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Abstract: By considering the inhomogeneities of media, a generalized variable-coefficient Kadomtsev-

Petviashvili (vc-KP) equation is investigated, which can be used to describe many nonlinear phenomena in

fluid dynamics and plasma physics. In this paper, we systematically investigate complete integrability of the

generalized vc-KP equation under a integrable constraint condition. With the aid of a generalized Bells poly-

nomials, its bilinear formulism, bilinear Bäcklund transformations, Lax pairs and Darboux covariant Lax pairs

are succinctly constructed, which can be reduced to the ones of several integrable equations such as KdV,

cylindrical KdV, KP, cylindrical KP, generalized cylindrical KP, non-isospectral KP equations etc. Moreover,

the infinite conservation laws of the equation are found by using its Lax equations. All conserved densities

and fluxes are expressed in the form of accurate recursive formulas. Furthermore, an extra auxiliary variable

is introduced to get the bilinear formulism, based on which, the soliton solutions and Riemann theta function

periodic wave solutions are presented. And the influence of inhomogeneity coefficients on solitonic structures

and interaction properties are discussed for physical interest and possible applications by some graphic analy-

sis. Finally, a limiting procedure is presented to analyze in detail, asymptotic behavior of the periodic waves,

and the relations between the periodic wave solutions and soliton solutions.
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1. Introduction

It is important to investigate the integrability of nonlinear evolution equation (NLEE), which can be regarded

as a pretest and the first step of its exact solvability. There are many significant properties, such as bilinear

∗Author to whom any correspondence should be addressed. Corresponding author: shoufu2006@126.com, shoufu@math.ubc.ca.
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form, Lax pairs, infinite conservation laws, infinite symmetries, Hamiltonian structure, Painlevé test and bi-

linear Bäcklund transformation that can characterize integrability of nonlinear equations. Although there have

been many methods proposed to deal with the NLEEs, e.g., inverse scattering transformation [1], Darboux

transformation [2], Bäcklund transformation(BT) [3], Hirota method [4] and so on. By using the bilinear form

for a given NLEE, one can not only construct its multisoliton solutions, but also derive the bilinear BT, and

some other properties [4]-[7]. Unfortunately, one of the key steps of this method is to replace the given NLEE

by some more tractable bilinear equations for new Hirota’s variables. There is no general rule to find the trans-

formations, nor for choice or application of some essential formulas (such as exchange formulas). During the

early 1930s, Bell proposed the classical Bell polynomials, which are specified by a generating function and ex-

hibiting some important properties [8]. Since then the Bell polynomials have been exploited in combinatorics,

statistics, and other fields [11]-[13]. However, in recent years Lambert and co-workers have proposed an al-

ternative procedure based on the use of the Bell polynomials to obtain parameter families of bilinear Bäcklund

transformation and lax pairs for soliton equations in a lucid and systematic way [8]-[10]. The Bell polynomials

are found to play an important role in the characterization of integrability of a nonlinear equation.

Recently, there has been growing interest in studying the variable-coefficient nonlinear evolution equa-

tions (NLEEs), which are often considered to be more realistic than their constant-coefficient counterparts in

modeling a variety of complex nonlinear phenomena under different physical backgrounds [14]. Since those

variable-coefficient NLEEs are of practical importance, it is meaningful to systematically investigate com-

pletely integrable properties such as bilinear form, Lax pairs, infinite conservation laws, infinite symmetries,

Hamiltonian structure, Painlevé test, bilinear Bäcklund transformation, symmetry algebra and construct various

exact analytic solutions, including the soliton solutions and periodic solutions. For describing the propagation

of solitonic waves in inhomogeneous media, the variable-coefficient KP-type equations have been derived from

many physical applications in plasma physics, fluid dynamics and other fields [15, 16].

In this paper, we will focus on a generalized variable-coefficient Kadomtsev-Petviashvili (vc-KP) equation

with nonlinearity, dispersion and perturbed term

[
ut + h1(y, t)u3x + h2(y, t)uux

]
x + h3(y, t)u2x + h4(y, t)uxy + h5(y, t)u2y + h6(y, t)ux + h7(y, t)uy = 0, (1.1)

where u is a differentiable function of x, y and t, hi(y, t) i = 1, . . . , 7 are all analytic, sufficiently differentiable

functions, may provide a more realistic model equation in several physical situations, e.g. in the propagation

of (small-amplitude) surface waves in straits or large channels of (slowly) varying depth and width and nonva-

nishing vorticity. Eq. (1.1) can reduce to a series of integrable models or describe such physical phenomena

as the electrostatic wave potential in plasma physics, the amplitude of the shallow-water wave and/or surface

wave in fluid dynamics, etc [16]-[19]. Obviously, Eq. (1.1) contains quite a number of variable-coefficient KP

models arising from various branches of physics, e.g. the KdV, cylindrical KdV, KP, cylindrical KP, generalized

cylindrical KP and non-isospectral KP equations etc. Some currently important examples are given below:

• The celebrated, historic Korteweg-de Vries (KdV) equation [1, 20]

ut + 6uu3x + u3x = 0, (1.2)
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has been found to model many physical, mechanical and engineering phenomena, such as ion-acoustic waves,

geophysical fluid dynamics, lattice dynamics, the jams in the congested traffic etc.

• The Kadomtsev-Petviashvili (KP) equation [21]

(ut + 6uu3x + u3x)x + σ0u2y = 0, (1.3)

where σ0 = ±1, has been discovered to describe the evolution of long water waves, small-amplitude surface

waves with weak nonlinearity, weak dispersion, and weak perturbation in the y direction, weakly relativistic

soliton interactions in the magnetized plasma and some other nonlinear models.

• The cylindrical KdV equation [22, 23]

ut + 6uu3x + u3x +
1

2t
ux = 0, (1.4)

was first proposed by Maxon and Viecelli in 1974 when they studied propagation of radically ingoing acous-

tic waves. And its counterpart in (2+1)-dimensional, the cylindrical KP equation [24, 25] and generalized

cylindrical KP equation [17, 26]

(ut + 6uu3x + u3x)x +
σ2

0

t2
u2y +

1

2t
ux = 0, (1.5)

(ut + h2(t)uu3x + h1(t)u3x)x + [ f (t) + yg(t)]u2x + r(t)uxy +
3σ2

0

t2
u2y +

1

2t
ux = 0, (1.6)

with σ2
0
= ±1, have also been constructed to describe the nearly straight wave propagation which varies in a

very small angular region [17], [24]-[26].

• The KP equation with time-dependent coefficients [18]

(ut + uux + u3x)x + µ3(t)ux + µ4(t)u2y = 0, (1.7)

models the propagation of small-amplitude surface waves in straits or large channels of slowly varying depth

and width and nonvanishing vorticity.

• Jacobi elliptic function solutions and integrability property for the following variable-coefficient KP equation

(ut + h1(t)uux + h2(t)u3x)x + h3(t)u2y + 6h4(t)ux = 0, (1.8)

have been presented in Ref. [27].

• The following equation

(ut + h1(t)uux + h2(t)u3x)x + h3(t)u2x + h4(t)u2y = 0, (1.9)

can be used to describe nonlinear waves with a weakly diffracted wave beam, internal waves propagating along

the interface of two fluid layers, etc [19].

• Non-isospectral and variable-coefficient KP equations read [28]

(ut + uux + u3x)x + aux + buy + cu2y + duxy + eu2x = 0, (1.10)

ut + h1(u3x + 6uux + 3σ2∂−1
x uyy) + h2(ux − σxuy − 2σ∂−1

x uy) − h3(xux + 2u + 2yuy) = 0, (1.11)
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where a, b, c, d, e are functions of y, t, and hi (i = 1, 2, 3) are functions of t. Bilinear representations, bilinear

Bäcklund transformations and Lax pairs for non-isospectral KP equations (1.10) and (1.11) are systematically

investigated, respectively, in Refs. [28].

As we well known, the KdV, cylindrical KdV, KP, cylindrical KP, generalized cylindrical KP and non-

isospectral KP equations belong to the integrable hierarchy of KP equation. In recent years, a large number

of papers have been focusing on Painlevé property, dromion-like structures and various exact solutions of

NLEE [29]-[48]. But their integrability, to the best of our knowledge, have not been studied in detail. The

existence of infinite conservation laws can be considered as one of the many remarkable properties that deemed

to characterize soliton equations. Under certain constraint conditions, the variable-coefficient models may be

proved to be integrable and given explicit analytic solutions. The corresponding constraint conditions on Eq.

(1.1) in this paper, which can be naturally found in the procedure of applying the Bell polynomials, will be

h2 = c0h1e
∫

h6dt, ∂yh4 = h6 + ∂t ln h1h−1
2 , h5 = 3α2h1, ∂yh1 = ∂yh2 = h7 = 0, (1.12)

where c0 and α being both arbitrary parameters.

The main purpose of this paper is extend the binary Bell polynomial approach to systematically construct

bilinear formulism, bilinear Bäcklund transformations, Lax pairs and Darboux covariant Lax pairs of the gen-

eralized vc-KP equation (1.1) under conditions (1.12). To our knowledge, there have been no discussions about

Eq. (1.1) under the conditions (1.12). Based on its Lax equations, the infinite conservation laws of the equation

will be constructed. By using the bilinear formula, the soliton solutions and Riemann theta function periodic

wave solutions are also presented.

The structure of the present paper is as follows. By virtue of the properties of the binary Bell polynomials,

we systematically construct the bilinear representation, Bäcklund transformation, Lax pair and Darboux covari-

ant Lax pairs of the generalized vc-KP equation (1.1) in Secs. 2-4, respectively. By means of its Lax equation,

in Sec. 5, the infinite conservation laws of the equation also be constructed. In Sec. 6, based on the bilinear

formula and the recently results in Ref.[51, 52], we present the soliton solutions and Riemann theta function

periodic wave solutions of the generalized vc-KP equation (1.1) under the conditions (1.12) with c0 = 6. And

we also discuss the influence of inhomogeneity coefficients on solitonic structures and interaction properties

for physical interest and possible applications by some graphic analysis. Finally, a limiting procedure is pre-

sented to analyze in detail, the relations between the periodic wave solutions and soliton solutions. And some

introductions of multidimensional Bell polynomials and Riemann theta function wave are given in Appendix

A, B, respectively.

