, such as organ transplantation [12] and public-housing as-
signments [31]. They were also employed in the literature as relaxations for com-
plex many-server queueing systems [1, 9], stochastic processing networks and
assemble-to-order systems; see [17]. We refer to these references for comprehen-
sive literature reviews of related models.
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A more recent application for matching queues is in modeling sharing-economy

(or collaborative consumption) platforms, with the most relevant examples being
car-sharing platforms such as Uber and Lyft, lodging services such as Airbnb and
virtual call centers (namely call centers with home-based agents), as considered
in, for example, [16, 18]. Since a platform operating in a sharing-economy market
must match supply and demand at every instance, possibly in a multiregion setting,
matching queues can be used to model and optimize such platforms; see [30] for a
recent application in the car-sharing setting.

The term matching queues was introduced in [17]. In that reference, items can
be matched by groups of size two or more, and the goal is to minimize finite-
horizon cumulative holding costs. Moreover, the controller can keep matchable
items in storage for more “profitable” future matches. A myopic, discrete-review
control is shown to be asymptotically optimal, as the arrival rate grows large. Thus,
both the model and the objectives of [17] are different than ours here, since we
consider pairwise matchings, and are concerned with stability properties.

The stability of matching models operating under the first-come first-served

(FCFS) policy was studied for several particular graphs in [9], assuming that both
the arrivals and the departures occur by pairs. (If items arrive one by one, the
model can never be stable, as will become clear below.) A discrete-time Markov
chain representation was employed in combination with Lyapunov techniques, to
study the stability (ergodicity) of certain models having bipartite graphs. An im-
portant (and expected) observation from this latter reference is that characterizing
the stability region, namely, the law of the arrival process under which the system
is stable, is nontrivial even for models with relatively simple graphs. The matching
model in [9] was further analyzed in [8]. An alternative Markov representation was
introduced, leading to a more complete picture of the stability problem. General
sufficient and necessary conditions for stability of the underlying Markov chain
were given, together with properties of several matching policies. In particular, the
stability of any model applying the “match the longest” policy (under which an
item that has more than one matching option upon arrival is matched with an item
from the longest queue) was proved, assuming the necessary condition for stability
holds.

The necessary condition for stability in [8] was employed in [1] to prove the
existence of unique matching rates for models satisfying a certain “complete re-
source pooling” condition. The models considered in [1] are again bipartite and
operate in the FCFS matching policy. Interestingly, the stationary distribution of
the Markov chain in [1] is shown to have a product form.

In [2], a continuous-time model is considered for a bipartite matching system
operating under the FCFS–ALIS (Assign Longest-Idle Server) policy. In this pa-
per, Markovian service system (i.e., service times are considered) with skill-based
routing, are modeled as matching queues, and the stationary distribution, when it
exists, is shown to have a product form. Fluid limits are employed in the over-
loaded case to prove the existence of a local steady state.
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The graphs in [1, 2, 8, 9] are all bipartite. Therefore, to make the question of sta-
bility nontrivial, items are assumed to arrive in pairs, as was mentioned above. This
assumption is dropped in [23], which introduces the aforementioned (discrete-
time) stochastic matching model with general graph topology. In [23], a thorough
study of the structure of the stability region of the model is proposed, partially re-
lying on the results in [8]. A natural necessary condition, named NCOND, for the
stability of any such stochastic matching model is introduced, implying, in partic-
ular, that no model can be stable if the matching graph is a tree, or more generally,
a bipartite graph. (This explains the assumption that arrivals occur in pairs in the
papers dealing with bipartite graphs cited above. If items arrive one by one, the
system cannot be stable.) In addition, a particular class of graphs is exhibited (the
non-bipartite separable ones—see Definition 2 below), for which NCOND is also
a sufficient condition for stability. However, the study of a particular model on a
nonseparable graph (see [23], page 14) shows that NCOND is not sufficient in gen-
eral for nonseparable graphs. This raises the question of whether the sufficiency
of NCOND is true only for separable graphs. The Lyapunov-stability techniques
that were employed for the particular model in [23], render the generalization of
the arguments in [23] to a larger class of nonseparable graphs impractical in the
discrete-time settings.

Since a matching queue As is easily seen, and will be shown in Theorem 2
below, the stability region of a discrete-time stochastic model can be studied by
embedding it in an appropriate continuous-time model. Thus, the continuous-time
counterparts of the results in [23] hold for our matching queues, and vice versa.
The advantage of the continuous-time setting is that powerful fluid-limit tech-
niques can be employed, which greatly facilitate the stability analysis.

Stability of stochastic networks via fluid limits. The necessary condition for
stability NCOND, defined in (5) below, can be thought of as an analogue to the
usual traffic condition of standard queueing networks, requiring that the long-term
rate of arrivals to each service station be less than the long-run output rate at that
station. Therefore, our work relates to the literature on (in)stability of subcritical
stochastic networks, which we briefly review.

Consider a stochastic queueing network with d ≥ 1 service stations and K ≥

1 classes. Let ak
i denote the (long-run) arrival rate of class-k jobs into service

station i, and let mk
i denote the mean service time of class-k jobs in this station,

1 ≤ k ≤ K . Then the system is subcritical if

(1) ρi :=
∑

k

ak
i m

k
i < 1 for all 1 ≤ i ≤ d.

It is well known that Condition (1) is not sufficient to ensure stability of stochastic
networks in general. The first examples of this fact are the deterministic Lu–Kumar
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network [21] (and its stochastic counterpart; Section 3 in [7]), and the Rybko–
Stolyar network [29], both of which consider static priority service policies. A sub-
critical, multiclass, two-station network, having a Poisson arrival process and ex-
ponential service times in both service stations for all classes, was shown to be
unstable under the FIFO discipline in [6]. See [7] for an elaborate discussion, in-
cluding a comprehensive literature review of the subject.

Fluid models are arguably the most effective tool to proving that a queueing
network is stable, and can also be employed to prove instability of such networks.
Specifically, following [29], Dai [10] showed that, under mild regularity condi-
tions, if all the (subsequential) fluid limits of the queues, for all possible initial
conditions, converge to 0 in finite time w.p.1, then the system is stable, in the sense
that the underlying queue process is positive Harris recurrent. We rely on [10] to
characterize the stability region of specific matching queues (see Proposition 2
and Corollary 3 below), but our main result is concerned with proving a general
instability result. Regarding the use of fluid limits to prove instability of stochastic
networks, we mention that partial converse results to [10] exist, for example, [11,
15, 24]. Here, we build on the theory in [28], Chpter 9, to prove our main result by
characterizing fluid limits uniquely for appropriate initial conditions, and showing
that those fluid limits do not decrease to the origin in finite time; see Lemma 1
below.

An interesting feature of the fluid limits we obtain is that their dynamics are
determined by the stationary distribution of a “fast” CTMC. Specifically, if the
fluid queue associated with one of the nodes is positive, then the relevant time
scale for this queue is slower than the time scale for the fluid queues that are null.
In the limit, the effect of the “fast” (i.e., null) queues on the evolution of the positive
fluid queues is averaged-out instantaneously, a phenomena known as a stochastic
averaging principle (AP) in the literature. See [26, 27] and the references therein,
as well as [22, 36] for recent examples of fast averaging in queueing networks.

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we elaborate on our model and introduce the main notation and terms
that will be used. In Section 3, we present our main result, Theorem 3. Section 4
develops the fluid limit (Theorem 4) and Section 5 studies models that are key to
the proof of Theorem 3. Theorem 3 is proved in Section 6, building on the results
of Sections 4 and 5, and the FWLLN is proved in Section 7. In Section 8, we
present a related instability result for an alternative matching policy. Summary of
the main paper and directions for future research are presented in Section 9. In
addition to the main paper, in the Appendix we demonstrate that our main results
have implications to the construction of matchings on random graphs.

2. The model. In this section, we describe the matching queueing model in
detail, after introducing the notation and key terms that we employ.
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2.1. Basic terms and notation. We adopt the usual R and Z notation for the
sets of real numbers and integers, respectively. We let R+ and R++ denote, respec-
tively, the sets of nonnegative and strictly positive real numbers. Similarly, Z+ and
Z++ denote the sets of nonnegative and strictly positive integers. For any two ele-
ments a, b ∈ Z+, we let ❏a, b❑ := {a, a + 1, . . . , b}. For a set A, we let |A|, denote
the cardinality of A and for any k ∈ Z++, Ak denotes the set of k-dimensional
vectors with components in A. For any i ∈ ❏1, k❑, the ith vector of the canonical
basis of Rk is denoted by ei , namely, ei has 1 in its ith coordinate and 0 elsewhere.
For any subset J ⊂ ❏1, k❑ and x ∈ Rk , we use the notation xJ for the restriction of
x to its coordinates corresponding to the indices of J .

For an interval I ⊂ [0,∞), let Dd(I ) denote the space of Rd -valued functions
on I that are right continuous and have limits from the left everywhere, endowed
with the standard Skorohod J1 topology [4]. To simplify notation, we write, for
example, Dd(a, b) instead of Dd((a, b)), and D(I ) for D1(I ) (we remove the su-
perscript when d = 1). We omit the interval from the notation whenever it can be
taken to be an arbitrary compact interval, for example, convergence in Dd holds
over compact subintervals of [0,∞). We write Cd(I ) for the subspace of continu-
ous functions on I , with C := C1.

Random variables and processes. We work on the probability space (�,F,P ).

We write d
= to denote equality in distribution and ⇒ to denote convergence in dis-

tribution. For a sequence of real-valued random variables {Y n : n ∈ Z++}, we write
Y n ⇒ ∞ if P(Y n > M) → 1 as n → ∞, for any M > 0. The fluid-scaled version
of a sequence of stochastic processes {Yn : n ∈ Z++} is denoted by Ȳ n := Y n/n.

For two real-valued stochastic processes X and Y , we write X ≤st Y if X is
smaller than Y in sample-path stochastic order, namely, if it is possible to construct

two processes X̃ and Ỹ on a common probability space, such that X̃
d
= X, Ỹ

d
= Y ,

and the sample paths of X̃ lie below those of Ỹ with probability 1 (w.p.1 for short).
When X and Y are Rd -valued, d > 1, X ≤st Y means that Xi ≤st Yi , for all 1 ≤

i ≤ d .

Graph-related terminology. In addition to the notation, we introduce basic
terms of graph theory that will be used below. A graph G is denoted by G = (V,E),
where V and E are the set of nodes and edges, respectively. The nodes of G are
labeled arbitrarily in ❏1, |V|❑, and we often identify V with ❏1, |V|❑. We write i−j

whenever (i, j) ∈ E , namely, nodes i and j are connected by an edge, and i 	−j

otherwise. If i−j , then these two nodes are said to be neighbors. All the graphs
considered in this paper are nonoriented, that is, i−j if and only if j−i [and the
edges (i, j) and (j, i) are indistinguishable] and simple, that is, there is no edge
connecting a node to itself (i 	−i for any i ∈ V), and two nodes are connected by at
most one edge.
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For any subset A of V , we let E(A) be the set of neighbors of all the nodes in
A, that is,

E(A) := {j ∈ V : i−j, for some i ∈ A}.

We write E(i) for the neighbors of a single node i [instead of E({i})].
The graph Ğ = (V̆, Ĕ) is said to be a subgraph of G = (V,E) if V̆ ⊂ V and

Ĕ ⊂ E . We say that G induces the subgraph Ğ, whenever Ĕ equals the restriction
of E to V̆2 (recall that A2 = A × A for any set A). In other words, if (i, j) ∈ E ,
then (i, j) ∈ Ĕ , for all i, j ∈ V̆ . In that case, Ğ is said to be induced by V̆ in G.

For any p ∈ Z++, a cycle of length p (or p-cycle, for short) is a graph G =
(V,E) such that |V| = p and any node in V has exactly two neighbors. In other
words, we can label the nodes of G as i1, i2, . . . , ip, such that

i1−i2, i2−i3, . . . , ip−1−ip and ip−i1.

We say that the p-cycle is odd if its length p is an odd number.
The complement graph of G is the graph Ḡ = (V̄, Ē) such that V̄ = V and Ē =

V2 \ (D ∪ E), where D is the diagonal of V2, namely, D := {(i, i) : i ∈ V}. For
q ≥ 2, the graph G = (V,E) is said to be q-partite, q ∈ Z++, if there exists a
partition {Vi : 1 ≤ i ≤ q} of V such that

E ⊂
⋃

i,j∈❏1,q❑:i 	=j

Vi × Vj .

In other words, in a q-partite graph, every edge links two nodes in two distinct
subsets of the partition. A 2-partite graph is called bipartite.

The complete graph G = (V,E) is such that E = V2 \D. A clique of a graph G is
a complete subgraph of G. The graph G = (V,E) is said to be connected if for any
i, j ∈ V , there exists a path from i to j , that is, a subset {i = i1, i2, . . . , iq = j} ⊂ V

such that iℓ − iℓ+1 for any ℓ ∈ ❏1, q − 1❑.
An independent set of a graph G is a nonempty subset I ⊂ V such that i 	−j ,

for all i, j ∈ I . We let I(G) denote the set of all independent sets of G. Notice
that when G is simple, any node is an independent set, so that I(G) is nonempty.
We say that the independent set I of G is maximal if, for any j ∈ V \ I , we have
ij−j for some ij in I . In other words, I ∪ {j} is not an independent set, for any
j ∈ V \ I .

2.2. Matching queues. The matching queue associated with a graph G =
(V,E), an arrival-rate vector λ := (λ1, . . . , λ|V|) and a matching policy �, is de-
fined as follows. Each node of the simple graph G (which we call matching graph)
is associated with a class of items, and items of each class i ∈ V arrive to the
system in accordance with a Poisson process Ni having intensity λi > 0. We also
write

(2) λ̄ :=
∑

i∈V

λi and λ̄A :=
∑

i∈A

λi, A ⊂ V.
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We assume that all |V| Poisson arrival processes are independent. Class-i items can
be matched with class-j items if and only if i−j , that is, there is an edge between
the two nodes i, j ∈ V . We emphasize that the matching graphs G we consider are
simple, so that items from the same class cannot be matched together.

Upon arrival, a class-i item is either matched with exactly one item from a
class j such that i−j , if any such item is available, or is placed in an infinite
buffer. Matched items leave the system immediately. We refer to the buffer content
associated with each class i as the class-i queue, and denote the associated class-i
queue process by Qi := {Qi(t) : t ≥ 0}. Specifically, for all t ≥ 0, Qi(t) is the
number of the class-i items in queue at time t . Let

(3) Q = (Q1, . . . ,Q|V|)

denote the |V|-dimensional queue process of the system. For t ≥ 0 and A ⊂ V , we
let QA(t) be the restriction of Q(t) to its coordinates in A.