2. Bilinear representation

In this section, we construct the bilinear representation of Eq. (1.1) by using an extra auxiliary variable instead

of the exchange formulae.
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Theorem 2.1. Using the following transformation

u = 12h1h−1
2 (ln f )xx, (2.1)

the generalized vc-KP equation (1.1) can be bilinearized into

D(Dt,Dx,Dy) ≡ [DxDt + h1D4
x + h3D2

x + h4DxDy + h5D2
y + (h6 + ∂t ln h1h−1

2 )∂x + h7∂y − δ] f · f = 0, (2.2)

where ∂x f · f ≡ ∂x f 2 = 2 f fx, ∂y f · f ≡ ∂y f 2 = 2 f fy, δ f · f ≡ δ f 2, and δ = δ(y, t) is a constant of integration.

Proof. To obtain the linearization of Eq. (1.1), a new variable q is introducing(q is called a potential field)

u = c(t)q2x, (2.3)

where c=c(t) is a function to be determined. Substituting Eq. (2.3) into Eq. (1.1), one can write the resulting

equation of the form

q2x,t + h1q5x + ch2q2xq3x + h3q3x + h4q2x,y + h5qx,2y + (h6 + ∂t ln c)q2x + h7qxy = 0, (2.4)

where we will see that such decomposition is necessary to get bilinear form of Eq. (1.1). Moreover by the

integration of Eq. (2.4) about x, one obtains

E(q) ≡ qxt + h1(q4x + 3q2
2x) + h3q2x + h4qxy + h5q2y + (h6 + ∂t ln h1h−1

2 )qx + h7qy = δ, (2.5)

by choosing the function c(t) = 6h1h−1
2

and using the formula (A.7), where δ = δ(y, t) is a constant of integra-

tion. Based on the formula (A.7), Eq. (2.5) can be rewritten as the following form

E(q) = Pxt(q) + h1P4x(q) + h3P2x(q) + h4Pxy(q) + h5P2y(q) + (h6 + ∂t ln h1h−1
2 )qx + h7qy = δ. (2.6)

Finally, according to the property (A.9) and changing the variable

q = 2 ln f ⇐⇒ u = c(t)q2x = 12h1h−1
2 (ln f )xx, (2.7)

Eq. (2.6) produces the same bilinear representation D (2.2) of the generalized vc-KP equation (1.1). �

The formula (2.2) is a new bilinear form, which can also reduce to the ones obtained in Refs. [4, 7, 21,

24, 25, 49, 50] by choosing the appropriate coefficients hi (i = 1, . . . , 7).

(i). If hi = 0 (i = 3, 4, 5, 6, 7), h1 = 1 and h2 = 6, Eq. (1.1) becomes the constant coefficient KdV equation.

The corresponding bilinear form (2.2) reduces to

[DxDt + D4
x] f · f = 0, (2.8)

which is also obtained in Refs. [4, 7, 49, 50], respectively.

(ii). In the case of hi = 0 (i = 3, 4, 6, 7), h1 = 1, h2 = 6 and h5 = ±1, Eq. (1.1) reduces to a general KP

equation. The corresponding bilinear form (2.2) becomes

[DxDt + D4
x ± D2

y] f · f = 0, (2.10)
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which is also researched in Refs. [4, 21, 49], respectively.

(iii). Assuming that hi = 0 (i = 3, 4, 7), h5 = 3σ2
0
/t2 and h6 = 1/2t, Eq. (1.1) becomes the cylindrical KP

model [24, 25]. The corresponding bilinear form (2.2) reduces to

[DxDt + h1D4
x + 3σ2

0/t
2D2

y + (h6 + ∂t ln h1h−1
2 )∂x] f · f = 0, (2.12)

with σ0 is an arbitrary constant, which is a new bilinear formulism for the cylindrical KP model.

3. Bilinear Bäcklund transformation and associated Lax pair

In this section, we construct the bilinear Bäcklund transformation and the Lax pair of the generalized vc-

KP equation (1.1). Bilinear Bäcklund transformation is useful in constructing solutions and also serves as

a characteristic of integrability for a given system. In the following, we derive a bilinear Bäcklund for the

generalized vc-KP equation (1.1) by using the use of binary Bell polynomials.

Theorem 3.1. Suppose that f is a solution of the bilinear equation (2.2) under the conditions (1.12), i.e., the

coefficients hi (i = 1, 2, 5, 6, 7) satisfy h2 = c0h1e
∫

h6dt, h5 = 3α2h1, h7 = 0, then g satisfying

(D2
x + αDy − λ) f · g = 0,

[
Dt + h1

(
D3

x − 3αDxDy + 3λDx

)
+ h3Dx + h4Dy + γ

]
f · g = 0, (3.1)

is another solution of the equation (2.2), where c0, α are arbitrary parameters and γ = γ(y, t) is an arbitrary

function. So the system (3.1) is called a bilinear Bäcklund transformation for the generalized vc-KP equation

(1.1).

Proof. Suppose the following expressions

q = 2 ln g, q′ = 2 ln f (3.2)

are solutions of Eq. (2.5), respectively. The condition from the Eq. (2.5) can be changed into

E(q′) − E(q) =(q′ − q)xt + h1(q′ − q)4x + 3h1(q′ + q)2x(q
′ − q)2x + h3(q′ − q)2x + h4(q′ − q)xy

+ h5(q′ − q)2y + (h6 + ∂t ln h1h−1
2 )(q′ − q)x + h7(q′ − q)y = 0. (3.3)

In order to obtain such conditions, the following new auxiliary variables are introduced

υ = (q′ − q)/2 = ln( f /g), ω = (q′ + q)/2 = ln( f g), (3.4)

then we can change Eq. (3.3) into the following form

E(q′) − E(q) =E(ω + υ) − E(ω − υ) = υxt + h1(υ4x + 6ω2xυ2x) + h3υ2x + h4υxy

+ h5υ2y + (h6 + ∂t ln h1h−1
2 )υx + h7υy

=∂x [Yt(υ) + h1Y3x(υ, ω)] +R(υ, ω) = 0, (3.5)
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where

R(υ, ω) = 3h1Wronskian[Y2x(υ, ω),Yx(υ)] + h3υ2x + h4υxy + h5υ2y + (h6 + ∂t ln h1h−1
2 )υx + h7υy.

To rewrite R(υ, ω) as Y -polynomials in form of x-divergence form and to change Eq. (3.5) into some

conditions, one can introduce a new constant

Y2x(υ, ω) + αYy(υ, ω) = λ, (3.6)

where α = α(t) is an function of t and λ is an arbitrary constant. By virtue of the Eq.(3.6), R(υ, ω) can be

changed into

R(υ, ω) = 3h1λυ2x−α−1
[
h5ω2x,y + (2h5 − 3α2h1)υxυx,y + 3α2h1υ2xυy

]
+h3υ2x+h4υx,y+(h6+∂t ln h1h−1

2 )υx+h7υy,

(3.7)

which is equivalent to the following form

R(υ, ω) = ∂x

[
(3h1λ + h3)Yx(υ) − 3αh1Yx,y(υ, ω) + h4Yy(υ)

]
, (3.8)

by taking

h5 = 2h5 − 3α2h1 = 3α2h1, h6 + ∂t ln h1h−1
2 = 0, h7 = 0,

namely,

h2 = c0h1e
∫

h6dt, h5 = 3α2h1, h7 = 0. (3.9)

Then, using Eqs. (3.6)-(3.8), we obtain the following system

Y2x(υ, ω) + αYy(υ, ω) − λ = 0,

∂xYt(υ) + ∂x

{
h1

[
Y3x(υ, ω) − 3αYxy(υ, ω) + 3λYx(υ)

]
+ h3Yx(υ) + h4Yy(υ)

}
= 0. (3.10)

By virtue of property (A.6), Eq. (3.10) yields to the bilinear Bäcklund transformation (3.1) with γ = γ(t) is an

arbitrary function. �

Bäcklund transformation (3.1) can be used to construct exact solutions for the generalized vc-KP equation

(1.1). Next, using the system (3.10), we will derive Lax pairs of the equation (1.1).

Theorem 3.2. Under the conditions (1.12) and c0 = 6, the generalized vc-KP equation (1.1) admits a Lax pair

(L1 + α∂y)ψ ≡ ψ2x + αψy + (ue
∫

h6dt − λ)ψ = 0, (3.11a)

(∂t +L2)ψ ≡ ψt + 4h1ψ3x − h4α
−1ψ2x +

(
6h1ue

∫
h6dt + 3h1λ + h3

)
ψx

+
(
3h1uxe

∫
h6dt − 3h1α∂

−1
x uye

∫
h6dt − h4α

−1ue
∫

h6dt + h4α
−1λ
)
ψ = 0, (3.11b)

where u is a solution of the equation (1.1).

Proof. Linearizing the Eq. (3.10) into a Lax pair, we introduce a Hopf-Cole transformation υ = lnψ. Using

(A.8) and (A.9), one obtains

Yx(υ) = ψx/ψ, Y2x(υ, ω) = q2x + ψ2x/ψ, Yxy(υ, ω) = qxy + ψxy/ψ,

Yy(υ) = ψy/ψ, Yt(υ) = ψt/ψ, Y3x(υ, ω) = 3q2xψx/ψ + ψ3x/ψ,

7



by means of which, Eq. (3.10) is then changed into the following form with λ and γ

(L1 + α∂y)ψ ≡ ψ2x + αψy + (q2x − λ)ψ = 0, (3.12a)

(∂t +L2)ψ ≡ ψt + 4h1ψ3x − h4α
−1ψ2x + (6h1q2x + 3h1λ + h3)ψx

+
(
3h1q3x − 3h1αqxy − h4α

−1q2x + h4α
−1λ
)
ψ = 0, (3.12b)

which is equivalent to the Lax pair (3.11a) and (3.11b), respectively, by replacing q2x with ue
∫

h6dt. �

Corollary 3.3. Using the conditions (1.12) and c0 = 6, the Lax pair (3.11a) and (3.11b) of the generalized

vc-KP equation (1.1) is equivalent to the following Lax pair

(L1 + α∂y)ψ ≡ ψ2x + αψy + (ue
∫

h6dt − λ)ψ = 0, (3.13a)

(∂t +L2)ψ ≡ ψt − 4h1αψxy −
(
h1ue

∫
h6dt − 7h1λ − h3

)
ψx + h4ψy −

(
h1uxe

∫
h6dt + 3h1α∂

−1
x uye

∫
h6dt
)
ψ = 0,

(3.13b)

where u is a solution of the equation (1.1).

The formulas (3.1), (3.11a) and (3.11b) are new bilinear Bäcklund transformation and Lax pair, respec-

tively, which can also reduce to the ones obtained in Refs. [1],[4],[17]-[20], [24]-[27],[29],[50] by choosing

the appropriate coefficients hi (i = 1, . . . , 7). Without loss of generality, taking c0 = 6, then c(t) = e−
∫

h6dt.

(i). Assuming that α = hi = 0 (i = 3, 4, 5, 6, 7), and h1 = 1, h2 = 6, Eq. (1.1) becomes the general KdV

model. The corresponding Bäcklund transformation (3.1) reduces to

(D2
x − λ) f · g = 0,

[
Dt + D3

x + 3λDx

]
f · g = 0, (3.14)

which is studied in Refs. [4, 50]. The corresponding Lax pair (3.11a) and (3.11b) reduces to

(L1 + α∂y)ψ ≡ ψ2x + (u − λ)ψ = 0, (3.15a)

(∂t +L2)ψ ≡ ψt + 4ψ3x + 3 (2u + λ)ψx + 3uxψ = 0, (3.15b)

where u is a solution of the equation (1.1). The lax pair (3.15a) and (3.15b) is investigated by Lax, Ablowitz

and co-workers in Refs. [1, 20], respectively.

(ii). For hi = 0 (i = 3, 4, 7), and h1 = 1/t2, h2 = 6/t2, h5 = 3σ2
0
/t2, h6 = 1/2t, Eq. (1.1) becomes the

cylindrical KP equation [24, 25]. The corresponding formula (3.1) reduces to

(D2
x + σ0Dy − λ) f · g = 0,

[
Dt + 1/t2

(
D3

x − 3σ0DxDy + 3λDx

)
+ γ
]

f · g = 0, (3.16)

which is a new one and not obtained in Refs. [24, 25]. The corresponding Lax pair (3.11a) and (3.11b) reduces

to

(L1 + α∂y)ψ ≡ ψ2x + σ0ψy + (u
√

t − λ)ψ = 0, (3.17a)

(∂t +L2)ψ ≡ ψt + 4/t2ψ3x +
(
6u
√

t/t2 + 3λ/t2
)
ψx +

(
3ux

√
t/t2 − 3σ0∂

−1
x uy

√
t/t2
)
ψ = 0, (3.17b)
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where u is a solution of the equation (1.1). The lax pair (3.17a) and (3.17b) is a new one, which is not studied

in Refs. [24, 25].

(iii). In the case of h1 = 1/t2, h2 = 6/t2, h3 = f (t) + yg(t), h4 = r(t), h5 = 3σ2
0
/t2, h6 = 1/2t, h7 = 0, Eq.

(1.1) becomes a generalized cylindrical KP equation [17, 26]. The corresponding formula (3.1) reduces to

(D2
x + σ0Dy − λ) f · g = 0,

[
Dt + 1/t2

(
D3

x − 3σ0DxDy + 3λDx

)
+ ( f + yg)Dx + rDy + γ

]
f · g = 0, (3.18)

which is also a new one and not obtained in Refs. [17, 26]. The corresponding Lax pair (3.11a) and (3.11b)

reduces to

(L1 + α∂y)ψ ≡ ψ2x + σ0ψy + (u
√

t − λ)ψ = 0, (3.19a)

(∂t +L2)ψ ≡ ψt + 4/t2ψ3x − σ−1
0 r(t)ψ2x +

[
6u
√

t/t2 + 3λ/t2 + ( f (t) + yg(t))
]
ψx

+
[
3ux

√
t/t2 − 3σ0∂

−1
x uy

√
t/t2 − σ−1

0 r(t)u
√

t + σ−1
0 r(t)λ

]
ψ = 0, (3.19b)

where u is a solution of the equation (1.1). The lax pair (3.19a) and (3.19b) is a new one, which is not obtained

in Refs. [17, 26].

(iv). If h1 = f2(t), h2 = f1(t), h5 = g2(t), h6 = 6 f (t), hi = 0 (i = 3, 4, 7), Eq. (1.1) becomes a variable-

coefficient KP equation [27]. The corresponding formula (3.1) reduces to

(D2
x + σ0Dy − λ) f · g = 0,

[
Dt + 1/t2

(
D3

x − 3σ0DxDy + 3λDx

)
+ ( f + yg)Dx + rDy + γ

]
f · g = 0, (3.20)

which is also a new one and not studied in Ref. [27]. The corresponding Lax pair (3.11a) and (3.11b) reduces

to

(L1 + α∂y)ψ ≡ ψ2x + |g(t)|/
√

3 f2(t)ψy + (ue
∫

6 f (t)dt − λ)ψ = 0, (3.21a)

(∂t +L2)ψ ≡ ψt + 4 f2(t)ψ3x +
(
6 f2(t)ue

∫
6 f (t)dt + 3 f2(t)λ

)
ψx

+
(
3 f2(t)uxe

∫
6 f (t)dt − 3 f2(t)|g(t)|/

√
3 f2(t)∂−1

x uye
∫

6 f (t)dt−
)
ψ = 0, (3.21b)

where u is a solution of the equation (1.1). The lax pair (3.21a) and (3.21b) is a new one, which is not obtained

in Refs. [27].

(v). Suppose hi = hi(t) (i = 1, 2, 3, 5), h j = 0 ( j = 4, 6, 7), Eq. (1.1) becomes a generalized variable

coefficient KP equation [18, 19, 29]. The corresponding formula (3.1) reduces to

(D2
x + αDy − λ) f · g = 0,

[
Dt + h1

(
D3

x − 3αDxDy + 3λDx

)
+ h3Dx + γ

]
f · g = 0, (3.22)

which is also a new one and not obtained in Refs. [18, 19, 29]. The corresponding Lax pair (3.11a) and (3.11b)

reduces to

(L1 + α∂y)ψ ≡ ψ2x +
√

h5/3h1ψy + (u − λ)ψ = 0, (3.23a)

(∂t +L2)ψ ≡ ψt + 4h1ψ3x + (6h1u + 3h1λ + h3)ψx +
(
3h1ux − 3h1

√
h5/3h1∂

−1
x uy

)
ψ = 0, (3.23b)

9



where u is a solution of the equation (1.1). The lax pair (3.23a) and (3.23b) is a new one, which is not obtained

in Refs. [18, 19, 29].

Starting from Lax pairs and Darboux transformation, the soliton-like solutions of the generalized vc-KP

equation (1.1) can be established.

4. Darboux covariant Lax pair

Theorem 4.1. Using the associated Lax pair (3.12a)-(3.12b) and assuming that the parameter λ is independent

of variables x, y and t, the generalized vc-KP equation (1.1) admits a kind of Darboux covariant Lax pair as

follows

(L̂1 + α∂y)φ = λφ, L̂1 = ∂
2
x + q̂2x, (4.1a)

(∂t + L̂2,cov)φ = 0, L̂2,cov = 4h1∂
3
x − h4α

−1∂2
x +
(
6h1q̂2x + h3

)
∂x + 3h1q̂3x − 3h1αq̂xy − h4α

−1q̂2x, (4.1b)

whose form is Darboux covariant, namely,

T (L1 + α∂y)(q)T−1 = (L̂1 + α∂y)(̂q), (4.2a)

T (∂t +L2,cov)(q)T−1 = (∂t + L̂2,cov)(̂q), (4.2b)

with q̂ = q + 2 lnφ, under a certain gauge transformation

T = φ∂xφ
−1 = ∂x − σ, σ = ∂x lnφ. (4.3)

The integrability condition of the Darboux covariant Lax pair (4.1a) and (4.1b) precisely gives rise to Eq. (1.1)

in Lax representation

[∂t + L̂2,cov, L̂1 + α∂y] = [̂qx,t + h1(̂q4x + 3q̂2
2x) + h3q̂2x + h4q̂xy + h5q̂2y]x = 0, (4.4)

if one chooses ∂yh4 = h6 + ∂t ln h1h−1
2

, ∂yh1 = h7 = 0. The equation (4.4) is equivalent to equation (2.5), which

implies that Lax equations (4.1a) and (4.1b) is also a Lax pair for the generalized vc-KP equation (1.1).