Upon arrival to the system, a class-i item may find several possible matches,
whenever more than one neighboring class has items queued. A matching policy is
the rule specifying how to execute matchings in such cases. We say that a matching
policy � is admissible if matchings always occur when possible, and decisions are
made solely on the value of the queue process Q at arrival epochs. (We note that a
larger class of policies was considered in [23].) Consequently, under an admissible
matching policy, the queue process Q is a CTMC and Qi(t)Qj (t) = 0 for all
i, j ∈ V such that i−j and all t ≥ 0.

An admissible matching policy is of priority type if for any node i, the set
E(i) is a priori ordered: E(i) = (i1, i2, . . . , i|E(i)|), so that, at any time t in which
a class-i item enters the system, matching occurs with a class-im item, where
m = min{ℓ ∈ ❏1, |E(i)|❑ : Qiℓ(t) > 0}. An important example of a nonpriority ad-
missible matching policy is Match the Longest, denoted by ML, which was intro-
duced in [8] for the bipartite matching queue, and in [23] for the general matching
queue in discrete time. According to ML, an arriving item of class i is matched
with an item of the class in E(i) that has the longest queue at that time, where ties
are broken according to a uniform draw.

Clearly, the initial queue length Q(0), together with G, λ and the matching
policy � fully determine the distribution of Q. We thus characterize the system
by the triple (G,λ,�)C (where we append the subscript C to denote a continuous-

time model, as opposed to the one in discrete time, which will be denoted with a
subscript D).

Stability of a matching queue. The matching queue (G,λ,�)C is said to be
stable if the corresponding CTMC Q is positive recurrent, and unstable otherwise.

DEFINITION 1. The stability region corresponding to the connected graph G

and the matching policy � is the set
{
λ ∈ R

|V|
++ : (G,λ,�)C is stable

}
.
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3

1 2

FIG. 1. Triangle.

We also say that node i ∈ V is unstable if, for some initial condition, the mean
time for its associated queue to empty is infinite. Otherwise, the node is stable.

2.3. The necessary condition for stability NCOND. It is natural to ask what is
the analogue of (1) in the context of matching queues. Clearly, it must hold that,
for each node i,

(4) λi < λ̄E(i).

[Recall the notational convention in (2).] However, it is easy to see that (4) can
hold for matching queues having bipartite matching graphs, for example, although
such models are never stable. (See the discussion following the proof of Theorem 1
below.) Thus, a necessary condition for stability should be stronger than (4).

To gain intuition, we contrast two simple examples for matching graphs, the tri-
angle and the simplest graph including a triangle, which we shall call the “pendant
graph”, depicted in Figures 1 and 2, respectively. For the triangle, it is straightfor-
ward that the corresponding matching queue is stable under (4) for any admissible
matching policy. Indeed, at most one of the three queues is positive at any given
time, and the drift of any positive queue is necessarily negative under (4). Now
consider the pendant graph with the priority matching policy in Figure 2, under
which node 3 gives strict priority to nodes 1 and 2, that is, a class-3 arrival who
finds items in node 4 and in one of the remaining two nodes, say node 1, will be
matched with the class-1 item. This priority policy is depicted by the arrows in
Figure 2. Under this policy, node 4 may be unstable despite the fact that λ4 < λ3.
Indeed, for node 4 to be stable, we must have an adequate number of class-3 ar-
rivals so that, even though λ3 < λ1 + λ2 + λ4, sufficiently many class-3 items are
left to be matched with all the class-4 items in the long run. Since many class 1

4

3

1 2

FIG. 2. Pendant graph.
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and class 2 items will be matched with each other, it is intuitively clear that, in
addition to (4), we must require that

λ4 + λ1 < λ3 + λ2 and λ4 + λ2 < λ3 + λ1.

This suggests that one needs to consider the arrival rates to subsets of nonneigh-
boring nodes, and require that those rates are smaller than the arrival rates to the
neighborhoods of those subsets. Therefore, for any matching graph G, we define

NCONDC(G) :=
{
λ ∈ R

|V|
++ : λ̄I < λ̄E(I) for all I ∈ I(G)

}
,

where we recall that I(G) is the set of independent sets of G. We say that NCOND

holds for G and λ if

(5) λ ∈ NCONDC(G).

THEOREM 1 (Necessary condition for stability of matching queues). Let G be

a connected graph and � an admissible matching policy. Then the stability region

corresponding to G and � is included in NCONDC(G).

Before proving Theorem 1, let us briefly describe the (discrete-time) stochastic
matching model introduced in [23]. Given a graph G and an admissible matching
policy �, the discrete-time stochastic matching model (G,μ,�)D is defined simi-
larly to the matching queue (G,λ,�)C, except that items enter the system one by
one, at any discrete time n ∈ Z++. Assuming that the sequence of classes of the
items entering the system is independent and identically distributed with a com-
mon probability measure μ on V , (G,μ,�)D is represented by the Z

|V|
+ -valued

Discrete-Time Markov Chain (DTMC) U := {U(n) : n ≥ 1}, where for any i ∈ V

and any n ∈ Z++, Ui(n) counts the number of items of class i in the buffer at
time n. Then, letting {N(t) : t ≥ 0} denote the superposition of of the Poisson ar-
rival processes N1, . . . ,N|V|, we have Q(t) = U(N(t)), t ≥ 0, due to uniformiza-
tion, implying that Q is positive recurrent if and only if U is.

PROOF OF THEOREM 1. Define the following set of probability measures μ

on V :

NCONDD(G) :=
{
μ with support V : μ(I) < μ

(
E(I)

)
for all I ∈ I(G)

}
,

and for any λ, define the probability measure

(6) μλ(i) := λi/λ̄, i ∈ V.

Then for any graph G it holds that, if λ ∈ NCONDC(G), then μλ ∈ NCONDD(G).
The statement of the theorem thus follows from Proposition 2 in [23], and the
fact that Q is positive recurrent if and only if the DTMC U corresponding to
(G,μ,�)D is. �
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An immediate consequence of Theorem 1 is that matching queues (G,λ,�)C

having a connected bipartite graph G are never stable. Indeed, if I1 ∪ I2 denotes
the bipartition of V into maximal independent sets, then (5) implies that λ̄I1 < λ̄I2

and λ̄I1 > λ̄I2 , so that NCONDC(G) is empty. In (i) of Theorem 2 below, we show
that the converse of this result also holds.

In ending, we remark that (5) is equivalent to (4) for the triangle in Figure 1
or, more generally, for any complete graph. Aside from this case, condition (5) is
always strictly stronger (and harder to verify) than (4). It is therefore significant
that it can be verified in O(|V|3) time; see Proposition 1 in [23].

3. The main result.

3.1. Separable graphs. The notion of a separable graph, introduced in [23],
will play a crucial role in what follows.

DEFINITION 2. A graph G = (V,E) is said to be separable of order q , q ≥ 2,
if there exists a partition of V into maximal independent sets I1, . . . ,Iq , such that
u−v for all u ∈ Ii and v ∈ Ij , for all i 	= j .

Equivalently, G is separable of order q if its complement graph can be parti-
tioned into q disjoint cliques. Notice that a separable graph of order 2 is bipartite,
whereas a separable graph or order 3 or more is non-bipartite.

As we now demonstrate, separable and complete graphs are closely related. First
observe that, for any q > 0, the complete graph of size q is separable of order q .
Conversely, any separable graph of order q can be related to the complete graph
of size q in the following way. Let G = (V,E) be a separable graph of order q ,
and I1, . . . ,Iq be its maximal independent sets. Observe that, as G is separable,
the binary relation “ 	−” is an equivalence relation in V . If we “contract” G by
“merging” all the nodes in each equivalence class (i.e., maximal independent set),
so that each node in the contracted graph represents an independent set in G, and
merge all the edges emanating from merged nodes that point to the same nodes,
we obtain the complete graph G̃ of size q; see Figure 3.

1
2

3

4
5

6

2-5

1-4 3-6

1 2 3

4 5 6

FIG. 3. Separable graph of order 3 (left); its merged complete graph (middle), and its complement

graph (right).
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3.2. Preliminaries. It follows from Theorem 1 that (5) is a necessary condi-
tion for stability of the system, regardless of the matching policy �. It is then nat-
ural to investigate what are the matching policies for which (5) is also a sufficient

condition for stability of the matching queue.

DEFINITION 3. Let G be a connected graph. An admissible matching policy
� on G is maximal if the stability region corresponding to G,� coincides with
NCONDC(G).

DEFINITION 4. A connected graph G is said to be:

• matching-stable if NCONDC(G) is nonempty and all admissible matching poli-
cies on G are maximal;

• matching-unstable if the set NCONDC(G) is empty.

In other words, if G is matching-stable the matching queue (G,λ,�)C is sta-
ble for any admissible � and any λ ∈ NCONDC(G). If G is matching-unstable,
the matching queue (G,λ,�)C is unstable for any admissible � and any arrival-
rate vector λ. Clearly, a graph G might be neither matching-stable nor matching-
unstable.

We have the following consequence to Theorem 2 in [23].

THEOREM 2. For any connected graph G, the following hold:

(i) G is matching-unstable if and only if it is bipartite;
(ii) If G is non-bipartite, then the discipline ML is maximal;

(iii) If G is separable of order q ≥ 3, then it is matching-stable.

PROOF. The arguments in the proof of Theorem 1 are again employed to apply
the results for the discrete-time model in [23] to the continuous-time model con-
sidered here. In particular, by Theorem 1 in [23], the set NCONDC(G) is nonempty
if and only if G is non-bipartite. Hence, the statements (i), (ii) and (iii) follow,
respectively, from (16), (17) and (18) in [23]. �

We make the following observation: For a matching queue on a complete graph,
all admissible matching policies are equivalent. Indeed, at most one class of items
can be present in queue at any given time, so that an arriving item has no more
than one choice for matching. Thus, the fact that all non-bipartite separable graphs
are matching-stable is not surprising, given their relation to complete graphs, as
described above.

Let G be a separable graph of order q ≥ 3. Consider a matching queue
(G,λ,�)C on G, where � is admissible, and the matching queue (G̃, λ̃, �̃)C,
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where G̃ is the “merged” complete graph of size q obtained from G, as described
in Section 3.1, �̃ is an arbitrary admissible policy and

λ̃j = λ̄Ij
, j ∈ ❏1, q❑.

(We add a tilde to all parameters associated with G̃.) Since G̃ is complete, the
matching policy �̃ is irrelevant, as long as it is admissible. In (G,λ,�)C, only
items of classes belonging to the same maximal independent set can be present
in queue at any given time. Fix a time point t at which the system is nonempty,
and let Iℓ be the (unique) maximal independent set having a nonempty queue at t .
Suppose that an item enters the system at t . We have the following alternatives:

• If the new arriving item is of a class belonging to Iℓ, then no matching occurs
and the item joins the queue.

• If the new arrival is an item of a class k ∈ Im, ℓ 	= m, then (no matter what the
matching policy � is), the entering item will be matched with an item from a
class in Iℓ, and � only determines the class of its match in Iℓ (as several classes
in Iℓ may have a nonempty queues at t).

Consequently, if the initial conditions satisfy
∑

k∈Ij
Qk(0)

d
= Q̃j (0), j ∈ ❏1, q❑,

then

(7)
{ ∑

k∈Ij

Qk(t) : t ≥ 0
}

d
=

{
Q̃j (t) : t ≥ 0

}
, j ∈ ❏1, q❑.

We conclude that, for any matching policy �, if one adopts a “macroscopic”
view of the matching queue (G,λ,�)C, by only keeping track of the maximal
independent set present in queue at any time (there is at most one), and not of
the particular classes of the items, then the matching queue on G amounts to a
matching queue on G̃ having an arbitrary matching policy �̃. As the latter model
is stable at least for the policy ML since G̃ is non-bipartite [by assertion (ii) of
Theorem 2 above], it is stable under any policy �̃. From (7), the matching queue
(G,λ,�)C is stable regardless of the matching policy �, which is exactly assertion
(iii) of Theorem 2.

3.3. The main result. Assertion (i) in Theorem 2 identifies the class of graphs
rendering any matching queue unstable, regardless of the matching policy. By As-
sertion (ii) of the theorem, any matching queue (G,λ, ML)C on a non-bipartite
graph G is stable, provided λ satisfies NCOND. Assertion (iii) presents a class of
graphs (the non-bipartite separable ones) that are matching-stable, namely, for any
matching policy and arrival-rate vector satisfying NCOND the system is stable. To-
gether, these results raise the question of whether the choice of the matching policy
matters in terms of stability for graphs that are nonseparable and non-bipartite, that
is, for graphs for which at least the discipline ML is maximal. The simplest such
graph, namely, the pendant graph depicted in Figure 2, was considered in Section 5
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of [23], where it is shown that this graph is not matching-stable. In particular, it
was shown in [23] that, for a symmetric matching queue (with λ1 = λ2) there exists
a matching policy for which the stability region is strictly included in NCOND(G).
Our main result, Theorem 3 below, provides a significant generalization of this re-
sult for a much larger class of graphs; en route, we also prove generalized versions
of the results in [23], Section 5.

To present our main result, let G7 denote the set of all connected graphs inducing
an odd cycle of size 7 or more, but no 5-cycle and no pendant graph, and let G

c
7

denote its complement in the set of connected graphs.

THEOREM 3. The only matching-stable graphs in G
c
7 are separable of order

3 or more.

In other words, except for the special case of graphs inducing an odd cycle of
size 7 or more, but no pendant graph and no 5-cycle, the only matching-stable
graphs are the non-bipartite separable graphs (i.e., separable graphs of order 3
or more). Therefore, separability of order at least 3 is not only sufficient, but also
necessary, at least in G

c
7 , for the stability of any matching queue under NCOND. We

conjecture that, among connected non-bipartite graphs, separability and matching-
stability are equivalent or, in other words, that no graph in G7 is matching-stable.
[The two statements are equivalent since all graphs in G7 are nonseparable; see
Lemma 3(ii) below.] Even though we were not able to prove this result, we provide
key steps in that direction; see Section 9 below.

Applying again the arguments of the proof of Theorem 1, we obtain the follow-
ing immediate corollary to Theorem 3.