Proof. Let φ be a solution of the Lax pair (3.12a). The following transformation (4.3) change the operator

L1(q) + α∂y − λ into a new one as follows

T (L1(q) + α∂y − λ)T−1 = L̂1(̂q) + α∂y − λ, (4.5)

which admitting the following form

L̂1(̂q) = L1(̂q = q + △q), with △q = 2 lnφ. (4.6)

Using transformation (4.3), one should look for another one L2,cov(q), which satisfies the following form

L̂2,cov(̂q) = L2,cov(̂q = q + △q). (4.7)
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Let φ be a solution of the following system

(L1 + α∂y)φ = λφ, L1 = ∂
2
x + q2x, (4.8a)

(∂t +L2,cov)φ = 0, L2,cov = 4h1∂
3
x + b1∂

2
x + b2∂x + b3, (4.8b)

with bi (i = 1, 2, 3) are undetermined functions. To determine bi (i = 1, 2, 3), one can show that (4.3) change

∂t +L2,cov into the following form

T (∂t +L2,cov)T−1 = ∂t + L̂2,cov, L̂2,cov = 4h1∂
3
x + b̂1∂

2
x + b̂2∂x + b̂3, (4.9)

with b̂ j ( j = 1, 2, 3) and L̂2,cov are determined by

b̂ j = b j(q) + △b j = b j(q + △q), j = 1, 2, 3. (4.10)

Using (4.3) and (4.9), one has

△b1 = 0, △b2 = 12h1σx + b1,x + σb1,x,

△b3 = 12h1σ2x + 12h1σσx + σb1,x + b2,x + 2σxb̂1. (4.11)

By virtue of (4.10), one should just express b̂i i = 1, 2, 3 in the following form

b̂ j =H j(q, qx, qy, q2x, qxy, q2y, · · · ), j = 1, 2, 3, (4.12)

and satisfies

△H j =H j(q + △q, qx + △qx, qy + △qy, · · · ) −H j(q, qx, qy, · · · ) = △b j, (4.13)

where △qn1 x,n2y = 2∂
n1
x ∂

n2
y ln q, n1, n2 = 1, 2, . . ., and △b j can be solved by Eq. (4.11).

Direct calculation shows that

b̂1 = c1(y, t), (4.14)

by using Eqs.(4.11)-(4.13), where c1(y, t) being an arbitrary function about y and t.

Using Eq.(4.13), one has

△b2 = △H2 =H2,q△q +H2,qx
△qx +H2,qy

△qy + · · · = 12h1σx = 6h1△q2x. (4.15)

It implies that we can determine b̂2 up to an arbitrary constant c2(y, t), namely,

b̂2 =H2(q2x) = 6h1q2x + c2(y, t), (4.16)

where c2(y, t) being an arbitrary function about y and t.

By means of Eq. (4.8a), one obtains

q3x = −ασxy − (σx + σ
2)x. (4.17)

Using Eqs.(4.14), (4.16) and (4.17) into Eq.(4.11), one has

△b3 = 6h1σ2x − 6h1ασxy + 2c1σx = 3h1△q3x − 3h1α△qxy + c1△q2x, (4.18)
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which can be verified that the third condition

△H3 =H3,q△q +H3,qx
△qx +H3,qy

△qy + · · · = △b3, (4.19)

can be satisfied by choosing

b̂3 =H3(q, qx, qy, q2x, qxy, q2y, q3x, · · · ) = 3h1q3x − 3h1αqxy + c1(y, t)q2x + c3(y, t), (4.20)

where c3(y, t) is an arbitrary function of y and t.

Taking c1(y, t) = −α−1h4, c2(y, t) = h3, c3(y, t) = 0 in Eqs.(4.14), (4.16) and (4.20), we obtain the Darboux

covariant evolution equation (4.1b) by using (4.8a), (4.8b).

Through a tedious calculations of the Lie bracket [∂t + L̂2,cov, L̂1 + α∂y], one obtains the Eq.(4.4) by

choosing ∂yh4 = h6+∂t ln h1h−1
2

, ∂yh1 = h7 = 0. �

From above, we can investigate the higher ones by using the same method

L̂n0,cov(̂q) = 4h1∂
n0
x + b̂1∂

n0−1
x + · · · + b̂s, s = 5, 6, 7, · · · , (4.21)

which can obtain other new ones of the Eq. (1.1).

5. Infinite conservation laws

In this section, we derive the infinite conservation laws for the generalized vc-KP equation (1.1) by using the

binary Bell polynomials.

Theorem 5.1. Under the conditions (1.12), the generalized vc-KP equation (1.1) admits an infinite conserva-

tion laws

In,t +Jn,x + Gn,y = 0, n = 1, 2, . . . . (5.1)

The conversed densities I ′
n s are obtained as follows

I1 = −
1

2
q2x = −

1

2
e
∫

h6dtu,

I2 =
1

4
q3x +

1

4
αqxy =

1

4
e
∫

h6dt
(
α∂−1

x uy + u2x

)
,

In+1 = −
1

2

In,x + α∂
−1
x In,y +

n∑

i=1

IiIn−i

 , n = 2, 3, . . . , (5.2)

and the first fluxes J ′
n s are obtained as follows

J1 = h1I1,2x − 6h1α∂
−1
x I2,y + h3I1 − 6h1I

2
1 ,

J2 = h1I2,2x − 6h1αI1∂
−1
x I1,y − 6h1α∂

−1
x I3,y − 12h1I1I2 + h3I2,

Jn = h1

In,2x − 6

n∑

k=1

IkIn+1−k − 2
∑

k1+k2+k3=n

Ik1
Ik2

Ik3

 − 6h1α

∂−1
x In+1,y +

n∑

k=1

Ik∂
−1
x In−k,y



+ h3In, n = 3, 4, . . . . (5.3)
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and the second fluxes G ′n s are obtained as follows

G1 = 6h1αI2 + h4I1 + h5∂
−1
x I1,y,

G2 = 3h1αI 2
1 + 6h1αI3 + h4I2 + h5∂

−1
x I2,y,

Gn = 3h1α

n∑

k=1

IkIn−k + 6h1αIn+1 + h4In + h5∂
−1
x In,y, n = 2, 3, . . . . (5.4)

Proof. Changing (3.3) into the divergence form and using (3.5), one can rewrite R(υ, ω) into a new form

R(υ, ω) = [(3h1λ + h3)υx − 3h1αυxυy]x + [−3h1αω2x + h4υx]y. (5.5)

which is equivalent to the following form

ω2x + υ
2
x + αυy − λ = 0,

∂t[υx] + ∂x

[
h1υ3x + 3h1υxω2x + h1υ

3
x + (3h1λ + h3) υx − 3h1αυxυy

]

+ ∂y

[
3h1αυ

2
x + h4υx + h5υy − 3h1αλ

]
= 0, (5.6)

by using the fact ∂x(υt) = ∂t(υx) = υxt.

Using the relationship (3.4) and the following new function

η = (q′x − qx)/2, (5.7)

one obtains

υx = η, ωx = qx + η. (5.8)

By using (5.8) into (5.6), Eq. (3.5) can be changed into a Riccati-type equation

q2x + ηx + η
2 + α∂−1

x ηy − ε2 = 0, (5.9)

which is a new potential function about q, and a divergence-type equation

ηt + ∂x

[
h1

(
η2x − 2η3 − 6αη∂−1

x ηy + 6ε2η
)
+ h3η

]
+ ∂y

[
3h1αη

2 + h4η + h5∂
−1
x ηy − 3h1αε

2
]
= 0, (5.10)

in which one can obtain Eq. (5.10) by virtue of the equation (5.9) and take λ = ε2.

Introducing the following series

η = ε +

∞∑

n=1

In(q, qx, q2x, · · · )ε−n, (5.11)

into Eq. (5.9) and collecting the coefficients of ε, one can get the formulas (5.2) for In.

In addition, substituting the expression (5.11) into Eq. (5.10), one obtains

∞∑

n=1

In,tε
−n + ∂x

h1


∞∑

n=1

In,2xε
−n − 2


∞∑

n=1

Inε
−n


3

− 6ε


∞∑

n=1

Inε
−n


2

+ 4ε3

 + h3


∞∑

n=1

Inε
−n + ε



−6h1α



∞∑

n=1

Inε
−n


∂−1

x

∞∑

n=1

In,yε
−n


 − 6h1αε∂

−1
x

∞∑

n=1

In,yε
−n



+ ∂y

3h1α




∞∑

n=1

Inε
−n


2

+ 2ε

∞∑

n=1

Inε
−n

 + h4


∞∑

n=1

Inε
−n + ε

 + h5

∂−1
x

∞∑

n=1

In,yε
−n + εx





= 0, (5.12)
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from which one can obtain the infinite conservation laws (5.1)

In,t +Jn,x + Gn,y = 0, n = 1, 2, . . . .

In Eq. (5.1), the conversed densities I ′
n s are obtained by recursion formulas (5.2), and the first fluxes J ′

n s and

the second fluxes G ′n s, respectively, are obtained by (5.3) and (5.4) through a cumbersome calculation. �

From above, one concludes that the first fluxes J ′
n s (5.3) and the second fluxes G ′n s (5.4) can be introduced

from u, and the formula In,t +Jn,x + Gn,y = 0, (n = 1, 2, . . .) implies that infinite conserved densities of the

generalized vc-KP equation (1.1) can be obtained by using {In, n = 1, 2, . . . , }. Using Eqs. (5.2), (5.3) and

(5.4), one can easily obtain In, Jn and Gn. And the generalized vc-KP equation (1.1) can be expressed in the

form of the first equation for conservation law (5.1).

6. Soliton solution and Riemann theta function periodic wave solution

Under the conditions (1.12) and c0 = 6, we can discuss the solutions of the generalized vc-KP equation (1.1)

by using the bilinear form (2.2). The following subsections are independent to each other, and the parameters

are also independent.

6.1 Soliton solution

Theorem 6.1. Assuming δ=0, under the conditions (1.12) and c0 = 6, the generalized vc-KP equation (1.1)

admits a N-soliton solution as follows

u = 12h1h−1
2 (ln f )xx,

f =
∑

ρ=0,1

exp


N∑

j=1

ρ jη j +

N∑

1≤ j<i≤N

ρiρ jAi j

 , (6.1)

where η j = µ j x+ν jy−(h1µ
3
j
+h3µ j+h4ν j+h5µ

−1
j
ν2

j
)t+c j and exp(Ai j) =

3h1µ
2
i
µ2

j
(µi−µ j)

2−h5(µiν j−µ jνi)
2

3h1µ
2
i
µ2

j
(µi+µ j)2−h5(µiν j−µ jνi)2 (1 ≤ j < i ≤ N),

while µ j, ν j are the parameters characterizing the j-th soliton,
∑N

1≤ j<i≤N is the summation over all possible pairs

chosen from N elements under the condition 1 ≤ j < i ≤ N, and
∑
ρ=0,1 denotes the summation over all possible

combinations of ρi, ρ j = 0, 1 (i, j = 1, 2, . . . ,N).

Proof. Substituting (6.1) into the bilinear form (2.2) yields

∑

ρ=0,1

∑

ρ′=0,1

D

−
N∑

j=1

(ρ j − ρ′j)(h1µ
3
j + h3µ j + h4ν j + h5µ

−1
j ν j),

N∑

j=1

(ρ j − ρ′j)µ j,

N∑

j=1

(ρ j − ρ′j)ν j



× exp


N∑

j=1

(ρ j + ρ
′
j)η j +

N∑

1≤ j<i≤N

(ρiρ j + ρ
′
iρ
′
j)Ai j

 = 0, (6.2)

in which the bilinear operator D is given by Eq.(2.2) with δ = 0. Let the coefficient of the factor

exp


m∑

j=1

η j + 2

n∑

j=m+1

η j

 , (6.3)

14



on the left hand of (6.2) be F , it follows that

F =
∑

ρ=0,1

∑

ρ′=0,1

C (ρ, ρ′)D

−
N∑

j=1

(ρ j − ρ′j)(h1µ
3
j + h3µ j + h4ν j + h5µ

−1
j ν j),

N∑

j=1

(ρ j − ρ′j)µ j,

N∑

j=1

(ρ j − ρ′j)ν j



× exp


N∑

1≤ j<i≤N

(ρiρ j + ρ
′
iρ
′
j)Ai j

 = 0, (6.4)

where the coefficient C (ρ, ρ′) denotes that the summations over ρ and ρ′ performed under the following condi-

tions

ρ j =



1 − ρ′j, if 1 ≤ j ≤ m,

ρ′j = 1, if m + 1 ≤ j ≤ n,

ρ′j = 0, if n + 1 ≤ j ≤ N.

(6.5)

By introducing a new variable

̟ j = ρ j − ρ′j, (6.6)

one obtains the following equality

exp


N∑

1≤ j<i≤N

(ρiρ j + ρ
′
iρ
′
j)Ai j

 =
m∑

1≤ j<i≤N

1

2
(1 +̟i̟ j)Ai j +

m∑

i=1

n∑

j=m+1

Ai j +

n∑

1≤ j<i≤N

n∑

j=m+1

Ai j. (6.7)

On account of ̟i, ̟ j = ±1 and the relations

D
(
h1µ

3
j + h3µ j + h4ν j + h5µ

−1
j ν j, µ j, ν j

)
= D
(
−h1µ

3
j − h3µ j − h4ν j − h5µ

−1
j ν j,−µ j,−ν j

)
,

exp (Ai j) = −
D
(
h1(µ3

i
− µ3

j
) + h3(µi − µ j) + h4(νi − ν j) + h5(µ−1

i
νi − µ−1

j
ν j), µ j − µi, ν j − νi

)

D
(
−h1(µ3

i
+ µ3

j
) − h3(µi + µ j) − h4(νi + ν j) − h5(µ−1

i
νi + µ

−1
j
ν j), µi + µ j, νi + ν j

) , (6.8)

one obtains

m∑

1≤ j<i≤N

1

2
(1+̟i̟ j)Ai j = −

D
(
h1(µ3

i
− µ3

j
) + h3(µi − µ j) + h4(νi − ν j) + h5(µ−1

i
νi − µ−1

j
ν j), µ j − µi, ν j − νi

)

D
(
−h1(µ3

i
+ µ3

j
) − h3(µi + µ j) − h4(νi + ν j) − h5(µ−1

i
νi + µ

−1
j
ν j), µi + µ j, νi + ν j

)̟i̟ j.

(6.9)

Substituting Eqs.(6.6)-(6.9) into Eq.(6.4) yields

F = A
∑

ν=±1

D

−
N∑

j=1

̟ j(h1µ
3
j + h3µ j + h4ν j + h5µ

−1
j ν j),

N∑

j=1

̟ jµ j,

N∑

j=1

̟ jν j



×
N∏

j<i

D
(
h1(µ3

i − µ3
j ) + h3(µi − µ j) + h4(νi − ν j) + h5(µ−1

i νi − µ−1
j ν j), µ j − µi, ν j − νi

)
̟i̟ j = 0, (6.10)

where A = A (exp(Ai j)) is independent of the summation indices ̟i (i = 1, 2, . . . ,N). If we can verify the

identity (6.10) for A ≡ 1, N = 1, 2, . . ., then (6.1) is the solution of Eq. (1.1). Using the bilinear form (2.2),

one can rewrite (6.10) as follows

F̂N(µ1, ν1, µ2, ν2, . . . , µN , νN)

≡ A
∑

̟=±1


−

N∑

i, j=1

̟i̟ j(h1µ
3
i + h3µi + h4νi + h5µ

−1
i νi)µ j + h1


N∑

j=1

̟ jν j



4

+ h3


N∑

j=1

̟ jµ j



2

+h4

N∑

j=1

̟i̟ jµiν j + h5


N∑

j=1

̟ jν j



2


N∏

j<i

[
3h1µ

2
i µ

2
j(̟iµi −̟ jµ j)

2 − h5(µiν j − µ jνi)
2
]
= 0. (6.11)
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F̂N(µ1, ν1, µ2, ν2, . . . , µN , νN) is a symmetric and homogeneous polynomial, and is also an even function of µ j,

ν j ( j = 1, 2, . . . ,N). Suppose (µ1, ν1) = (±µ2,±ν2), then we have the following relationship

F̂N(µ1, ν1, . . . , µN , νN) = 8(3h1µ
6
1−h5µ

2
1ν

2
1)

N∏

j=3

[
3h1µ

4
1µ

4
j (µ

2
1 − µ2

j)
4 + h5(µ2

1ν
2
j − µ2

jν
2
1)4
]2

F̂N−2(µ3, ν3, . . . , µN , νN).

(6.12)

For A ≡ 1, n = 1, 2, the identity (6.11) is easily verified. Let’s assume that the identity hold for N −2, uti-

lizing the relationship (6.12), it is seen that F̂N(µ1, µ2, . . . , µN) can be the factor by a symmetric homogeneous

polynomial as follows

F̂N(µ1, ν1, . . . , µN , νN) =

N∏

i=1

(3h1µ
6
i −h5µ

2
i ν

2
i )

N∏

j<i

[
3h1µ

4
i µ

4
j (µ

2
i − µ2

j)
4 + h5(µ2

i ν
2
j − µ2

jν
2
i )4
]2

F̃N(µ1, ν1, . . . , µN , νN).

(6.13)

According to the degrees of Eqs.(6.11) and (6.13), F̂N(µ1, ν1, . . . , µN , νN) must be zero for A ≡ 1, n ≥ 2, and

the identity is proved. Hence, the expression (6.1) is the N-soliton solution of the generalized vc-KP equation

(1.1). �

Based on the Theorem 6.1, one can easily obtain the following corollary.

Corollary 6.2. For the case N = 1, the one-soliton solution of the generalized vc-KP equation (1.1) can be

written as follows:

u = 12h1h−1
2

[
ln(1 + eη)

]
xx , (6.14)

where η = µx + νy − (h1µ
3 + h3µ + h4ν + h5µ

−1ν2)t + c. For the case N = 2, the following expression

u = 12h1h−1
2

[
ln(1 + eη1 + eη2 + eη1+η2+A12)

]
xx
, (6.15)

with ηi = µi x + νiy − (h1µ
3
i
+ h3µi + h4νi + h5µ

−1
i
ν2

i
)t + ci i = 1, 2, eA12 =

3h1µ
2
1
µ2

2
(µ1−µ2)2−h5(µ1ν2−µ2ν1)2

3h1µ
2
1
µ2

2
(µ1+µ2)2−h5(µ1ν2−µ2ν1)2 , describes

the two-soliton solution for equation (1.1).

Based on the soliton solutions obtained by the Hirota’s method, we present some figures to describe the

propagation situations of the solitary waves. Figures 1 and 2 show the pulse propagation of the fundamental

soliton along the distance (x, y)-surface with suitable choice of the parameters in Eq.(6.14). In Figures 3 and 4,

we choose the same value of µ1 and µ2 but different ν1 and ν2. In this case, the phases of the two solitons are

the same and two sets of parallel solitons are obtained via Eq.(6.15).
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Fig. 1. (Color online) Propagation of the solitary wave for the generalized vc-KP equation (1.1) via expression (6.14)

with parameters: h1=1, h2=-sech2(t), h3 = −1, h4 = 1, h5 = 2, µ = 1, ν = 2 and c = −1. (a) Perspective view of the wave.
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(b) Overhead view of the wave. (c) The corresponding contour plot.
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Fig. 2. (Color online) Propagation of the solitary wave for the generalized vc-KP equation (1.1) via expression (6.14)

with parameters: h1 = y2, h2=-sech2(t), h3 = t, h4 = y, h5 = 2, µ = 1, ν = 2 and c = −1. (a) Perspective view of the wave.

(b) Overhead view of the wave. (c) The corresponding contour plot.
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Fig. 3. (Color online) Evolution plots of the two solitary waves for the generalized vc-KP equation (1.1) via expres-

sion (6.15) with parameters: h1 = 1, h2=sech2(t), h3 = 1, h4 = −t, h5 = t, µ1 = 1, ν1 = 3, µ2 = 2, ν2 = 4 and c1 = c2 = 0.