COROLLARY 1. Theorem 3 also holds for the discrete-time matching model.
In particular we have the following partial converse of assertion (18) in [23]: if

G ∈ G
c
7 is such that any discrete-time matching model (G,μ,�)C is stable for

μ ∈ NCONDD(G), then G is separable of order q ≥ 3.

3.4. Strategy of the proof of Theorem 3. To prove Theorem 3, we fix a non-
bipartite and nonseparable graph G in G

c
7 , and show the existence of a nonmaxi-

mal priority matching policy �.
The proof hinges on the following fact, which will be proved in Section 6.1

[statement (i) in Lemma 3]: any connected, non-bipartite and nonseparable graph

induces a pendant graph or an odd cycle of length 5 or more. Consequently, as G

belongs to G
c
7 , it induces a graph Ğ which is either a pendant graph or a 5-cycle.

The remainder of the proof follows two main steps:

1. In Section 5, we construct a nonmaximal matching policy �̆ on the induced
graph Ğ (addressing successively the cases Ğ = pendant graph and Ğ = 5-cycle),
by providing an arrival-rate vector λ̆ ∈ NCONDC(Ğ) such that (Ğ, λ̆, �̆)C is un-
stable. In both cases, the instability of the system is shown using the fluid-limit
arguments developed in Section 4.
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2. We then prove that the instability of the matching queue on the induced graph
Ğ implies instability of the matching queue on the inducing graph G, by showing
a “nonchaoticity” property in Section 6.2. In particular, we show that the influence
of the arrivals to nodes of the complement of Ğ in G can be bounded such that
the unstable node in (Ğ, λ̆, �̆)C remains unstable in (G,λ,�)C, for a well-chosen
arrival-rate vector λ ∈ NCONDC(G) and a well-chosen matching policy �.

4. Fluid stability. We now take a detour to develop the fluid limit which will
be used in the proof of Theorem 3. Throughout this section, we fix a matching
queue (G,λ,�)C, where � is of priority type, so that Q in (3) is a CTMC with
state space

(8) G :=
{
z ∈ Z

|V|
+ : zizj = 0, for any i ∈ V and j ∈ E(i)

}
.

4.1. Sample-path representation. Before introducing the FWLLN for match-
ing queues under priority policies, it is helpful to consider the sample-path repre-
sentation of the CTMC Q. To that end, note that for each i ∈ V , Qi(t) increases by
1 at time t if there is an arrival to node i at t and Qj (t) = 0 for all j ∈ E(i); Qi(t)

decreases by 1 at time t (when it is positive) if there is an arrival to one of the
neighbors j ∈ E(i), and all the buffers in E(j) to which j gives a higher priority
are empty. To express these dynamics, we introduce the following subsets of G:
for any i ∈ V , we let

Ni := {z ∈ G; zi > 0};

Oi :=
{
z ∈G : zj = 0 for all j ∈ E(i)

}
;

Pj (i) :=
{
z ∈G : zk = 0 for all k ∈ �j (i)

}
, j ∈ E(i),

(9)

where �j (i) is the list of all the neighbors of node j to which node j gives a higher
priority than to node i, namely,

(10) �j (i) =
{
k ∈ E(j); j gives priority to k over i according to �

}
.

Let A denote the infinitesimal generator of the queue process Q. Then, by
the definition of the matching policy �, the only positive terms A (z, y), for all
y, z ∈ G, are given by

(11)

⎧
⎪⎨
⎪⎩

A (z, z + ei) = λi1Oi
(z), i ∈ V;

A (z, z − ei) = 1Ni
(z)

∑

j∈E(i)

(
λj1Pj (i)(z)

)
, i ∈ V,

where 1A(·) is the indicator function of the set A. Consequently (see, e.g., [25]),
for all i ∈ V , we can represent the sample path of Qi using the independent Poisson
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arrival processes Ni, i ∈ V , via

Qi(t) = Qi(0) +

∫ t

0
1Oi

(
Q(s−)

)
dNi(s)

−
∑

j∈E(i)

∫ t

0
1Ni

(
Q(s−)

)
1Pj (i)

(
Q(s−)

)
dNj (s), t ≥ 0,

(12)

where Q(t−) denotes the left limit of Q at the time point t .

EXAMPLE 1. For the pendant graph in which node 3 prioritizes nodes 1 and
2 over 4, as depicted in Figure 2, the subsets in (9) become

O4 = {z ∈ G : z3 = 0} and P3(4) = {z ∈ G : z1 = z2 = 0}.

The sample paths of Q4 in that case can be represented via

Q4(t) = Q4(0) +

∫ t

0
1O4

(
Q(s−)

)
dN4(s)

−

∫ t

0
1N4∩P3(4)

(
Q(s−)

)
dN3(s), t ≥ 0.

4.2. Marginal process corresponding to a particular node. The fluid limit we
are about to introduce is formulated for a particular class of models, exhibiting
the following situation. When fixing the arrival-rate vector λ and the admissible
matching policy �, and when isolating a single node for which we take the corre-
sponding initial buffer content to be strictly positive, the content process of all the
nodes different from that node and its neighbors, coincides in law with an ergodic
CTMC.

Formally, fix a matching queue (G,λ,�)C and a node i0 of G. Let

S = V \
(
{i0} ∪ E(i0)

)
,

and index the elements of S as follows:

(13) S = {i1, . . . , i|S|}.

Now, for any z ∈ G such that zi0 > 0, the only positive terms A (z, y), y ∈ G, are
given by

(14)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A (z, z + ei0) = λi0;

A (z, z − ei0) =
∑

j∈E(i0)

(
λj1Pj (i0)(z)

)
;

A (z, z + eiℓ) = λiℓ1Oiℓ
(z), ℓ ∈ ❏1, |S|❑;

A (z, z − eiℓ) = 1Niℓ
(z)

∑

j∈E(iℓ):
i0 /∈�j (iℓ)

(
λj1Pj (iℓ)(z)

)
, ℓ ∈ ❏1, |S|❑.
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To see this, observe that, by the definition of �, 1Pj (iℓ)(z) = 0 for all ℓ and j ∈

E(iℓ) such that i0 ∈ �j (iℓ), since zi0 > 0.
Let S = {S(t) : t ≥ 0} denote the restriction of the process Q to the nodes of S ,

that is,

(15) S = (S1, S2, . . . , S|S|) := (Qi1, . . . ,Qi|S|
).

Then S achieves values in the following subset GS of Z|S|
+ :

(16) GS =
{
x ∈ Z

|S|
+ : xkxℓ = 0 for k, ℓ ∈ ❏1, |S|❑ such that ik ∈ E(iℓ)

}
.

Analogously to (9), we define the following subsets of GS : For any ℓ ∈ ❏0, |S|❑:

N S
iℓ

:=
{
x ∈GS : xℓ > 0

}
;

OS
iℓ

:=
{
x ∈GS : xj = 0 for all j ∈ ❏1, |S|❑ such that ij ∈ E(iℓ)

}
;

and for any ℓ ∈ ❏0, |S|❑ and j ∈ E(iℓ),

(17) PS
j (iℓ) :=

{
x ∈ GS : xk = 0 for all k such that ik ∈ �j (iℓ)

}
.

DEFINITION 5. The marginal process corresponding to node i0 is the GS -
valued CTMC χ := {χ(t) : t ≥ 0}, whose infinitesimal generator A S has the fol-
lowing positive terms:

(18)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A
S(x, x + eℓ) = λiℓ1OS

iℓ

(x) ℓ ∈ ❏1, |S|❑;

A
S(x, x − eℓ) = 1

NS
iℓ

(x)
∑

j∈E(iℓ):
i0 /∈�j (iℓ)

(
λj1PS

j (iℓ)
(x)

)
ℓ ∈ ❏1, |S|❑.

Observe that for any z ∈ G, if x ∈ GS is defined by x = (zi1, . . . , zi|S|
), then for

all ℓ ∈ ❏1, |S|❑ we have

1Oiℓ
(z) = 1

OS
iℓ

(x);

1Niℓ
(z) = 1

NS
iℓ

(x),

and if zi0 > 0, as we have zj = 0 for all j ∈ E(i0), by definition of � we obtain

1Pj (iℓ)(z) = 1
PS

j (iℓ)
(x) for all j ∈ E(iℓ).

Therefore, in view of (14) and (18) we can provide a more intuitive definition of
the marginal process associated to the node i0: it is a Markov process on GS which
coincides in distribution with the restriction S of the process Q to its coordinates
in S , conditionally on the i0th coordinate of Q being positive.
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EXAMPLE 2 (Example 1, continued). Set i0 = 4. Then we have S = {1,2}.
Set i1 = 1 and i2 = 2. We thus have

(19) GS =
(
{0} ×Z+

)
∪

(
Z+ × {0}

)
=: E2,

and the following subsets of E2:

OS
1 = Z+ × {0}; PS

3 (1) =PS
2 (1) = N S

1 = Z++ × {0};

OS
2 = {0} ×Z+; PS

3 (2) =PS
1 (2) = N S

2 = {0} ×Z++.

Thus, the positive terms of the generator A S are

(20)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A
S(x, x + e1) = λ1 for x ∈ Z+ × {0};

A
S(x, x − e1) = λ3 + λ2 for x ∈ Z++ × {0};

A
S(x, x + e2) = λ2 for x ∈ {0} ×Z+;

A
S(x, x − e2) = λ3 + λ1 for x ∈ {0} ×Z++.

4.3. The FWLLN. Throughout this section, fix the matching queue (G,λ,�)C

and the node i0 ∈ V . We consider the sequence of fluid-scaled processes {Q̄n : n ≥

1}, defined via

(21) Q̄n(t) =
Qn(t)

n
:=

Q(nt)

n
, t ≥ 0, n ≥ 1.

Similarly, recalling (15) we define

(22) S̄n(t) =
Sn(t)

n
:=

S(nt)

n
, t ≥ 0, n ≥ 1.

For n ∈ Z++, we will use the notation Nn
i (·) for the time-scaled Poisson arrival

process to node i, namely, Nn
i (·) = Ni(n·), i ∈ V . We also denote by χn the nth

marginal process corresponding to i0, defined by

(23) χn(t) = χ(nt), t ≥ 0,

and define

(24) χ̄n(t) =
χn(t)

n
, t ≥ 0, n ≥ 1.

The insufficiency of NCOND to ensure the stability of a given matching queue
will be shown via the following lemma.

LEMMA 1. If there exists an initial condition Qn(0) ∈ G such that Q̄n ⇒ Q̄

in D|V| as n → ∞ and P := {i ∈ V : Q̄i(0) > 0} 	= ∅, and if for some i ∈ P it

holds that Q̄i is nondecreasing, then Q is either transient or null recurrent. In

particular, the corresponding matching queue (G,λ,�)C is unstable.
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PROOF. By Proposition 9.9 in [28], if Q is positive recurrent there exists a
(possibly random) time T , such that T < ∞ w.p.1 and Q̄(t) = 0 for all t ≥ T . �

For the fluid analysis, we make two assumptions.

ASSUMPTION 1. Qn(0) ∈ G for any n ≥ 1, and Q̄n(0) ⇒ Q̄(0) as n → ∞,
where Q̄(0) is a deterministic element of R|V|, with Q̄i0(0) > 0 and Q̄i(0) = 0,
i ∈ V \ {i0}.

ASSUMPTION 2. For all n ≥ 1, the GS -valued process χn is ergodic with
stationary probability πn.

For n ≥ 1, let

(25) ρn := ρn(
Qn(0)

)
:= inf

{
t ≥ 0 : Qn

i0
(t) = 0

}
,

with inf∅ := ∞.

LEMMA 2. Consider the sequence {Q̄n : n ∈ Z++} corresponding to a system

(G,λ,�)C. Then there exist n0 ∈ Z+ and δ > 0 such that ρn(Qn(0)) > δ w.p.1 for

all n ≥ n0. In particular, there exists n0 < ∞, such that

(26) inf
0≤t<δ

Q̄n
i0
(t) > 0 w.p.1 for all n ≥ n0.

PROOF. We use a simple coupling argument. Consider the matching queue
(G,λ, �̃)C (with the same graph G and arrival-rate vector λ as in the statement
of the lemma), where �̃ is the priority policy under which each i ∈ E(i0) gives
the highest priority to node i0. If the corresponding queue process Q̃n is given the
same Poisson processes {Nn

i : i ∈ V} of the original system, we clearly have

Qn
i0
(t) ≥ Q̃n

i0
(t) := Qn

i0
(0) + Ni0(nt) −

∑

j∈E(i0)

Nj (nt), 0 ≤ t ≤ δn,

where δn := inf{t > 0 : Q̃n
i0
(t) = 0}.

Dividing Q̃n
i0

by n and taking n → ∞, we obtain from the functional strong law
of large numbers (FSLLN) for the Poisson process, that Q̃n/n converges w.p.1 to
q̃ , where

(27) q̃i0(t) := Q̄i0(0) +

(
λi0 −

∑

j∈E(i0)

λj

)
t, 0 ≤ t < δ,

where

δ :=
Q̄i0(0)

∑
j∈E(i0)

λj − λi0

if
∑

j∈E(i0)

λj − λi0 > 0 and δ := ∞ otherwise.
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The uniform convergence over compact subintervals of [0, δ) of the lower bound-
ing processes Q̃n

i0
/n to a strictly positive function gives (26). �

Before presenting the fluid limit, we explain the intuition behind the expres-
sion for Q̄i0 that we obtain. Since Q̄i0 is strictly positive over an interval [0, δ)

by Lemma 2, if Sn(0)
d
= χn(0) for all n ≥ 1, then from (14), (18) describes the

infinitesimal rates of Sn over [0, δ), so that

(28)
{
Sn(t) : 0 ≤ t < δ

} d
=

{
χn(t) : 0 ≤ t < δ

}
.

Hence, Sn is locally (over [0, δ)) distributed as a CTMC, which is ergodic by
Assumption 2. Thus, it is not hard to show that S̄n converges to 0 over that interval;
see the proof of Theorem 4. Nevertheless, the dynamics of S̄n determine those
of Q̄n

i0
for each n, as is clear from (12), and the affect of S̄n on Q̄n

i0
does not

diminish as n increases to infinity. However, the “small” process Sn is also “fast”
relative to Q̄n

i0
, since (23) implies that, regardless of the distribution of χn(0),

χn(t)
d
≈ χ(∞), for any t > 0 and for all large-enough n, where χ(∞) denotes

a random variable having the stationary distribution of χ . [We write
d
≈ if, in the

limit as n → ∞, the distribution of χn(t) at time t converges to the stationary
distribution of χ , that is, χn(t) ⇒ χ(∞) in GS .] Then (28) implies that Sn(t)

converges to χ(∞) as well as n → ∞, 0 < t < δ. Such a result is known in the
queueing literature as a pointwise stationarity, for example, [33]. Of course, to
obtain a FWLLN, the convergence must hold uniformly in t over the interval [0, δ),
namely, the aforementioned stochastic AP must hold, but the intuition for the fast
averaging phenomenon is similar.