(a) Perspective view of the wave. (b) Overhead view of the wave. (c) The corresponding contour plot.
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Fig. 4. (Color online) Evolution plots of the two solitary waves for the generalized vc-KP equation (1.1) via expres-

sion (6.15) with parameters: h1 = 1, h2=sech2(t), h3 = 1, h4 = −1, h5 = t, µ1 = 1, ν1 = 2, µ2 = 2, ν2 = −2 and c1 = c2 = 0.

(a) Perspective view of the wave. (b) Overhead view of the wave. (c) The corresponding contour plot.

6.2 Riemann theta function periodic wave solution

Using a multidimensional Riemann theta function, in Refs.[51, 52] we proposed two key theorems to systematically con-

struct Riemann theta function periodic wave solutions for nonlinear equations and discrete soliton equations, respectively.

Using the results in Ref.[51], we can directly obtain some periodic wave solutions for the generalized vc-KP equation (1.1)
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(see details in Appendix: B).

Considering the conditions (1.12), we consider the following bilinear form when δ is nonzero constant in Eq.(2.2)

L (Dx,Dy,Dt) f · f ≡
(
DxDt + h1D4

x + h3D2
x + h4DxDy + h5D2

y − δ
)

f · f = 0. (6.16)

Let now consider the Riemann theta function

ϑ(ξ) = ϑ(ξ, τ ) =
∑

n∈ZN

eπi〈nτ ,n〉+2πi〈ξ,n〉, (6.17)

where the integer value vector n = (n1, n2, . . . , nN )T ∈ ZN , complex phase variables ξ = (ξ1, ξ2, . . . , ξN )T ∈ ZN , and −iτ is

a positive definite and real-valued symmetric N × N matrix.

Theorem 6.3. Assuming that ϑ(ξ, τ) is a Riemann theta function for N = 1 with ξ = kx+ ly+ωt+ ε, the generalized vc-KP

equation (1.1) admits a one-periodic wave solution as follows

u = 12h1h−1
2 ∂2

x lnϑ(ξ, τ), (6.18)

where

ω =
b1a22 − b2a12

a11a22 − a12a21

, δ =
b2a11 − b1a21

a11a22 − a12a21

, (6.19)

with

℘ = eπiτ, a11 =

+∞∑

n=−∞
16n2π2k℘2n2

, a12 =

+∞∑

n=−∞
℘2n2

, a21 =

+∞∑

n=−∞
4π2(2n − 1)2k℘2n2−2n+1,

a22 =

+∞∑

n=−∞
℘2n2−2n+1, b1 =

+∞∑

n=−∞

(
256h1n4π4k4 − 16h3n2π2k2 − 16h4n2π2kl − 16h5n2π2l2

)
℘2n2

,

b2 =

+∞∑

n=−∞

(
16h1π

4(2n − 1)4k4 − 4h3π
2(2n − 1)2k2 − 4h4π

2(2n − 1)2kl − 4h5π
2(2n − 1)2l2

)
℘2n2−2n+1, (6.20)

and the other parameters k, l, τ and ε are free.

Proof. In order to obtain one-periodic wave solutions of Eq. (1.1), we consider one-Riemann theta function ϑ(ξ, τ) as N = 1

ϑ(ξ, τ) =

+∞∑

n=−∞
eπin2τ+2πinξ, (6.21)

where the phase variable ξ = kx + ly + ωt + ε and the parameter Imτ > 0. According to the Theorem A in Appendix (see

details in Ref.[51]), k, l, ω and ε satisfy the following system

+∞∑

n=−∞
L (4nπik, 4nπil, 4nπiω)e2n2πiτ = 0, (6.22a)

+∞∑

n=−∞
L (2πi(2n − 1)k, 2πi(2n − 1)l, 2πi(2n − 1)ω)e(2n2−2n+1)πiτ = 0. (6.22b)

Substituting the bilinear form L (6.16) into system (6.22a), (6.22b) yields

+∞∑

n=−∞

(
16n2π2kω − 256h1n4π4k4 + 16h3n2π2k2 + 16h4n2π2kl + 16h5n2π2l2 + δ

)
e2n2πiτ = 0, (6.23a)

+∞∑

n=−∞

(
4π2(2n − 1)2kω − 16h1π

4(2n − 1)4k4 + 4h3π
2(2n − 1)2k2 + 4h4π

2(2n − 1)2kl + 4h5π
2(2n − 1)2l2 + δ

)
e(2n2−2n+1)πiτ = 0.

(6.23b)

The notations are the same as the system (6.20), the system (6.23a), (6.23b) is simplified into a linear system for the

frequency ω and the integration constant δ, namely,



a11 a12

a21 a22





ω

δ


=



b1

b2


. (6.24)
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Now solving this system, we get a one-periodic wave solution of Eq. (1.1)

u = 12h1h−1
2 ∂2

x lnϑ(ξ, τ),

which provided the vector (ω, δ)T . It solves the system (6.24) with the theta function ϑ(ξ, τ) given by Eq.(6.21). The other

parameters k, l, τ and ε are free. �

Theorem 6.4. Assuming that ϑ(ξ1, ξ2, τ ) is a Riemann theta function for N = 2 with ξi = ki x + liy + ωit + εi (i = 1, 2), the

generalized vc-KP equation (1.1) admits a two-periodic wave solution as follows

u = u0 + 12h1h−1
2 ∂2

x lnϑ(ξ1, ξ2, τ ), (6.25)

where the parameters ω1, ω2, u0 and δ satisfy the linear system

H(ω1,ω2, u0, δ)T = b, (6.26)

with

H = (hi j)4×4, b = (b1, b2, b3, b4)T , hi1 =
∑

(n1,n2)∈Z2

4π2〈2n − θi,k〉(2n1 − θ1
i )ℑi(n),

hi2 =
∑

(n1,n2 )∈Z2

4π2〈2n − θi,k〉(2n2 − θ2
i )ℑi(n), hi3 = −

∑

(n1,n2 )∈Z2

16h1π
4〈2n − θi, k〉4ℑi(n),

hi4 =
∑

(n1,n2 )∈Z2

ℑi(n), bi =
∑

(n1,n2)∈Z2

[
16h1π

4〈2n − θi,k〉4 − 4h3π
2〈2n − θi,k〉2 − 4h4π

2〈2n − θi,k〉〈2n − θi, l〉

− 4h5π
2〈2n − θi, l〉2

]
ℑi(n),

ℑi(n) = ℘
n2

1
+(n1−θ1

i
)2

1
℘

n2
2
+(n2−θ2

i
)2

2
℘

n1n2+(n1−θ1
i

)(n2−θ2
i

)

3
, ℘1 = eπiτ11 , ℘2 = eπiτ22 , ℘1 = e2πiτ12 , i = 1, 2, 3, 4. (6.27)

and θi = (θ1
i
, θ2

i
)T , θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 = (0, 1)T , θ4 = (1, 1)T , i = 1, 2, 3, 4, the other parameters ki, li, τi j and εi

(i, j = 1, 2) are free.

Proof. To obtain two-periodic wave solutions of Eq. (1.1), we consider two-Riemann theta function ϑ(ξ1, ξ2, τ) as N = 2

ϑ(ξ1, ξ2, τ) =
∑

n∈Z2

eπi〈τn,n〉+2πi〈ξ,n〉, (6.28)

where the phase variable ξ = (ξ1, ξ2)T ∈ C2, ξi = ki x + liy + ωit + εi, i = 1, 2, n = (n1, n2)T ∈ Z2, and −iτ is a positive

definite and real-valued symmetric 2 × 2 matrix which can take the form



τ11 τ12

τ21 τ22


, Im(τ11) > 0, Im(τ22) > 0, τ11τ22 − τ12 < 0. (6.29)

By considering a variable transformation

u = u0 + 12h1h−1
2 ∂2

x lnϑ(ξ1, ξ2, τ), (6.30)

and integrating with respect to x, the L becomes the following bilinear form

L̂ (Dx,Dy,Dt) f · f ≡
(
DxDt + h1D4

x + h1u0D4
x + h3D2

x + h4DxDy + h5D2
y − δ
)

f · f = 0. (6.31)

According to the Theorem B in Appendix (see details in Ref.[51]), ki, ωi and εi (i = 1, 2) satisfy the following system

∑

n∈Z2

L̂ (2πi〈2n − θi,k〉, 2πi〈2n − θi, l〉, 2πi〈2n − θi,ω〉) eπi[〈τ (n−θi),n−θi〉+〈τn,n〉] = 0, (6.32)
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where θi = (θ1
i , θ

2
i )T , θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 = (0, 1)T , θ4 = (1, 1)T , i = 1, 2, 3, 4.

Substituting the bilinear form L̂ (6.31) into system (6.32) yields

∑

n∈Z2

[
4π2〈2n − θi,k〉〈2n − θi,ω〉 − 16h1π

4〈2n − θi,k〉4 − 16h1u0π
4〈2n − θi,k〉4 + 4h3π

2〈2n − θi,k〉2

+4h4π
2〈2n − θi,k〉〈2n − θi, l〉 + 4h5π

2〈2n − θi, l〉2 + δ
]

eπi[〈τ (n−θi),n−θi〉+〈τn,n〉] = 0, i = 1, 2, 3, 4. (6.33)

The notations are the same as the system (6.27), Eqs.(6.33) can be written as a linear system about the frequency ω1, ω2,

u0 and the integration constant δ, namely,



h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44





ω1

ω2

u0

δ



=



b1

b2

b3

b4



. (6.34)

Now solving this system, we get a two-periodic wave solution of Eq. (1.1)

u = u0 + 12h1h−1
2 ∂2

x lnϑ(ξ1, ξ2, τ ),

which provided the vector (ω1,ω2, u0, δ)T . It solves the system (6.34) with the theta function ϑ(ξ1, ξ2, τ ) given by Eq.(6.28).

The other parameters ki, li, τi j and εi (i, j = 1, 2) are free. �

We now present some figures to describe the propagation situations of the periodic waves. Figure 5 shows the prop-

agation of the one periodic wave via solution (6.18). Figure 6 shows the propagation of the degenerate two-periodic wave

via solution (6.25). And Figures 7 and 8 show the propagation of the asymmetric and symmetric two-periodic waves via

solution (6.25).
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Fig. 5. (Color online) A one-periodic wave of the generalized vc-KP equation (1.1) via expression (6.18) with pa-

rameters: h1 = 1, h2 = 1, h3 = 2, h4 = 4, h5 = 6, k = 1, l = 2, τ = i and ε = 0. This figure shows that every one-periodic

wave is one-dimensional, and it can be viewed as a superposition of overlapping solitary waves, placed one period apart.

(a) Perspective view of the real part of the periodic wave Re(u). (b) Overhead view of the wave, the green lines are crests
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and the red lines are troughs. (c) The corresponding contour plot. (d) Wave propagation pattern of the wave along the x

axis. (e) Wave propagation pattern of wave along the y axis. ( f ) Wave propagation pattern of wave along the t axis.
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Fig. 6. (Color online) A degenerate two-periodic wave of the generalized vc-KP equation (1.1) via expression (6.25)

with parameters: h1 = 1, h2 = 2, h3 = 4, h4 = 6, h5 = 8, k1 = l1 = 1, k2 = l2 = −1, τ11 = i, τ12 = 0.5i, τ22 = 2i

and ε1 = ε2 = 0. This figure shows that degenerate two-periodic wave is almost one-dimensional. (a) Perspective view

of the real part of the periodic wave Re(u). (b) Overhead view of the wave, the green points are crests and the red points

are troughs. (c) The corresponding contour plot. (d) Wave propagation pattern of the wave along the x axis. (e) Wave

propagation pattern of wave along the y axis. ( f ) Wave propagation pattern of wave along the t axis.
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Fig. 7. (Color online) An asymmetric two-periodic wave of the generalized vc-KP equation (1.1) via expression

(6.25) with parameters: h1 = −1, h2 = 2, h3 = 4, h4 = 6, h5 = 8, k1 = 0.1, l1 = 1, k2 = l2 = 0.3, τ11 = i, τ12 = 0.5i, τ22 = 2i
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and ε1 = ε2 = 0. This figure shows that the asymmetric two-periodic wave is spatially periodic in three directions, but it

need not to be periodic in either the x, y or t directions. (a) Perspective view of the real part of the periodic wave Re(u).

(b) Overhead view of the wave, the green points are crests and the red points are troughs. (c) The corresponding contour

plot. (d) Wave propagation pattern of the wave along the x axis. (e) Wave propagation pattern of wave along the y axis. ( f )

Wave propagation pattern of wave along the t axis.
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Fig. 8. (Color online) An symmetric two-periodic wave of the generalized vc-KP equation (1.1) via expression (6.25)

with parameters: h1 = −1, h2 = 2, h3 = 4, h4 = 6, h5 = 8, k1 = 1, l1 = 2, k2 = 3, l2 = 4, τ11 = i, τ12 = 0.5i, τ22 = 2i and

ε1 = ε2 = 0. This figure shows that the symmetric two-periodic wave is periodic in three directions. (a) Perspective view

of the real part of the periodic wave Re(u). (b) Overhead view of the wave, the green points are crests and the red points

are troughs. (c) The corresponding contour plot. (d) Wave propagation pattern of the wave along the x axis. (e) Wave

propagation pattern of wave along the y axis. ( f ) Wave propagation pattern of wave along the t axis.

6.3 Asymptotic property of Riemann theta function periodic waves

Based on the results of Ref. [51], the relation between the one- and two- periodic wave solutions (6.18), (6.25) and the one-

and two- soliton solutions (6.14), (6.15) can be directly established as follows.

Theorem 6.5. If the vector (ω, δ)T is a solution of the system (6.24) for the one-periodic wave solution (6.18), we let

k =
µ

2πi
, l =

ν

2πi
, ε =

c + πτ

2πi
, (6.35)

where µ, ν and c are given in Eq.(6.14). Then we have the following asymptotic properties

δ→ 0, 2πiξ → η + πτ, ϑ(ξ, τ)→ 1 + eη, when ℘→ 0. (6.36)

It implies that the one-periodic solution (6.18) converges to the one-soliton solution (6.14) under a small amplitude limit,

that is (u, ℘)→ (u1, 0).
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Proof. By using the system (6.20), ai j, bi, i, j = 1, 2, can be rewritten as the series about ℘

a11 = 32π2k
(
℘2 + 4℘8 + 9℘18 + · · · + n2℘2n2

+ · · ·
)
, a12 = 1 + 2

(
℘2 + ℘8 + ℘18 + · · · + ℘2n2

+ · · ·
)
,

a21 = 8π2k
(
℘ + 9℘5 + 25℘13 + · · · + (2n − 1)2℘2n2−2n+1 + · · ·

)
, a22 = 2

(
℘ + ℘5 + ℘13 + · · · + ℘2n2−2n+1 + · · ·

)
,

b1 = 32π2
[(

16h1π
2k4 − h3k2 − h4kl − h5l2

)
℘2 +

(
256h1π

2k4 − 4h3k2 − 4h4kl − 4h5l2
)
℘8 + · · ·

+
(
16h1n4π2k4 − h3n2k2 − h4n2kl − h5n2l2

)
℘2n2

+ · · ·
]
,

b2 = 8π2
[(

4h1π
2k4 − h3k2 − h4kl − h5l2

)
℘ +
(
324h1π

2k4 − 9h3k2 − 9h4kl − 9h5l2
)
℘5 + · · ·

+
(
4h1(2n − 1)4π2k4 − h3(2n − 1)2k2 − h4(2n − 1)2kl − h5(2n − 1)2l2

)
℘2n2−2n+1 + · · ·

]
. (6.37)

With the aid of Proposition C in Appendix, we have

A0 =



0 1

0 0


, A1 =



0 0

8π2k 2


, A2 =



32π2k 2

0 0


, A5 =



0 0

72π2k 2


, A3 = A4 = 0, . . . ,

B1 =



0

8π2△1


, B2 =



32π2△2

0


, B5 =



0

72π2△3


, B0 = B3 = B4 = 0, . . . , (6.38)

where △1 = 4h1π
2k4 − h3k2 − h4kl − h5l2, △2 = 16h1π

2k4 − h3k2 − h4kl − h5l2 and △3 = 36h1π
2k4 − h3k2 − h4kl − h5l2.

Substituting the system (6.38) into formulas (D.7), one can obtain

X0 =



−k−1△1

0


, X2 =



8k−1△1

32π2△1


, X4 = −



89k−1△1 + 9k−1△3

320π2△1


, X1 = X3 = 0, . . . . (6.39)

From (D.2), one then has

ω = −k−1△1 + 8k−1△1℘
2 − (89k−1△1 + 9k−1△3)℘4 + o(℘4),

δ = 32π2△1℘
2 − 320π2△1℘

4 + 0(℘4), (6.40)

which implies by using relation (6.35) that

δ→ 0, 2πiω→ −(h1µ
3 + h3µ + h4ν + h5µ

−1ν2), when ℘→ 0. (6.41)

In order to show that one-periodic wave (6.18) degenerates to the one-soliton solution (6.14) under the limit ℘→ 0, we first

expand the periodic function ϑ(ξ, τ) in the form of

ϑ(ξ, τ) = 1 +
(
e2πiξ + e−2πiξ

)
℘ +
(
e4πiξ + e−4πiξ

)
℘4 + · · · . (6.42)

Using the transformation (6.35), one has

ϑ(ξ, τ) = 1 + eξ̂ +
(
e−ξ̂ + e2̂ξ

)
℘2 +

(
e−2̂ξ + e3̂ξ

)
℘6 + · · · → 1 + eξ̂, when ℘→ 0,

ξ̂ = 2πiξ − πτ = µx + νy + 2πiωt + c. (6.43)

Combining Eqs.(6.41) and (6.43), one deduces that

ξ̂ → µx + νy − (h1µ
3 + h3µ + h4ν + h5µ

−1ν2)t + c, when ℘→ 0,

2πiξ → η + πτ, when ℘→ 0. (6.44)
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With the aid of Eqs.(6.43) and (6.44), one can obtain

ϑ(ξ)→ 1 + eη, when ℘→ 0. (6.45)

From above, we conclude that the one-periodic solution (6.18) just converges to the one-soliton solution (6.14) as the

amplitude ℘→ 0. �

Theorem 6.6. If (ω1,ω2, u0, δ)T is a solution of the system (6.26) for the two-periodic wave solution (6.25), we take

ki =
µi

2πi
, li =

νi

2πi
, εi =

ci + πτi j

2πi
, τ12 =

A12

2πi
, i = 1, 2, (6.46)

where µi, νi, ci, i = 1, 2, and A12 are given in Eq.(6.15). Then we have the following asymptotic relations

u0 → 0, δ→ 0, 2πiξi → ηi + πτi j, i = 1, 2,

ϑ(ξ1, ξ2, τ )→ 1 + eη1 + eη2 + eη1+η2+A12 , when ℘1, ℘2 → 0. (6.47)

It implies that the two-periodic solution (6.25) converges to the two-soliton solution (6.15) under a small amplitude limit,

that is (u, ℘1, ℘2)→ (u1, 0, 0).