Formally, let π denote the stationary distribution of the CTMC χ whose gener-
ator A S is given in (18), that is,

(29) π(Z) = P
(
χ(∞) ∈ Z

)
, Z ⊆ GS .

THEOREM 4 (FWLLN). Let (G,λ,�)C be a matching queue such that � is

of the priority type. If, for some node i0

(30) λi0 −
∑

j∈E(i0)

λjπ
(
PS

j (i0)
)
< 0,

for π in (29) and PS
j (i0), j ∈ E(i0) in (17), then ρn ⇒ ρ in R as n → ∞, for ρn

in (25), where

(31) ρ :=
Q̄i0(0)

∑
j∈E(i0)

λjπ(PS
j (i0)) − λi0

.



INSTABILITY OF MATCHING QUEUES 3405

Otherwise, ρn ⇒ ∞. In either case, Q̄n ⇒ Q̄ in D|V|[0, ρ) as n → ∞, where

Q̄i0(t) = Q̄i0(0) +

(
λi0 −

∑

j∈E(i0)

λjπ
(
PS

j (i0)
))

t,

Q̄i(t) = 0, i ∈ V \ {i0}.

(32)

The proof of Theorem 4 is given in Section 7. From Theorem 4 and Lemma 1,
it immediately follows that we have the following.

COROLLARY 2. If ρn ⇒ ∞, for ρn in (25), then (G,λ,�)C is unstable.

It is significant that we can compute the stationary probabilities π(·) in (29) in
some cases, using reversibility arguments.

5. The pendant graph and the 5-cycle. In this section, we analyze matching
queues defined on the pendant graph and the 5-cycle, using the fluid limit in Theo-
rem 4. In both cases, the stationary probability π [on E2 in (19)] can be computed
explicitly, so that the stability region of the corresponding matching queues can be
fully characterized.

5.1. The pendant graph. We start with the model depicted in Figure 2.

PROPOSITION 1. Let G be the pendant graph and � the matching policy de-

picted in Figure 2. Consider an arrival-rate vector λ ∈ NCONDC(G), that is,

(33) λ4 < λ3 < λ4 +λ1 +λ2, λ4 +λ1 < λ3 +λ2 and λ4 +λ2 < λ3 +λ1.

If Q̄n(0) ⇒ xe4 in R4 for some x ∈ R++, then Q̄n ⇒ Q̄ in D4[0, ρ) as n → ∞,
where

(34) Q̄(t) =
(
0,0,0, x + (λ4 − λ3α)t

)
, 0 ≤ t < ρ,

for ρ := x/(λ3α − λ4) if α > λ4/λ3 and ρ := ∞ otherwise, and for

(35) α :=

[
1 +

λ1

λ3 + λ2 − λ1
+

λ2

λ3 + λ1 − λ2

]−1
=

(λ3)
2 − (λ1 − λ2)

2

λ3(λ3 + λ1 + λ2)
.

PROOF. The result follows from Theorem 4. In the present case, we set i0 = 4,
so that the marginal process χ is a E2-valued CTMC having the generator A S in
(20) (see Example 2). For α in (35), let π(0,0) = α and

π(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α

(
λ1

λ3 + λ2

)i

for x = (i,0), i ≥ 1;

α

(
λ2

λ3 + λ1

)j

for x = (0, j), i ≥ 1.
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It is easy to check that under (33), π is a probability vector satisfying the detailed
balance equations for χ , so that it is the unique stationary distribution of this re-
versible CTMC. In particular, Assumption 2 holds. Since items of class 3 give
priority to 1 and 2 over 4, we have that PS

3 (4) = (0,0), so the stated convergence
of Qn to the fluid limit in (34) follows from (32). �

PROPOSITION 2. The matching queue (G,λ,�)C corresponding to the pen-

dant graph G and the priority policy � represented in Figure 2 is stable if and

only if NCOND holds together with

(36) λ4 < αλ3,

for α in (35).

PROOF. The necessity of NCOND has been shown in Theorem 1. Also, it fol-
lows from Proposition 1 that, for any initial condition of the form (0,0,0, x),
x > 0, the fluid limit Q̄ will hit the origin if and only if λ4 < αλ3. The necessity
of (36) then follows from Lemma 1. To show sufficiency, we apply Dai’s result
in [10]. To that end, we must consider all possible initial conditions for the fluid
limit, and show that the origin is guaranteed to be hit in finite time.

First, assume that Q̄3(0) > 0, so that all other queues are empty initially. In that
case, and as long as the class-3 queue is strictly positive, its drift down (toward
0) is λ4 + λ1 + λ2, which is larger than the drift up λ3 by (33). In particular,
during the initial interval over which Q̄3 > 0, the class-3 queue is distributed as
an ergodic birth and death (BD) process whose fluid limit is known to be (e.g.,
Proposition 5.16 in [28])

Q̄3(t) = Q̄3(0) + (λ3 − λ4 − λ1 − λ2)t, 0 ≤ t ≤
Q̄3(0)

λ4 + λ1 + λ2 − λ3
,

so that the fluid queue hits the origin in finite time.
Now assume that Q̄4(0) > 0. Then at most one of Q̄1(0) or Q̄2(0) can be strictly

positive. Say Q̄1(0) > 0. In that case, the matching policy we consider implies that,
as long as Q̄1 > 0, all the arriving items of classes 3 and 2 are matched with class-
1 items. Hence, as long as the class-1 queue process is positive, it is distributed
as a BD process having a constant birth rate λ1 and a constant death rate λ3 + λ2.
This BD process is ergodic due to (33), and its fluid limit is

Q̄1(t) = Q̄1(0) + (λ1 − λ3 − λ2)t, 0 ≤ t ≤
Q̄1(0)

λ3 + λ2 − λ1
.

In particular, the fluid process Q̄1 will hit 0 in finite time, so that Q̄ will hit the
origin in finite time by Proposition 1. A similar argument applies when Q̄2(0) > 0.

Now, since the prelimit processes Qi , i = 1,2,3 have drifts toward 0 whenever
any of them is strictly positive, the fluid limit must remain in state 0 after hitting
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this state, and Proposition 1 shows that Q̄4 will also remain fixed at 0 after hitting
that state. Thus, the ergodicity of the system follows from Theorem 4.2 in [10].

�

REMARK 1. A discrete version of Proposition 2 was proved in [23] for
the symmetric model (G,μ,�)D in which μλ(1) = μλ(2) (so that a lower-
dimensional process can be considered), via subtle Lyapunov-stability arguments.
Plugging λ1 = λ2 in (35) and recalling (6), Proposition 2 gives that the discrete
model (G,μλ,�)D corresponding to Figure 2 is stable if and only if

(37) μλ(4) < μλ(3) < μλ(4) + 2μλ(1) and
(
μλ(3)

)2
> μλ(4)

(
1 − μλ(4)

)
.

As μλ(2) = μλ(1), the left-hand condition above is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μλ(3) < μλ(4) + μλ(1) + μλ(2) = μλ

(
E(3)

)
;

μλ(4) < μλ(3) = μλ

(
E(4)

)
;

μλ(1) < μλ(3) + μλ(1) = μλ(3) + μλ(2) = μλ

(
E(1)

)
;

μλ(2) < μλ(3) + μλ(2) = μλ(3) + μλ(1) = μ
(
E(2)

)
;

μλ

(
{1,4}

)
= μλ(1) + μλ(4) < μλ(2) + μλ(3) = μλ

(
E

(
{1,4}

))
;

μλ

(
{2,4}

)
= μλ(2) + μλ(4) < μλ(1) + μλ(3) = μλ

(
E

(
{2,4}

))
.

Thus, the measure μλ satisfies the condition NCOND(G) in page 5 of [23]. It is
easy to see that the second condition in (37) is equivalent to the right-hand con-
dition defining the region denoted STAB(A) in Proposition 3 of [23] (after re-
indexing the nodes according to Figure 1 in [23]). In particular, a measure μλ with
μλ(1) = μλ(2) satisfies (37) if and only if it belongs to STAB(A), so we retrieved
the stability condition that was established in Proposition 3 of [23] for that partic-
ular case. [Note, however, that we do not require μλ(1) = μλ(2).]

As the following shows, the stability region of the model in Figure 2, namely

NCONDC(G) ∩
{
λ satisfying (36)

}
,

is strictly contained in NCONDC(G).

PROPOSITION 3. We have the strict inclusion
{
λ satisfying (36)

}
∩ NCONDC(G) � NCONDC(G).

PROOF. Fix ǫ ∈ (0,2/5] and set
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 = λ2 = ǫ/2;

λ3 =
1

2
− ǫ/4;

λ4 =
1

2
− 3ǫ/4.
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5

3 4

1 2

FIG. 4. The 5-cycle; arrows indicate priorities.

It is then easily checked that λ ∈ NCONDC(G). However, simple algebra shows
that

λ4 − αλ3 =
1

2
−

3ǫ

4
−

(
1

2
−

ǫ

4

)
1/2 − ǫ/4

1/2 + 3ǫ/4
=

ǫ/4(1 − 5ǫ/2)

1/2 + 3ǫ/4
≥ 0,

so that λ does not satisfy (36). �

5.2. The 5-cycle. We now consider the matching queue corresponding to the
5-cycle, under the priority policy depicted in Figure 4: nodes 1 and 2 prioritize
each other, node 3 gives priority to node 1, and node 4 gives priority to node 2. For
concreteness, we assume that node 5 gives priority to node 4.

As for the pendant graph analyzed above, the stability region of the 5-
dimensional CTMC Q is challenging, even in symmetric cases; However, stability
analysis is made considerably more simple via the fluid limits analysis. In particu-
lar, we now obtain a necessary and sufficient condition for stability of the matching
queue corresponding to the 5-cycle and the matching policy � specified above, so
that the stability region of the model is fully characterized.

Let

(38) a :=
λ3(λ1 + λ4)

λ1 + λ4 − λ2
+

λ4(λ2 + λ3)

λ2 + λ3 − λ1
.

PROPOSITION 4. Let G be the 5-cycle, � be the priority matching policy de-

picted in Figure 4, and consider λ ∈NCONDC(G). Assume that for some x ∈ R++,
Q̄n(0) ⇒ xe5 in R5. Then Q̄n ⇒ Q̄ in D5[0, ρ̃) as n → ∞, where, for a in (38),

Q̄(t) =
(
0,0,0,0, x + (λ5 − aα̃)t

)
, 0 ≤ t < ρ̃;

for

(39) α̃ =

[
1 +

λ1

λ2 + λ3 − λ1
+

λ2

λ1 + λ4 − λ2

]−1

and

ρ̃ =
x

aα̃ − λ5
if λ5 < aα̃ and ρ̃ := ∞ otherwise.
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It will be seen in the proof of Proposition 4 that α̃ is the normalizing constant
that makes the solution to the detailed balance equations a probability vector. Note
that NCONDC(G) implies that a in (38) and α̃ in (39) are well defined. To see this,
consider the independent sets {1} and {2}, whose neighboring sets are E(1) = {2,3}

and E(2) = {1,4}, respectively.

PROOF. Set i0 = 5. In this case, from (18) the generator of the associated E2-
valued marginal process χ has the following positive terms:

(40)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˜A
S(x, x + e1) = λ1 for x ∈ Z+ × {0};

˜A
S(x, x − e1) = λ3 + λ2 for x ∈ Z++ × {0};

˜A
S(x, x + e2) = λ2 for x ∈ {0} ×Z+;

˜A
S(x, x − e2) = λ1 + λ4 for x ∈ {0} ×Z++.

As in the proof of Proposition 1, one can easily check that under NCONDC(G),

(41) π̃(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α̃

(
λ1

λ3 + λ2

)i

for x = (i,0), i ∈ Z+;

α̃

(
λ2

λ1 + λ4

)j

for x = (0, j), i ∈ Z+

is the unique stationary distribution of χ . Since

PS
3 (5) = {0} ×Z+ and PS

4 (5) = Z+ × {0},

the statement follows from Theorem 4. �

COROLLARY 3. A necessary condition for the matching queue in Figure 4 to

be stable is

(42) λ5 < aα̃ for a in (38).

We next present a sufficient condition for the stability of the matching queue
corresponding to Figure 4. Unlike the pendant graph, that sufficient condition is
strictly stronger than the necessary condition of Corollary 3. First, note that nodes
1 and 2 are always stable, for any λ in NCONDC(G). This can be easily seen by
observing that the drift down of the class 1 queue process, whenever the latter is
positive, equals λ2 + λ3, which is strictly less than the drift up λ1. Similarly, the
downward drift to 0 of the class 2 queue process is λ1 + λ4, which is less than the
upward drift λ2. It remains to consider nodes 3 and 4.

Stability of node 3. If Q̄3(0) > 0, then Q̄3 is strictly positive over an interval
I ⊂ [0,∞). Over this interval I , the class-2 and class-4 queue processes behave as
a fast-time-scale CTMC. Just as Proposition 4, from Theorem 4 we obtain that, if
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Q̄n(0) ⇒ Q̄3(0) and Q̄n
i (0) ⇒ 0, i 	= 3 in R as n → ∞, then Q̄n ⇒ Q̄ in D5[0, ρ3)

as n → ∞, where
{
Q̄3(t) = Q̄3(0) + [λ3 − cα(2,4)]t 0 ≤ t < ρ3,

Q̄i(t) = 0 0 ≤ t < ρ3, i ∈ ❏1,5❑ \ {3},

where

α(2,4) :=

(
1 +

λ2

λ1 + λ4 − λ2
+

λ4

λ5 + λ2 − λ4

)−1
,

c :=
λ5(λ1 + λ4)

λ1 + λ4 − λ2
+

λ1(λ5 + λ2)

λ5 + λ2 − λ4
,

ρ3 :=
Q̄3(0)

(c0 + c1)α(2,4) − λ3
if α(2,4) >

λ3

c0 + c1
and

ρ3 := ∞ otherwise.

Hence, in addition to requiring that NCONDC(G) holds, we must have ρ3 < ∞, so
that the fluid limit Q̄3 reaches 0 in finite time. In particular, a necessary condition
for the stability of the model is that

(43) λ3 < cα(2,4),

which is not implied by the necessary condition in Corollary 3.

Stability of node 4. Since node 5 gives priority to class 4 over class 3, the
instantaneous downward drift of the class 4 queue process, at any time t in which
it is strictly positive, is λ5 + λ21{Q1(t)=0}, while its upward drift is the constant λ4.
Then Theorem 4 implies again that, if Q̄n

4(0) ⇒ Q̄4(0), for some Q̄4(0) > 0, and
Q̄n

i (0) ⇒ 0 in R as n → ∞, i 	= 4, then over some interval I ⊂ [0,∞) it holds that
Q̄n ⇒ Q̄ in D5[0, ρ4), where

{
Q̄4(t) = Q̄4(0) + (λ4 − λ5 − λ2α(1,3))t 0 ≤ t < ρ4,

Q̄i(t) = 0 0 ≤ t < ρ4, i ∈ ❏1,5❑ \ {4},

for

α(1,3) := 1 −
λ1

λ2 + λ3
,

and

ρ4 :=
Q̄4(0)

λ5 + λ2α(1,3) − λ4
if α(1,3) > (λ4 − λ5)/λ2 and

ρ4 := ∞ otherwise.

Therefore, in order for node 4 to be stable, we require that, in addition to having
NCONDC(G) hold, ρ4 < ∞ or, equivalently,

(44) λ4 < λ2α(1,3) + λ5.
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The stability region of the model of Figure 4. Similar to the proof of Proposi-
tion 2, one can show that, if each of the necessary conditions for stability of each
of the nodes holds, then the model is stable. In particular, we have the following.

PROPOSITION 5. The model (G,λ,�)C corresponding to the 5-cycle and the

matching policy in Figure 4 is stable if and only if λ ∈ NCONDC(G) and all three

inequalities (42), (43) and (44) hold.

Similar to the pendant graph (see Proposition 3), we can check that the stability
region of the model is strictly included in NCONDC(G). Specifically, we have the
following.

PROPOSITION 6. We have the strict inclusion:
{
λ satisfying (42)

}
∩ NCONDC(G) � NCONDC(G).

PROOF. Fix ǫ ∈ (0,2/9] and set
⎧
⎪⎪⎨
⎪⎪⎩

λ1 = λ2 = ǫ/2;

λ3 = λ4 = 1/4 − ǫ/8;

λ5 = 1/2 − 3ǫ/4.

Clearly, λ ∈ NCONDC(G), but (42) does not hold since

λ5 − aα̃ =
1

2
−

3ǫ

4
−

(
1

2
−

ǫ

4

)
1/4 + 3ǫ/8

1/4 + 7ǫ/8
=

ǫ/8(1 − 9ǫ/2)

1/4 + 7ǫ/8
≥ 0.

�

6. Proof of the main result. In this section, we prove Theorem 3, after intro-
ducing several key auxiliary results.

6.1. Graphs induced by separable graphs. We start by proving the connection
between separable graphs and the graphs investigated in Section 5.

LEMMA 3. For any connected graph G:

(i) If G is non-bipartite and nonseparable, then it induces a pendant graph or

an odd cycle of size 5 or more.
(ii) If G is separable, then it does not induce a pendant graph, nor any odd

cycle of size 5 or more.

PROOF. Proof of (i). Let G be a non-bipartite and nonseparable graph. It is a
classical result of graph theory (see, e.g., Theorem 13.2.1 of [20]) that G contains
an odd cycle Ğ as a subgraph. We consider two cases separately: Ğ is a triangle or
Ğ is of size 5 or more.
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i

1
2 := i2 3 := i3

4 := i1 5
6

case (a)

i

1
2

3

4
5

6

case (b): I1 = {1,4, i}

i

1 := i1
2 := i2

3

4 := j1 5
6

case (c)

i

1
2

3

4
5

6

case (d): I4 = {i}

FIG. 5. Completing a separable graph with one node always yields to a separable graph [(b) and

(d)], or a nonseparable graph inducing a pendant graph [(a) and (c)].

Case 1. Assume that Ğ is a triangle. It is not possible that Ğ = G, because then
G would be a complete graph, and thereby a separable graph. Thus, G has other
nodes, in addition to the three ones of Ğ.

We prove the claim by induction. Assume that G induces a graph Ḡ that consists
of a separable graph Ǧ of order q ≥ 3 (the base case of the induction being Ǧ = Ğ),
connected to another node, which we denote as node i. We have the following four
alternatives, which are depicted in an example in Figure 5.

(a) There may exist two independent sets I1 and I2 of Ǧ, and two nodes i1 ∈ I1

and i2 ∈ I2, such that i 	−i1 and i 	−i2. In that case, as Ǧ is of order 3 or more, there
exist an independent set I3, which is different from I1 and I2, and a node i3 ∈ I3,
such that i−i3. Then Ǧ induces the pendant graph i−i3−i1−i2, where i is only
adjacent to i3 and (i1, i2, i3) form a triangle. In particular, G induces a pendant
graph.

(b) There may exist a maximal independent set I1 of Ǧ such that i−k for any
k ∈ Ǧ \ I1, and i 	−i1 for any i1 ∈ I1. Then Ḡ is again a separable graph of order
q , having the same maximal independent sets as Ǧ, except that I1 is replaced by
I1 ∪ {i}.

(c) There may exist a maximal independent set I1 of Ǧ such that i−k for any
k ∈ Ǧ \ I1, and i 	−i1 for some (not necessarily unique) i1 ∈ I1 and i−j1 for some
(again, not necessarily unique) j1 ∈ I1. In that case, Ḡ induces the pendant graph
i1−i2−j1−i, where i1 is only adjacent to i2 and (i2, j1, i) form a triangle.

(d) We may have i−j for any node j ∈ Ǧ. Then Ḡ is a separable graph of order
q + 1 whose maximal independent sets are those of Ǧ, plus the independent set
Iq+1 := {i}.
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FIG. 6. Drawing an edge between two nodes of an odd cycle creates an odd cycle.

To summarize, in cases (a) and (c), Ḡ and, therefore, G, induce a pendant graph.
In cases (b) and (d) Ḡ is separable, and we cannot have G = Ḡ. Thus, there exists
another node in G that is connected to Ḡ, and we can re-iterate the same procedure
for Ǧ ≡ Ḡ. Eventually, some Ḡ induced in G will exhibit either case (a) or (c),
otherwise G would be separable. This concludes the proof in this first case.

Case 2. Now assume that Ğ is of length 5 or more. Assume that G does not
induce Ğ. Therefore, G admits an edge (i, j), where i and j are two nodes of Ğ.
But drawing an edge inside an odd cycle always creates an odd cycle and an even
cycle (see Figure 6).

By induction on the added edges, Ğ finally induces an odd cycle of length 2p +

1 ≥ 3. If 2p + 1 ≥ 5, we are done. If 2p + 1 = 3, we are back in case 1.
Proof of (ii). We prove the result by contradiction. Let G be a separable graph

of order q and let I1, . . . ,Iq be its disjoint maximal independent sets. Then for
any two nodes i, j of G, the relation i 	−j implies that i and j belong to the same
independent set Ik , for some k ∈ ❏1, q❑, but to no other independent set.

First, take the contradictory assumption that G induces a pendant graph Ğ, and
label the nodes of Ğ as in Figure 2. Suppose that 3 ∈ Ii . All the neighbors of 3
in Ğ (and thus in G) cannot be in Ii , so there exist j, k, ℓ ∈ ❏1, q❑ \ {i}, such that
4 ∈ Ij ,1 ∈ Ik and 2 ∈ Iℓ. As 4	−1, we have j = k. Similarly, we have j = ℓ, and
thus k = ℓ. But, since 1−2, nodes 1 and 2 do not belong to the same independent
set - a contradiction. Therefore, G cannot induce a pendant graph.

We next assume that G induces the 2p + 1-cycle Ğ, with p ≥ 2 (so that q ≤

2p + 1). For simplicity, label the nodes of Ğ as 1,2, . . . ,2p + 1, in a way that

1−2−3−· · ·−2p−(2p + 1)−1.

For all j ∈ ❏1,2p + 1❑, let ij be such that j ∈ Iij . As 1−2,2−3 and 3	−1, we
have i1 	= i2 and i1 = i3. In general, we see that any odd node k is in Ii1 , whereas
any even node ℓ is in Ii2 . It follows that nodes 1 and 2p + 1 both belong to Ii1 ,
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but since (2p + 1)−1 we again arrive at a contradiction, implying that G cannot
induce an odd cycle of size 5 or more. �

6.2. Nonchaoticity of matching queues. As was already discussed, Theorem 3
is proved by employing Lemma 3, after showing that the pendant graph and the
5-cycle graph can be unstable, even if NCOND holds. However, if Ğ = (V̆, Ĕ) is
induced in G = (V,E), and if we assume that i0 is an unstable node of a matching
queue on Ğ when it is considered in isolation, then it might not be unstable in a
matching queue on G. (In our case, Ğ is either the pendant graph of the 5-cycle.)
Therefore, to construct an unstable matching queue on G itself, we must show
that the effect of the arrivals to V \ V̆ can be controlled so that node i0 remains
unstable in the matching queue on G. If we think of the effect of the arrivals of
items of V \ V̆ , as a perturbation of the number of items in the matching queue
on Ğ when considered in isolation, then we must show that perturbations of the
matching queue on Ğ do not get amplified within the matching queue on G. We
refer to such a property as nonchaoticity of matching queues. See Lemma 5 below
for the precise statement.

To prove this nonchaoticity property, we first prove an auxiliary result. Let ‖ · ‖

denote the 1-norm on Rp , p ∈ Z++,

‖x‖ =

p∑

i=1

|xi |, x ∈Rp.

We say that two matching queues (G,λ,�)C and (G′, λ′,�′)C such that |V| = |V ′|

and λ = λ′ have the same input, if both are constructed using the same |V| Poisson
processes (same sample paths of the arrival process).

For a given matching queue (G,λ,�)C having a queue process defined on a
state space G, let Qz = {Qz(t) : t ≥ 0} denote the queue process when the initial
condition is Qz(0) = z, z ∈ G.

LEMMA 4. For any matching queue (G,λ,�)C and any initial conditions x, y

in G, if the two systems have the same input we have that
∥∥Qx(t) − Qy(t)

∥∥ ≤ ‖x − y‖, t ≥ 0.

We remark that the Lipschitz-continuity property stated above follows (as will
become clear in the proof) from a specific property of the DTMC embedded in
arrival-time epoches, known as nonexpensiveness in the literature on stochastic
recursions; see, for example, Section 2.11 in [3].

PROOF OF LEMMA 4. Let T1 < T2 < · · · be the arrival times of elements
to the system. With some abuse of notation, denote for the time being, Qx(0) =

x,Qy(0) = y, and for all n ≥ 1, Qx(n) := Qx(Tn) and Qy(n) := Qy(Tn). Since
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both processes Qx and Qy are constant between arrival times, it suffices to show
the result at any time Tn. We reason by induction. Let n ∈ Z+, and assume
that

∥∥Qx(n) − Qy(n)
∥∥ ≤ ‖x − y‖.

Let j be the class of the item drawn at time Tn. We have the following alterna-
tives:

1. Assume that the new item is matched in both systems, with an item of the
same class k ∈ E(j). Then in both cases the kth coordinate decreases by one and
we have ‖Qx(n + 1) − Qy(n + 1)‖ = ‖Qx(n) − Qy(n)‖.

2. Assume that the new item is matched with kx (resp., ky ) in the system initi-
ated by x (resp., by y), where kx 	= ky . Then, by the definition of a priority policy,
we must have that

((
Qx

kx (n) > 0
)

and
(
Q

y
kx (n) = 0

))
or

((
Qx

ky (n) = 0
)

and
(
Q

y
ky (n) > 0

))

(or both), since otherwise, the new arrival of class j would be matched with the
same item in both systems.

Assume that we are in the first case, the other one is symmetric. We have
∥∥Qx(n + 1) − Qy(n + 1)

∥∥

=
∥∥Qx(n) − Qy(n)

∥∥ −
∣∣Qx

kx (n) − Q
y
kx (n)

∣∣ +
∣∣(Qx

kx (n) − 1
)
− Q

y
kx (n)

∣∣

−
∣∣Qx

ky (n) − Q
y
ky (n)

∣∣ +
∣∣(Qy

ky (n) − 1
)
− Qx

ky (n)
∣∣

≤
∥∥Qx(n) − Qy(n)

∥∥ − Qx
kx (n) +

(
Qx

kx (n) − 1
)
−

∣∣Qx
ky (n) − Q

y
ky (n)

∣∣

+
∣∣Qy

ky (n) − Qx
ky (n)

∣∣ + 1

=
∥∥Qx(n) − Qy(n)

∥∥.

3. Assume that the new arrival to class j is matched in the system initiated by
x, say, with kx ∈ E(j), but not in the one initiated by y (the other way around is
symmetric). Then we must have Q

y
kx (n) = 0 and in turn

∥∥Qx(n + 1) − Qy(n + 1)
∥∥

=
∥∥Qx(n) − Qy(n)

∥∥ −
∣∣Qx

kx (n) − Q
y
kx (n)

∣∣ +
∣∣(Qx

kx (n) − 1
)
− Q

y
kx (n)

∣∣

−
∣∣Qx

j (n) − Q
y
j (n)

∣∣ +
∣∣(Qy

j (n) + 1
)
− Qx

j (n)
∣∣

≤
∥∥Qx(n) − Qy(n)

∥∥ − Qx
kx (n) +

(
Qx

kx (n) − 1
)
−

∣∣Qy
j (n) − Qx

j (n)
∣∣

+
∣∣Qy

j (n) − Qx
j (n)

∣∣ + 1

=
∥∥Qx(n) − Qy(n)

∥∥.
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FIG. 7. Right, the disconnected graph G̃, if Ğ is the “N” graph.

4. Finally, assume that Qx
k (n) = Q

y
k (n) = 0 for any k ∈ E(j), that is, the in-

coming item is not matched upon arrival in both systems. Then the j th coordinate
increases by one in both cases, so ‖Qx(n+ 1)−Qy(n+ 1)‖ = ‖Qx(n)−Qy(n)‖.