Proof. The proof is similar to the one of Theorem 6.5. �

7. Conclusions and discussions

In this paper, under the conditions (1.12), we have systematically researched integrability features of the generalized vc-

KP equation (1.1), which is an important model of various nonlinear real situations in hydrodynamics, plasma physics

and some other nonlinear science when the inhomogeneities of media and nonuniformities of boundaries are taken into

consideration. Using the properties of the binary Bell polynomials, we systematically construct the bilinear representation,

Bäcklund transformation, Lax pair and Darboux covariant Lax pair, respectively, which can be reduced to the ones of

several integrable equations such as KdV (1.2), KP (1.3), cylindrical KdV (1.4), cylindrical KP and generalized cylindrical

KP (1.5) equations etc. Based on its Lax equation, the infinite conservation laws of the equation also can be constructed.

Using the bilinear formula and the recent results in Ref. [51, 52], we have present the soliton solutions and Riemann theta

function periodic wave solutions of the vc-KP equation (1.1). And we are also able to choose different parameters and

functions to obtain some solutions, and also analyze their graphics in Figures 1-4 and 5-8, respectively. Finally, a limiting

procedure is presented to analyze in detail, the relations between the periodic wave solutions and soliton solutions. In

conclusion, the generalized vc-KP equation (1.1) is completely integrable under the conditions (1.12) in the sense that it

admits bilinear Bäcklund transformation, Lax pair and infinite conservation laws. And the integrable constraint conditions

(1.12) on the variable coefficients can be naturally found in the procedure of applying binary Bell polynomials. The results

presented in this paper may provide further evidence of structures and complete integrability of these equations.
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Appendix A: Multidimensional Bell polynomials

In the following, we simply recall some necessary notations on multidimensional binary Bell polynomials, for details refer,

for instance, to Lembert and Gilson’s work [8-10].

Suppose f= f (x1, x2, . . . , xn) be a multi-variables function in C∞, the expression as follows

Yn1x1 ,...,nr xr ( f ) ≡ Yn1,...,nr ( fl1 x1
, . . . , flr xr ) = e− f ∂n1

x1
· · · ∂nr

xr
e f , (A.1)

is called muliti-dimensional Bell polynomials, where fl1 x1 ,...,lr xr = ∂
l1
x1
· · · ∂lr

xr
(0 ≤ li ≤ ni, i = 1, 2, . . . , r). Taking n = 1, Bell

polynomials are presented as follows

Ynx( f ) ≡ Yn( f1, . . . , fn) =
∑ n!

s1! · · · sn!(1!)s1 · · · (n!)sn
f

s1

1
· · · f sn

n , n =

n∑

k=1

ksk,

Yx( f ) = fx, Y2x( f ) = f2x + f 2
x , Y3x( f ) = f3x + 3 fx f2x + f 3

x , · · · . (A.2)

To make the link between the Bell polynomials and the Hirota D-operator, the multi-dimensional binary Bell polyno-

mials can be defined as follows [9]

Yn1x1 ,...,nr xr (υ, ω) = Yn1,...,nr ( f )
∣∣∣

fl1 x1 ,...,lr xr =




υl1 x1 ,...,lr xr , l1 + · · · + lr is odd,

ωl1 x1 ,...,lr xr , l1 + · · · + lr is even,

(A.3)

Yx(υ, ω) = υx, Y2x(υ, ω) = υ2
x + ω2x, Yx,t(υ, ω) = υxυt + ωxt, Y3x(υ, ω) = υ3x + 3υxω2x + υ

3
x, · · · , (A.4)

which inherit the easily recognizable partial structure of the Bell polynomials.

To find the relationship of Y -polynomials and the Hirota bilinear equation D
n1
x1
· · ·Dnr

x1
F ·G [4], one should investigate

the following identity[9]

Yn1 x1 ,...,nr xr
(υ = ln F/G, ω = ln FG) = (FG)−1Dn1

x1
· · ·Dnr

xr
F ·G, (A.5)

where F and G are both the functions of x and t. In case of F = G, Eq. (A.5) can be changed into

F−2Dn1
x1
· · ·Dnr

xr
F · F = Y (0, q = 2 ln F) =



0, n1 + · · · + nr is odd,

Pn1 x1 ,...,nr xr (q), n1 + · · · + nr is even.

(A.6)

By using (A.6) and the following structure

P2x(q) = q2x, Px,t(q) = qxt , P4x(q) = q4x + 3q2
2x , P6x(q) = q6x + 15q2xq4x + 15q3

2x , . . . . (A.7)

one can characterize P-polynomials. The binary Bell polynomials Yn1x1 ,...,nr xr (υ, ω) can be rewritten as P- and Y-polynomials

(FG)−1Dn1
x1
· · ·Dnr

xr
F ·G = Yn1x1 ,...,nr xr (υ, ω)|υ=ln F/G,ω=ln FG

= Yn1x1 ,...,nr xr (υ, υ + q)|υ=ln F/G,ω=ln FG

=
∑

n1+···+nr=even

n1∑

l1=0

· · ·
nr∑

lr=0

r∏

i=0

(
ni

li

)
Pl1 x1 ,...,lr xr (q)Y(n1−l1)x1 ,...,(nr−lr)xr (υ). (A.8)
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Multidimensional Bell polynomials admits the following key property

Yn1x1 ,...,nr xr (υ)|υ=lnψ = ψn1 x1 ,...,nr xr/ψ. (A.9)

It implies that the Hopf-Cole transformation υ = lnψ, that is, ψ = F/G is a linear transformation of Yn1 x1 ,...,nr xr (υ, ω). By

using (A.8) and (A.9), one can then construct the Lax system of the nonlinear equations.

Appendix B: Riemann theta function periodic wave

Based on the results in Ref. [51], we consider one-periodic wave solutions of nonlinear evolution equation (NLEE). Then

Riemann theta function reduces the following Fourier series in n

ϑ(ξ, τ) =

+∞∑

n=−∞
eπin2τ+2πinξ, (B.1)

where the phase variable ξ = kx1 + lx2 + · · · + ρxN + ωt + ε and the parameter Im(τ) > 0.

Theorem A.(Ref.[51]) Assuming that ϑ(ξ, τ) is a Riemann theta function for N = 1 with ξ = kx1 + lx2 + · · · + ρxN +ωt + ε

and k, l, · · · , ρ, ω, ε satisfy the following system

∞∑

n=−∞
L (4nπik, 4nπil, · · · , 4nπiρ, 4nπiω) e2n2πiτ = 0, (B.2a)

∞∑

n=−∞
L (2πi(2n − 1)k, 2πi(2n − 1)l, · · · , 2πi(2n − 1)ρ, 2πi(2n − 1)ω) e(2n2−2n+1)πiτ = 0. (B.2b)

Then the following expression

u = u0 + a∂n
Λ lnϑ(ξ), (B.3)

is the one-periodic wave solution of the NLEE.

Let us now consider the case when N=2, the Riemann theta function takes the form of

ϑ(ξ, τ) = ϑ(ξ1, ξ2, τ) =
∑

n∈Z2

eπi〈τn,n〉+2πi〈ξ,n〉, (B.4)

where n = (n1, n2)T ∈ Z2, ξ = (ξ1, ξ2) ∈ C2, ξi = ki x1 + li x2 + · · · + ρi xN + ωit + εi, i = 1, 2, and −iτ is a positive definite

whose real-valued symmetric 2 × 2 matrix is

τ =



τ11 τ12

τ12 τ22


, Im(τ11) > 0, Im(τ22) > 0, τ11τ22 − τ2

12 < 0. (B.5)

Theorem B.([51]) Assuming that ϑ(ξ1, ξ2, τ) is one Riemann theta function with N = 2, ξi = ki x1 + li x2 + · · · + ρi xN +ωit +

εi, i = 1, 2 and ki, li, · · · , ρi, ωi, εi (i = 1, 2) satisfy the following system

∑

n∈Z2

L (2πi〈2n − θi, k〉, 2πi〈2n − θi, l〉, · · · , 2πi〈2n − θi, ρ〉, 2πi〈2n − θi,ω〉) eπi[〈τ (n−θi),n−θi〉+〈τn,n〉] = 0, (C.1)

where θi = (θ1
i , θ

2
i )T , θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 = (0, 1)T , θ4 = (1, 1)T , i = 1, 2, 3, 4. Then the following expression

u = u0 + a∂n
Λ lnϑ(ξ1, ξ2), (C.2)

is the two-periodic wave solution of the NLEE.

Finally, we present a key proposition to investigate the asymptotic property of periodic waves. We write the system

(6.24) into power series of 

a11 a12

a21 a22


= A0 + A1℘ + A2℘

2 + · · · , (D.1)
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ω

c


= X0 + X1℘ + X2℘

2 + · · · , (D.2)



b1

b2


= B0 + B1℘ + B2℘

2 + · · · . (D.3)

Substituting Eqs.(D.1)-(D.3) into Eq.(6.24) leads to the following recursion relations

A0X0 = B0, A0Xn + A1Xn−1 + · · · + AnX0 = Bn, n ≥ 1, n ∈ N, (D.4)

form which we then recursively get each vector Xi, i = 0, 1, · · · .

Proposition C. ([51]) Assuming that the matrix A0 is reversible, we can obtain

X0 = A−1
0 B0, Xn = A−1

0

Bn −
n∑

i=1

AiBn−1

 , n ≥ 1, n ∈ N. (D.5)

If the matrix A0 and A1 are not inverse,

A0 =



0 1

0 0


, A1 =



0 0

−8π2k 2


, (D.6)

we can obtain

X0 =

(
2B

(1)
0
−B

(2)
1

8π2k
B

(1)

0

)T
, X1 =

(
2B

(1)
1
−(B2−A2X0 )(2)

8π2k
B

(1)

1

)T
, · · · ,

Xn =

(
2(Bn+1−

∑n
i=2

Ai Xn−i)
(1)−(Bn+1−

∑n+1
i=2

AiXn+1−i)
(2)

8π2k
,
(
Bn+1 −

∑n
i=2 AiXn−i

)(1)

)T
, n ≥ 2, n ∈ N, (D.7)

where α(1) and α(2) denote the first and second component of a two-dimensional vector α, respectively.
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