�

For a connected graph G = (V,E) and V̆ ∪ V̂ a partition of V , we denote by Ğ

and Ĝ the graphs induced, respectively, by V̆ and V̂ in G. Then the disconnected

graph G̃ corresponding to the partition V̆ ∪ V̂ is the graph G̃ = (V, Ẽ) such that
Ẽ = E \ ((V̆ × V̂) ∪ (V̂ × V̆)). In other words, the graph G̃ is obtained from G by
erasing the edges between elements of V̆ and V̂ ; an example is depicted in Figure 7.

Consider a connected graph G, a partition V̆ ∪ V̂ of V , and the disconnected
graph G̃ as defined above. For two priority matching policies � on G and �̃ on
G̃, we say that the restrictions to Ğ of � and �̃ coincide if [recall (10)]

�j (i) ∩ V̆ = �̃j (i) ∩ V̆, i, j ∈ V̆.

That is, for any elements i, j, k of V̆ , j prioritizes k over i according to � if and
only if it does so according to �̃. We then have the following result.

LEMMA 5. Let G = (V,E) be a connected graph, V̆ ∪ V̂ be a partition of

V and G̃ be the corresponding disconnected graph. Consider the two matching

queues � := (G,λ,�)C and �̃ := (G̃, λ, �̃)C, where the restrictions to Ğ of the

priority matching policies � and �̃ coincide. Let Q and Q̃ be the respective queue

processes of � and �̃. Then, if Q(0) = Q̃(0), Qj (0) = Q̃j (0) = 0 for all j ∈ V̂ ,
and the two systems have the same input, we have that

∑

i∈V̆

∣∣Qi(t) − Q̃i(t)
∣∣ ≤ N̂(t), t ≥ 0,

where N̂(t) is the number of arrivals of items to V̂ up to t .

PROOF. Let T̂n, n ≥ 1, be the points of N̂ (i.e., the arrival times of elements
of V̂). Let also Û0 = 0 and for all n ≥ 0,

Ûn+1 = inf{t ≥ Ûn; a matching occurs at t in �

between an element of V̆ and one of V̂}.
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Notice that the times Ûn, n ≥ 1 can either coincide with points of N̂ , or with arrival
times of elements of V̆ that are matched with an element of V̂ in �.

Let n ≥ 0. In the time interval (Ûn, Ûn+1), the restrictions to Ğ of � and of �̃

both behave exactly as the matching queue (Ğ, λ
V̆
, �̆)C, where �̆ is the restriction

of � and �̃ to Ğ. Therefore, we can apply Lemma 4 to the latter model and to the
initial conditions Q

V̆
(Ûn) and Q̃

V̆
(Ûn), where we recall that X(t−) denotes the

left-limit of X at t . We conclude that for any n ≥ 0

(45)
∑

i∈V̆

∣∣Qi

(
Û−

n+1

)
− Q̃i

(
Û−

n+1

)∣∣ ≤
∑

i∈V̆

∣∣Qi(Ûn) − Q̃i(Ûn)
∣∣.

Furthermore, we have the following alternatives:

1. If Ûn+1 is an arrival time of an item of class in V̂ (it coincides with some T̂k),
this item is matched immediately with an items of a class in V̆ (say, of class j ),
which leaves the buffer of �. Hence, in the restriction of Q to V̆ , all coordinates
remain unchanged except for the j th coordinate, which decreases by 1. On the
other hand, the restriction of Q̃ to V̆ does not change.

2. If Ûn+1 is an arrival time of an item of class j ∈ V̆ that is matched immedi-
ately with an element of V̂ in �, then the buffer content of � restricted to V̆ does
not change, but that of �̃ does:

2a. if the arriving item is matched in �̃ with an item of class k ∈ E(j)∩ V̆ , the kth
coordinate of Q̃ decreases by 1, while all other coordinates remain unchanged;

2b. if the arriving item does not find a match in V̆ in �̃, it is stored in the buffer
and the j th coordinate of Q̃ increases by 1, while all other coordinates remain
unchanged.

In all cases, we obtain that

(46)
∑

i∈V̆

∣∣Qi(Ûn+1) − Q̃i(Ûn+1)
∣∣ ≤

∑

i∈V̆

∣∣Qi

(
Û−

n+1

)
− Q̃i

(
Û−

n+1

)∣∣ + 1.

Finally, gathering (45) and (46), as Q(0) and Q̃(0) coincide, we obtain that for any
t ≥ 0,

(47)
∑

i∈V̆

∣∣Qi(t) − Q̃i(t)
∣∣ ≤

∑

n≥1

1
{Ûn≤t}

.

Finally, observe that the instants Ûn are departure times of items of class in V̂ .
As there are no such items in storage initially, the number of such instants up to t

cannot exceed the number of arrivals of items of class in V̂ up to t . Thus, we have
∑

n≥1

1
{Ûn≤t}

≤
∑

n≥1

1
{T̂n≤t}

,

which, together with (47), completes the proof. �
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6.3. Proof of Theorem 3. We are now in position to prove Theorem 3. The
strategy is the following: We fix a non-bipartite and nonseparable graph G ∈ G

c
7 .

Lemma 3 entails that such a graph induces particular types of graphs, for which the
corresponding matching queues (G,λ,�)C are proved to be possibly unstable for
some λ ∈ NCONDC(G) and some matching policy � (Sections 5.1 and 5.2). The
instability of the matching queue under consideration can then be deduced from
the nonchaoticity property in Lemma 5.

PROOF OF THEOREM 3. Let G = (V,E) be a non-bipartite and non-separable
graph in G

c
7 . By Lemma 3, G induces a pendant graph or an odd cycle of size 5.

Let Ğ = (V̆, Ĕ) be that induced subgraph. Then there exists an arrival-rate vector
λ̆ ∈ (R++)|V̆| and a matching policy �̆, such that the matching queue (Ğ, λ̆, �̆)C is
unstable, whereas λ̆ ∈ NCONDC(Ğ). (This latter claim follows from Proposition 3
if Ğ is a pendant graph, and from Proposition 6 if Ğ is a 5-cycle.) We fix the latter
λ̆ until the end of the proof and set [recall (2)]

(48) τ := min
{
λ̆
Ĕ(Ĭ) − λ̆

Ĭ
: Ĭ ∈ I(Ğ)

}
.

Let V̂ = V \ V̆ and denote Ĝ = (V̂, Ê) the induced subgraph in G. In view of
Proposition 1 and Proposition 4, there exists a node i0 ∈ V̆ (i0 = 4 if Ğ is a pendant
graph and i0 = 5 if Ğ is a 5-cycle) and a measure π̆ on E2 such that the drift of the
i0-coordinate of the fluid limit reads

(49) β := λ̆i0 −
∑

j∈E(i0)

λ̆j π̆
(
PS

j (i0)
)
> 0.

Set γ = 1
2(τ ∧ β), and let λ ∈ R

|V|
++ satisfy

(50)

{
λ
V̆

= λ̆;

λ̄
V̂

≤ γ.

We first prove that λ ∈ NCONDC(G). For I ∈ I(G), observe that

Ĕ(I ∩ V̆) ∪ Ê(I ∩ V̂) ⊂ E(I).

Therefore,

(51) λ̄E(I) − λ̄I ≥ λ̄
Ĕ(I∩V̆) + λ̄

Ê(I∩V̂)
− λ̄

I∩V̆ − λ̄
I∩V̂ .

First, as Ğ is induced in G, I ∩ V̆ ∈ I(Ğ). Thus, (48) implies that

λ̄
Ĕ(I∩V̆) − λ̄

I∩V̆ > γ.

Moreover, from (50) we clearly have that

λ̄
Ê(I∩V̂)

− λ̄
I∩V̂ ≥ −γ.
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These two observations, together with (51), yield λ̄E(I) − λ̄I > 0. Therefore, λ ∈
NCONDC(G).

It remains to construct a matching policy � on G rendering the matching queue
(G,λ,�)C unstable. To this end, it suffices to consider any � whose restriction
to Ğ is �̆. Consider the process Q̃ constructed in Lemma 5, associated with the
disconnected graph corresponding to the partition V̆ ∪ V̂ . If Q(0) and Q̃(0) are
equal, and satisfy Qj (0) = Q̃j (0) = 0 for all j ∈ V̂ , then it follows from Lemma 5
that

(52) Qi0 ≥st Q̃i0 − N̂,

where N̂ denotes again the arrival process of items of class in V̂ . For n ≥ 1, let
N̂n be a Poisson process with intensity nλ̄

V̂
. Then, for any initial condition Q̆n(0)

such that Q̆n
i0
(0) = nx, the following convergence holds in D|V̆|:

(
1

n
Q̆n(t) −

1

n
N̂n(t)ei0, t ≥ 0

)

⇒

((
x + λ̆i0 −

∑

j∈E(i0)

λ̆j π̆
(
PS

j (i0)
)
− λ̄

V̂

)
tei0, t ≥ 0

)
.

Together with (49) and (50), the above convergence implies that the Markov pro-
cess Q̆ − N̂ei0 is transient and that Q̆i0 − N̂ ⇒ ∞ as t → ∞.

Finally, observe that by definition, the restriction to V̆ of Q̃ has the same dis-
tribution as Q̆ if Q̆(0) is set equal to the restriction to V̆ of Q̃(0). Thus, the Z

|V|
+ -

valued Markov process Q̃ − N̂ei0 is transient and its i0-coordinate converges in
distribution to ∞ as t → ∞. By (52), this is also the case for the i0-coordinate of
Q, so that Q is transient. �

REMARK 2. Observe that, for any non-bipartite and nonseparable graph G,
the the proof of Theorem 3 not only shows the existence of a nonmaximal priority
policy on G, but also provides a simple way of constructing that policy. Specifi-
cally, we have proven that for any priority matching policy �, if the restriction of
� to the induced sub-graph Ğ is nonmaximal for Ğ, then � is also nonmaximal
for G. Consequently, (i) if G induces a pendant graph (whose nodes are labeled as
in Figure 2), then any priority policy � on G such that node 3 prioritizes nodes 1
and 2 over node 4 is nonmaximal; (ii) if G induces a 5-cycle (whose nodes are la-
beled as in Figure 4), then any priority policy � on G such that node 3 prioritizes
node 1 over 5, node 4 prioritizes node 2 over 5, node 1 prioritizes 2 over 3 and
node 2 prioritizes 1 over 4, is nonmaximal.

7. Proof of the FWLLN. Our proof of the FWLLN will follow the pre-
compactness approach [4, 34]. In particular, we will show that {Q̄n : n ≥ 1} is
tight in D|V| and uniquely characterize the limit.
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Recall that GS defined by (16) denotes the state space of Sn for all n ≥ 1. For
δ > 0, let M := M(Lδ) denote the space of (finite) measures on the space Lδ :=
[0, δ) × GS such that μ([0, t] × GS) = t for all μ ∈ M and t ∈ [0, δ), endowed
with the Prohorov metric [4]. Next, define a sequence of random elements {νn :
n ≥ 1} ⊂ M via

(53) νn(
[0, t] ×Z

)
:=

∫ t

0
1Z

(
Sn(u−)

)
du, 0 ≤ t < δ,Z ⊆GS .

LEMMA 6. If Q̄n(0) is tight in R|V|, then {(Q̄n, νn) : n ≥ 1} is tight in

D|V|[0, δ) ×M, for δ in Lemma 2. Moreover, for any limit point (Q̄, ν),

(54) ν
(
[0, t] ×Z

)
=

∫ t

0
pu(Z) du; 0 ≤ t < δ,Z ⊆ GS

for some family of probability measures {pu : 0 ≤ u ≤ t < δ} on GS .

PROOF. Tightness of the vector {(Q̄n, νn) : n ≥ 1} follows from the tightness
of each component separately; for example, Theorem 11.6.7 in [34]. We start by
showing that {νn : n ≥ 1} is tight in M.

It follows from (28) that, for any compact set Z ⊂ GS and 0 ≤ t < δ,

E
[
νn(

[0, t] ×Z
)]

= E

[∫ t

0
1Z

(
Sn(u−)

)
du

]

= E

[∫ t

0
1Z

(
χn(u−)

)
du

]

= E

[
1

n

∫ nt

0
1Z

(
χ(u−)

)
du

]

→ P
(
χ(∞) ∈ Z

)
t

= π(Z)t.

(55)

The limit in (55) holds as n → ∞ and follows from the ergodicity of χ and the
bounded convergence theorem.

Take ǫ > 0 and t ∈ [0, δ). Observe that, for any finite N and all n ≤ N , the
right-hand side of the second equality in (55) implies that for large-enough c ∈ Z+

and for Kc := [0, c]|S|, it holds that E[νn([0, t] × Kc)] ≥ (1 − ǫ)t . The limit in
(55) shows that this latter inequality holds for all n, that is, we have

inf
n

E
[
νn(

[0, t] × Kc

)]
≥ (1 − ǫ)t,

for a sufficiently large c. Hence, tightness of {νn : n ≥ 1} follows from Lemma 1.3
in [19]. The fact that any limit point of this tight sequence has the form in (54)
follows from Lemma 1.4 in [19].

We next show that {Q̄n : n ≥ 1} is C-tight in D|V|, that is, it is tight and any of
its limit points is continuous. We first note that, since all the jumps in Q̄n are of
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size 1/n, and are thus converging to 0 as n → ∞, we can work with the modulus
of continuity defined for continuous functions (see, e.g., [4], page 123)

w(y,η,T ) := sup
{∣∣y(t2) − y(t1)

∣∣ : 0 ≤ t1 ≤ t2 ≤ T , |t2 − t1| ≤ η
}
,

η > 0, T > 0.

Hence, we can establish the result by applying Theorem 11.6.3 in page 389 in [34].
Conditions (6.3) in that theorem, namely, tightness of {Q̄n(0) : n ≥ 1} in R|V| is
assumed. To show that condition (6.4) in [34], Theorem 11.6.3, also holds, observe
that, for all i ∈ V and n ≥ 1,

∣∣Q̄n
i (t2) − Q̄n

i (t1)
∣∣ ≤

Nn
i (t2) − Nn

i (t1)

n
+

Zn
i (t2) − Zn

i (t1)

n
,

where Nn
i denotes the time-scaled Poisson arrival process to node i (see Sec-

tion 4.3), and Zn
i (t), n ≥ 1, is the number of type-i items that were matched (and

left the system) by time t . Then we have that

w
(
Q̄n

i , η, T
)
≤ w

(
Nn

i /n,η,T
)
+ w

(
Zn

i /n,η,T
)
, η, T > 0.

It follows from the representation of Qn
i in (12) that the oscillations of Q̄n

i are
bounded by those of the time-scaled Poisson processes Nn

i and Nn
j , j ∈ E(i).

Hence,

(56) w
(
Q̄n

i , η, T
)
≤ w

(
Nn

i /n,η,T
)
+

∑

j∈E(i)

w
(
Nn

j /n,η,T
)
, j ∈ E(i).

By the FWLLN for Poisson processes, all the moduli of continuity for the scaled
Poisson processes in (56) are controlled, so that, for every ǫ > 0 and ζ > 0, there
exists η > 0 and n0 ∈ Z+, such that

P
(
w

(
Q̄n

i , η, T
)
≥ ǫ

)
< ζ for all n ≥ n0.

Thus, {Q̄n
i : n ≥ 1} is C-tight for each i ∈ V , implying that {Q̄n : n ≥ 1} is C-tight

in D|V|, and in particular, it is C-tight in D|V|[0, δ). �

In the proof of Theorem 4, we employ the standard result that, for all i ∈ V and
n ≥ 1, the following process is a square integrable martingale (with respect to the
filtration generated by the Poisson processes); see, for example, [25]:

Mn
i (t) :=

∑

j∈E(i)

∫ t

0
1Ni

(
Qn(s−)

)
1Pj (i)

(
Qn(s−)

)
dNn

j (s)

−

∫ t

0
1Ni

(
Qn(s−)

)( ∑

j∈E(i)

nλj1Pj (i)

(
Qn(s−)

))
ds, t ≥ 0.

(57)

PROOF OF THEOREM 4. The assumed convergence of the initial condition
Q̄n(0) implies that it is also tight in R|V|. To characterize the limit, let us first
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consider Q̄n
i0

. Fix t < δ and n ≥ n0, where n0 is defined by Lemma 2. Then (12)
can be written as follows for node i0:

Q̄n
i0
(t) = Q̄n

i0
(0) +

∫ t

0
1Oi0

(
Q(s−)

)
dNn

i0
(s)

−
∑

j∈E(i0)

λj

∫ t

0
1Pj (i0)

(
Qn(s)

)
ds − Mn

i0
(t)/n,

(58)

for Mn
i0

in (57). Now, observe that for all j ∈ E(i0) and s ≤ t , we have that Qn
k(s) =

0 for all k ∈ E(i0) ∩ E(j). Therefore, for all such n, j and s we have that

1Pj (i0)

(
Qn(s)

)
=

∏

ℓ∈❏1,|S|❑:
iℓ∈�j (i0)

1{0}

(
Qiℓ(s)

)
= 1

PS
j (i0)

(
Sn(s)

)
.

Thus, we obtain from (58) that, for all n ≥ n0 and t < δ,

Q̄n
i0
(t) = Q̄n

i0
(0) +

∫ t

0
1Oi0

(
Q(s−)

)
dNn

i0
(s)

−
∑

j∈E(i0)

λjν
n(

[0, t] ×PS
j (i0)

)
− Mn

i0
(t)/n,

(59)

for νn in (53). Now, the equality in distribution (28) and the ergodicity of the
CTMC χ imply [similar to (55)] that

(60) νn(
[0, T ] ×Z

)
⇒ π(Z)T as n → ∞, Z ⊆GS,

for π in (29). By Lemma 2 and the FWLLN for the Poisson process, the second
argument to the right of the equality in (59) converges weakly to λi0e in D[0, δ),
where e denotes the identity function e(t) = t . Since 1Ni

(Q(s−)) is identically
equal to 1 for all n large enough, again by Lemma 2, and Mn

i0
/n ⇒ 0e in D[0, δ) as

n → ∞, by virtue of Doob’s martingale inequality, the limit (32) follows from (60)
and Lemma 7.3 in [27] (a simple extension to the continuous mapping theorem).

Next, recall (22) and (24), and consider {S̄n : n ≥ 1}. By Assumption 2, each el-
ement χn, n ≥ 1, is an ergodic CTMC, and thus {χ̄n : n ≥ 1} is a C-tight sequence
of ergodic CTMC’s. It follows from Proposition 9.9 in [28] that there exists an
a.s.-finite time T , such that χ̄n ⇒ 0e in D|S|(T ,∞) as n → ∞. In particular, with
dP denoting the Prohorov metric [4, 13] (here, denoted in terms of the distance
between the random elements instead of the distance between their corresponding
probability measures in the underlying probability space), it holds that, for any
t > T and for any ǫ > 0,

(61) dP

(
χ̄n(t),0

)
< ǫ/2 for all n large enough.

Since any limit point of the tight sequence {χ̄n : n ≥ 1} is continuous, if it is ever
larger than 0, then it must be strictly positive over an interval.
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Fix ǫ > 0 and let ‖ ·‖tv denote the total-variation norm; see, for example, [13]. It
follows from (23) that for any t > 0, there exists n1, such that ‖χn(t)−χ(∞)‖tv <

ǫ/2 for all n > n1. Hence, by the triangle inequality, for any s < T and t > T there
exists n2, such that for all n > n2,

(62)
∥∥χn(s) − χn(t)

∥∥
tv < ǫ/2 or, equivalently,

∥∥χ̄n(s) − χ̄n(t)
∥∥

tv < ǫ/2.

Now, since the Prohorov metric and the total-variation metric (induced by the
total variation norm) are equivalent in discrete state spaces, (62) implies that
dP (χ̄n(s), χ̄n(t)) < ǫ/2 for all n > n2. Together with (61) and the triangle in-
equality, we obtain

dP

(
χ̄n(s),0

)
< ǫ, 0 < s < T .

The pointwise convergence of χ̄n to 0 implies that no limit point of the C-tight
sequence {χ̄n : n ≥ 1} can be strictly positive over an interval, so that χ̄n ⇒ 0e,
and in turn, by (28), S̄n ⇒ 0e as n → ∞ in D|S|[0, δ).

Increasing the interval of convergence. The representation of Q̄n
i0

in (58) holds

as long as Q̄n
i0

> 0, and in particular, over [0, ρn). Since P(Q̄n
i0
(δ−) > 0) → 1 as

n → ∞ we conclude from the C-tightness of Q̄n over [0, δ] that the convergence
of Q̄n in fact holds over [0, δ]. We can then treat Q̄(δ) as an initial condition, and
apply Lemma 2 for this new initial condition to conclude that there exists a δ2 > δ

such that Q̄n
i0

> 0 w.p.1 over [0, δ2) for all n large enough. Hence, the FWLLN
holds over [0, δ2) as well. Repeating the same arguments inductively, we can con-
tinue increasing the interval of convergence as long as Q̄i0 is guaranteed to be
strictly positive, where in the induction step k we take Q̄n

i0
(δk) as an initial condi-

tion and apply Lemma 2 to find a δk+1 > δk such that Q̄n ⇒ Q̄ in D|V|[0, δk+1).
If (30) does not hold, then it follows from (32) that Q̄i0 is nondecreasing. Nec-
essarily, ρn ⇒ ∞ as n → ∞, and the convergence of Q̄n to Q̄ can be extended
indefinitely. On the other hand, if (30) does hold, then the fluid limit Q̄i0 is strictly
decreasing. The first passage time ρn in (25) is a continuous mapping by, for ex-
ample, Theorem 13.6.4 in [34], so that ρn ⇒ ρ in R as n → ∞, for ρ in (31), and
the convergence of Q̄n can be extended from [0, δ) to [0, ρ). �

8. Uniform matching policy. Our main result shows that, for G in G
c
7 , there

always exists a “bad” choice of priority matching policy, leading to a stability re-
gion that is strictly smaller than NCONDC(G). In this section, we show that the
methods developed to prove this result can be applied to other policies. In partic-
ular, we now consider a matching policy in which the choice of which class to
match with an arriving class-i is drawn uniformly at random from the available

classes in E(i) at the arrival epoch. We refer to this policy as uniform, and denote
it by � = U. To formally describe U, let t be an arrival epoch of a class-i item, and
consider the set

(63) Ui(t) =
{
j ∈ E(i) : Qj (t) > 0

}
.
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(i) If Ui(t) = ∅, then no matching occurs, and the arriving item is placed in
the buffer.

(ii) If Ui(t) 	= ∅, then the matching class is chosen uniformly at random,
namely, the arriving class-i item will be matched with a class-j item with proba-
bility 1/|Ui(t)|, for each j ∈ Ui(t).

The main question Theorem 3 answered was whether the choice of the (ad-
missible) matching policy affects the stability region of matching queues having
non-bipartite and nonseparable graphs. The next result demonstrates that nonmax-
imality of such graphs is not restricted to strict priority policies.

PROPOSITION 7. The only graphs in G
c
7 for which NCONDC(G) is non-empty

and the policy U is maximal are separable of order 3 or more.

The proof of Proposition 7 follows the same steps of the proof of Theorem 3.
We therefore specify only the arguments in the proof that need to be modified. The
main step that needs to be modified is the proof of Lemma 4, which needs to be
adapted to the policy U. To this end, as in the proof of Lemma 4, we must couple
two systems with initial buffer contents x and y ∈ G, such that both systems are fed
by the same Poisson processes. (We henceforth refer to those systems as “system
x” and “system y.”)

Let {Tn : n ≥ 0} and {Cn : n ≥ 0} denote, respectively, the sequences of arrival
times and of the classes of the entering items, in arrival order. Consequently, for
any n ≥ 0, the nth arriving item makes a uniform choice from the set Ux

Cn
(Tn) in

system x and the set Uy
Cn

(Tn) in system y, where Ux
Cn

(Tn) and U
y
Cn

(Tn) denote
the sets defined in (63) for systems x and y, respectively. In the present case, the
difficulty stems from the fact that the sets Ux

Cn
(Tn) and U

y
Cn

(Tn) a priori differ,
even though both systems are constructed with the same input {(Tn,Cn) : n ≥ 0}.
Nevertheless, we can couple these two systems as follows.

Let {Kx
n , n ≥ 0} and {K

y
n , n ≥ 0} denote two independent sequences of indepen-

dent random variables, where for all n ≥ 0, Kx
n and K

y
n follow the discrete uniform

distribution on Ux
Cn

(Tn) and U
y
Cn

(Tn), respectively. Set Kx
n = 0 (resp., K

y
n = 0) if

Ux
Cn

(Tn) = ∅ [resp., Uy
Cn

(Tn) = ∅], and for all n ≥ 0, denote the event

Un =
{(

Kx
n ,Ky

n

)
∈

(
Ux

Cn
(Tn) ∩ U

y
Cn

(Tn)
)2}

.

Finally, set

(64) K̃y
n = Kx

n1Un + Ky
n1U c

n
.

Then the random variables K̃
y
n , n ≥ 0, are independent, and for all n ≥ 0, K̃

y
n is

uniformly distributed on U
y
Cn

(Tn). To see this, observe that, if Uy
Cn

(Tn) 	= ∅, then:
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• for all k ∈ U
y
Cn

(Tn) \ Ux
Cn

(Tn),

P
(
K̃y

n = k
)
= P

({
Ky

n = k
}
∩ U

c
n

)
= P

(
Ky

n = k
)
=

1

|U
y
Cn

(Tn)|
;

• for all k ∈ U
y
Cn

(Tn) ∩ Ux
Cn

(Tn),

P
(
K̃y

n = k
)
= P

({
K̃y

n = k
}
∩ Un

)
+ P

({
K̃y

n = k
}
∩ U

c
n

)

= P
({

Kx
n = k

}
∩

{
Ky

n ∈ Ux
Cn

(Tn) ∩ U
y
Cn

(Tn)
})

+ P
({

Ky
n = k

}
∩

{
Kx

n ∈ Ux
Cn

(Tn) \ U
y
Cn

(Tn)
})

=
1

|Ux
Cn

(Tn)|

|Ux
Cn

(Tn) ∩ U
y
Cn

(Tn)|

|U
y
Cn

(Tn)|

+
1

|U
y
Cn

(Tn)|

(
1 −

|Ux
Cn

(Tn) ∩ U
y
Cn

(Tn)|

|Ux
Cn

(Tn)|

)

=
1

|U
y
Cn

(Tn)|
.

We have the following analogue to Lemma 4.

LEMMA 7. Fix G and the matching policy � = U. Let x and y be two elements

in the state space G of Q, and denote by Qx and Qy the buffer content processes

of the two models having initial values x and y, respectively, and respectively fed

by the inputs {(Tn,Cn,K
x
n ) : n ≥ 0} and {(Tn,Cn, K̃

y
n ) : n ≥ 0}. Then, for all t ≥ 0,

∥∥Qx(t) − Qy(t)
∥∥ ≤ ‖x − y‖.

PROOF. We reason by induction, as in the proof of Lemma 4, keeping the
notation therein. Suppose that we have at time Tn, ‖Qx(n) − Qy(n)‖ ≤ ‖x − y‖.
Then we are in the following alternative:

1. On Un, we have by construction Kx
n = K̃

y
n , so the newly arrived item of class

Cn is matched with an item of the same class Kx
n in both systems. We are in the

case 1 of the proof of Lemma 4.
2. On U c

n , we have three possible cases:

• If both Ux
Cn

(Tn) and U
y
Cn

(Tn) are nonempty, then Kx
n = kx for some kx ∈

Ux
Cn

(Tn) and K
y
n = ky for some ky ∈ U

y
Cn

(Tn). However, it must hold that

kx /∈ U
y
Cn

(Tn) or that ky /∈ Ux
Cn

(Tn) (or both), otherwise we would be in Un.
In the first case (the other one is symmetric), we have that Qx

kx (n) > 0 and
Q

y
kx (n) = 0, and we are in case 2 of the proof of Lemma 4.
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• If exactly one of the two sets is empty, say U
y
Cn

(Tn) is empty and Ux
Cn

(Tn) is not
(the other way around is symmetric), then the incoming item at Tn is matched in
the system initiated by x and not in the system initiated by y, so we are in case
3 of the proof of Lemma 4.

• If the two sets are empty, then the incoming item at Tn is matched in none of the
two systems, so we are in case 4 of Lemma 4. �

PROOF OF PROPOSITION 7. Fix a connected graph G = (V,E) ∈ G
c
7 , and

� = U. Fix a node i0 ∈ V and denote again S := V \ ({i0} ∪ E(i0)) = {i1, . . . , i|S|}.
For any j ∈ V , denote

S(j) =
{
ℓ ∈ ❏1, |S|❑ : iℓ ∈ E(j)

}
,

and for any r ∈ ❏0, |S(j)|❑, let

(65) VS
j,r =

{
x ∈ GS : Card

{
ℓ ∈ S(j) : xℓ > 0

}
= r

}
,

where for notational convenience, we let CardA denote the cardinality of the set A.
Suppose that Assumption 2 holds for the sequence of processes {χn : n ≥ 1}

corresponding to the marginal process χ of infinitesimal generator

(66)

⎧
⎪⎪⎨
⎪⎪⎩

A
S,U(x, x + eℓ) = λiℓ1Oiℓ

(x) ℓ ∈ ❏1, |S|❑;

A
S,U(x, x − eℓ) = 1

NS
ℓ

(x)
∑

j∈E(iℓ)

S(j)∑

r=0

λj

r
1
VS

j,r
(x) ℓ ∈ ❏1, |S|❑.

As is easily seen from the definition of the policy U, and similar to (28), the pro-
cess χn coincides in distribution with the restriction Sn of the process Qn to its
coordinates in S , as long as Qn

i0
remains strictly positive. Provided that at time

t , Qn
i0
(t) > 0, Sn(t) ∈ VS

j,r , and an item of a class j ∈ E(i0) enters the system,
the match of the incoming item is drawn uniformly among all r classes of S(j)

having items in line, and the class i0. Consequently, under assumption 1, an anal-
ogous result to Theorem 4 holds, with the following drift for the fluid limit of the
i0-coordinate:

(67) λi0 −
∑

j∈E(i0)

S(j)∑

r=0

λj

r + 1
π

(
VS

j,r

)
.

Now, as a consequence of Lemma 7, Lemma 5 still holds true for the matching
queues (G,λ, U)C and (G̃, λ, U)C, where the disconnected graph G̃ is constructed
from G and any induced subgraph Ğ, as in Figure 7. From Lemma 3, G induces a
pendant graph or an odd cycle of size 5, and we let Ğ = (V̆, Ĕ) be that induced sub-
graph. In view of (67), provided that we exhibit an arrival-rate vector λ̆ ∈ (R++)|V̆|

such that

β := λ̆i0 −
∑

j∈E(i0)

S(j)∑

r=0

λ̆j

r + 1
π

(
VS

j,r

)
> 0,
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the matching queue (Ğ, λ̆, U)C is unstable, and the proof follows the same argu-
ments as the proof of Theorem 3. Thus, it remains to prove the existence of an
unstable matching queue (Ğ, λ̆, U)C for Ğ the pendant graph or the odd cycle.
This is done as follows.

Pendant graph. Set i0 = 4. For � = U, from (66) the generator of the marginal
process χ is the same as (20), replacing the arrival rate λ̆3 := λ3 to node 3 by
λ̆3/2. (We add the “breve” to the notation of the arrival rates since we are now
considering the pendant graph as the induced graph Ğ in G.) Then, similar to (35),
we obtain that

α := π
(
(0,0)

)
=

(λ̆3/2)2 − (λ̆1 − λ̆2)
2

(λ̆3/2)(λ̆3 + λ̆1 + λ̆2)
.

The drift in (67) reads

(68)
λ̆4 − λ̆3π

(
(0,0)

)
−

λ̆3

2
π

(
{0} ×Z++

)
−

λ̆3

2
π

(
Z++ × {0}

)

= λ̆4 − λ̆3α −
λ̆3

2
(1 − α) = λ̆4 −

λ̆3

2
(1 + α).

Fix ǫ ∈ (0,7/15] and set (see Figure 8)
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ̆1 = λ̆2 = ǫ;

λ̆3 =
1

2
− ǫ/2;

λ̆4 =
1

2
− 3ǫ/4.

It can be easily checked that λ̆ ∈ NCOND(Ğ). However, the drift in (68) becomes

1

2
−

3ε

4
−

1

2

(
1

2
−

ε

2

)(
1 +

1/2 − ǫ/2

1/2 − ǫ/2 + 4ǫ

)
=

ǫ

4(1 + 7ǫ)
(7 − 15ǫ) > 0.

5-cycle. Set i0 = 4. For � = U, from (66) the generator of the marginal process

is the same as (40), replacing the arrival rates to nodes 3 and 4, λ̆i = λi , by λ̆i/2,

1
2 − 3ǫ

4

1
2 − ǫ

2

ǫ ǫ

1
2 − 3ǫ

4

1
4 − ǫ

4
1
4 − ǫ

4

ǫ ǫ

FIG. 8. Unstable uniform matching queues: left, on the pendant graph and right, on the 5-cycle.
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i = 3,4. The drift in (67) reads

(69)

λ̆5 − λ̆3π̃
(
{0} ×Z+

)
− λ̆4π̃

(
Z+ × {0}

)

−
λ̆3

2
π̃

(
Z++ × {0}

)
−

λ̆4

2
π̃

(
{0} ×Z++

)
,

where π̃ is the stationary distribution of the fast process, obtained similarly to π̃

in (4), replacing the intensities at nodes 3 and 4, λ̆i = λi , by λ̆i/2, i = 3,4.
Now, if we fix ǫ ∈ (0,7/23] and set (see Figure 8)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ̆1 = λ̆2 = ǫ;

λ̆3 = λ̆4 =
1

4
− ǫ/4;

λ̆5 =
1

2
− 3ǫ/4.

Again, we can easily check that λ̆ ∈ NCOND(Ğ), and the drift in (69) equals

1

2
−

3ε

4
−

(
1

2
−

ε

2

)
1 + 7ε

1 + 15ε
−

(
1

4
−

ε

4

)
8ε

1 + 15ε

=
ǫ

4(1 + 15ǫ)
(7 − 23ǫ) > 0.

�

9. Summary and future research. In this paper, we proved that matching
queues on graphs in G

c
7 satisfying NCOND need not be stable. Our proof employed

a fluid-limit whose characterization builds on estimating the stationary distribution
of a related marginal process.

There are many directions for future research. We specify four, which we are
currently investigating.

Generalizing the result. It follows from Lemma 3 that any non-bipartite and
nonseparable graph induces an odd cycle of size 5 or more, or the pendant graph.
For both the pendant and the 5-cycle graphs, we have shown that NCOND is not
a sufficient condition for stability (Propositions 3 and 6). If a similar instability
result could be shown for any odd-cycle, then the following conjecture would be
proved via an application of the arguments in the proof of Theorem 3.

CONJECTURE 1. The only connected and non-bipartite graphs G for which

the matching queue (G,λ,�)C is stable for any admissible matching policy � and

any λ ∈ NCONDC(G), are the separable graphs of order 3 or more.

A direct demonstration of instability of a matching queue on a p-cycle (where
p is odd) requires computing the stationary distribution of the associated (p − 3)-
dimensional marginal process χ . Unfortunately, if p ≥ 7, the marginal process is
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not reversible, so that obtaining closed-form expressions for the stationary dis-
tributions of all possible (p − 3)-dimensional CTMCs seems prohibitively hard.
Nevertheless, one might be able to appropriately bound these stationary distribu-
tions and prove a result analogous to Propositions 3 and 6.

Identifying bottlenecks. The fluid limit may be used to construct a proce-
dure determining the “bottlenecks” (namely, unstable) nodes of general unstable
matching queues. Moreover, when the stationary distribution of the fast-time-scale
CTMC can be computed explicitly, the fluid limit provides the exact rate of in-
crease of the queues corresponding to the unstable nodes.

Matching models on hypergraphs. In our model, items depart the system by
pairs. However, in many applications (e.g., manufacturing and assemble-to-order
systems) matchings can occur in groups that are larger than 2 (as, e.g., in [17]).
Thus, it remains to establish an analogue to NCOND when the compatibility be-
tween items cannot be represented by a graph, but more generally, by an hyper-
graph.

APPENDIX: MATCHING ALGORITHMS ON RANDOM GRAPHS

In graph theory, a matching on a graph G is a subgraph Ǧ of G in which each
node has exactly one neighbor. The matching is said to be perfect if G and Ǧ have
the same set of nodes. It is a consequence of Tutte’s theorem (a generalization of
Hall’s marriage theorem to arbitrary graphs), that a necessary condition for the
existence of a perfect matching on G is given by

(70) |I| ≤ |EG(I)| for any independent set I ∈ I(G),

where EG(I) denotes the set of neighbors of the elements of I in G. A matching

algorithm is a procedure for constructing a matching.
It is a well-known fact that, even when a perfect matching exists on G, an on-

line matching algorithm under which, at each step a node is chosen uniformly at
random among all unmatched nodes and its match is chosen uniformly at random
among all its unmatched neighbors, fails in general to lead to a perfect matching.

A matching on a graph is not to be confused with the stochastic matching of
items discussed thus far. However, clear connections can be drawn between the
two problems, as we briefly illustrate by a simple example.

Consider a random graph in which the nodes are of p different types, such that
the types of the various nodes are random and i.i.d., having a common distribution
μ on the set of types ❏1,p❑. Nodes of the same type are not neighbors of each
other, and have the same neighbors. Specifically, we fix a given auxiliary (simple)
graph G = (V,E) of size p, which we call template graph, and the set of types of
the nodes of G is identified with V . The edges of G are fully determined by the
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types of the nodes according to the following rule: two nodes u and v of G, of
respective types i and j , are neighbors in G if and only if i−j in G.

We aim to construct a matching on the resulting graph G. Our approach is to
construct the random graph G together with the matching on G sequentially. To
this end, we define p independent Poisson processes N1, . . . ,Np with respective
intensities μ(i), i ∈ ❏1,p❑, and let T1, T2, . . . the points of the superposition N of
the p processes. We also fix a matching queue (G,μ,�)C, where the arrival-rate
vector is denoted μ = (μ(1), . . . ,μ(p)). We proceed by induction, at each point
of N . For all n ≥ 1:

(i) Let i be the element of ❏1,p❑ such that Tn is a point of Ni . At Tn, create
a node u of G, and assign to u the type i. Then create an edge in G between u

and all the previously created nodes of all types j such that i−j in the template
graph G.

(ii) If the set of unmatched neighbors of u in G is nonempty, apply � to select
a unique node v in the latter set, exactly as we choose a match for an item of class
i in the matching queue (G,μ,�)C. We call v the match of u, and say that both u

and v are matched nodes. If no neighbor of u is unmatched, we set the status of u

to be unmatched.

At any time Tn, the graph G has exactly n nodes, some of which are matched and
the other are unmatched. We let M (G) and by M̄ (G) denote the sets of matched
and unmatched nodes of G, respectively. The matching on G is the set of nodes
M (G), together with the edges between matched couples. An example of such a
construction when G is the pendant graph is given in Figure 9.

Almost surely for a large enough n, the resulting graph G at Tn is p-partite (all
types of nodes are represented in G, and there is no edge between any two nodes
of the same type). Moreover, as a straightforward application of the Strong Law of
Large Numbers (SLLN), the proportions of nodes of the various types tend to the
measure μ as n increases to infinity.

The construction just described is related to the procedure of uniform random
pairing; see [35]. This latter procedure leads to the so-called configuration model
introduced by Bollobas [5] (see also [32]), generating a realization of a random
graph where the degree, that is, the number of neighbors of each node, is fixed
beforehand. We also refer to [14] and the references therein, for general results
concerning matching on random graphs.

It is then easy to couple the construction described above with the matching
queue (G,μ,�): if both are constructed with the same Poisson processes, then:

(i) the creation of a node of type i in the random graph G corresponds to the
arrival of a class-i item in the matching queue;

(ii) a matching between two nodes of respective types i and j in G occurs if
and only if in the matching queue, at the same instant, two items of respective
classes i and j are matched, and depart the system.
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FIG. 9. Construction of a matching on a 4-partite graph having the pendant graph as template.

Consequently, at any time the list of classes of queued items in the matching
queue coincides with the list of types of the unmatched nodes in G.

For all j ∈ ❏1,p❑ and t ≥ 0, let Qj (t) denote the number of unmatched nodes
of type j in G at time t , and let Q = (Q1, . . . ,Qp). As before, let Q denote the
queue process of the matching queue in (3). It follows that, if Q(0) = Q(0), then

Qj (t) = Qj (t), j ∈ ❏1,p❑, t ≥ 0.

Therefore, Theorems 2 and 7 imply the following.

COROLLARY 4. Assume that the template graph G is connected and non-

bipartite:

(i) If � = ML, then for all μ ∈ NCONDC(G), the Markov process Q is positive

recurrent.
(ii) If � = U and G ∈ G

c
7 , then the Markov process Q is positive recurrent for

all μ ∈ NCONDC(G) if and only if G is separable.

Let us now observe that just after time Tn, the size of the matching on G is given
by

(71)
∣∣M (G)

∣∣ = n −
∣∣M̄ (G)

∣∣ = n −

p∑

i=1

Qi(Tn).

In view of (71), Corollary 4 suggests that the separable graphs are the only
template graphs in G

c
7 guaranteeing that under NCOND and the uniform policy,

|M̄ (G)| becomes negligible with respect to n as n increases. Therefore, the size
of the matching and the size of the graph tend to coincide.

Now, for any time Tn and for any set of nodes A ⊂ V , let XA(Tn) denote the set
of nodes of G at Tn having types in A. We have

(72) XA(Tn) =
∑

j∈A

Nj

(
(0, Tn]

)
,
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where Nj ((0, Tn]) is the number of points of Nj up to time Tn. By construction,
for any two nodes u and v in G of respective types i and j , u	−v in G entails i 	−j

in G. Thus, for any independent set I of G at Tn, there exists a unique independent
set I of G, such that I ⊂ XI(Tn), and all types in I are represented in I. Moreover,
the set of all the neighbors in G of the elements of I is exactly the set of all nodes
of G having types that are neighbors in G of the types belonging to I , that is,

(73) EG(I) = XE(I)(Tn).

It follows from (70), (72) and (73) that

(74)
∑

i∈I

Ni(Tn) ≤
∑

j∈E(I)

Nj (Tn) for all independents sets I ∈ I(G)

is a necessary condition for the existence of a perfect matching on G at time Tn.
Dividing both sides of the equality in (74) by n and taking n to infinity, the SLLN
implies that μ(I) ≤ μ(E(I)), for all independents sets I ∈ I(G).

We conclude that a necessary condition for the existence of a perfect matching
on G in the large graph limit is closely related to NCOND(G). (Specifically, the
strict inequality in NCOND is replaced by a weak inequality.) Thus, Corollary 4
is reminiscent of the aforementioned result concerning the construction of match-
ings using uniform on-line algorithms: aside from the case of separable graphs
(for which all matching policies are equivalent in terms of types, see Section 3.2),
under a condition on the connectivity of G that is closely related to (70), a match-
ing policy that is uniform in terms of types of nodes also may fail in general to
construct a perfect matching on G.
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