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Abstract—Robots used in manufacturing today are tailored
to their tasks by system integration based on expert knowledge
concerning both production and machine control. For upcom-
ing new generations of even more flexible robot solutions, in
applications such as dexterous assembly, the robot setup and
programming gets even more challenging. Reuse of solutions in
terms of parameters, controls, process tuning, and of software
modules in general then gets increasingly important.

There has been valuable progress within reuse of automation
solutions when machines comply with standards and behave
according to nominal models. However, more flexible robots
with sensor-based manipulation skills and cognitive functions
for human interaction are far too complex to manage, and
solutions are rarely reusable since knowledge is either implicit in
imperative software or not captured in machine readable form.

We propose techniques that build on existing knowledge by
converting structured data into an RDF-based knowledge base.
By enhancements of industrial control systems and available
engineering tools, such knowledge can be gradually extended as
part of the interaction during the definition of the robot task.

I. INTRODUCTION

Productivity in manufacturing is the basis for competitive-

ness, and thereby the basis for developments and businesses

within and around manufacturing systems. Manufacturing,

being the transformation of resources into products that meet

market needs, is the key to our wealth, now and in the future

when those resources are increasingly recycled and scarce.

In other words, on an overall level, to live well we have to

manufacture well.

The need for productivity clearly implies the need for

performance. In long-batch large-volume production, high-

performance motions and processes can be achieved by ex-

tensive engineering, leading to for instance fixed automa-

tion or special purpose machines. Today, however, the other

cornerstone of productivity is flexibility, which is to meet

variations in products (customizations, change of suppliers,

etc.), processes (environmental changes, etc.), and resources

(continual improvements of equipment, lowering machine

costs, etc.). For the combination of flexibility and performance,

in manufacturing just as in software and control, a model-

based approach is appropriate.

A. Model-based system integration

With the aim of facilitating system integration and to make

system integration solutions reusable, modeling for automation

systems has been subject to extensive work and standard-

ization, for instance according to AutomationML that has a

basic structure for products, processes and resources [1], [2].

However, while such models facilitate transfer of production

setup data, the approach is classical and limited in the sense

that systems are engineered based on the nominal/desired

behavior, with variations during production taken care of

by sensing and actions that are engineered to manage those

variations. For instance, variations in the location of a part can

be sensed (e.g., by a touch sensor or via vision), or motions can

be designed to physically cope with the expected variations.

The necessary adjustments during startup of a new produc-

tion line can of course be extensive and costly, and that is also

why automation is not yet productive in one-off (or very short

series) production. Problems to consider include:

• Competing stakeholders and technology providers try to

make customers dependent on their specific solutions, and

incompatibilities follow when there are business reason

for going outside standards.

• When standards are appropriate or enforced by customers

or legal aspects, they are typically too slow in adopting

new technologies.

• Even when standards apply and vendors agree, there are

human errors and product generations that make things

incompatible, typically in a way that no single component

can be pinpointed as the failing one.

The situation is particularly difficult in automation due to

the large number of heterogeneous techniques that are to be

integrated, and robots for assembly and machining are perhaps

the most difficult case due to uncertainties in combination

with force interaction. Thus, efficient engineering works within

business units or stakeholder organizations, but for the overall

system integration we have to realize that a different way

of thinking is crucial. Since part of the thinking has to be

embedded into the systems, we have arrived to the need for

cognitive systems.
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B. Cognitive robots in manufacturing

In the EU FP7 work program [3] that is the basis for our

projects, Section 2.4 (p 27) about Challenge 2 on “Cognitive

Systems, Interaction, Robotics” states:

Engineering systems with the capability to sense

and understand an unstructured environment is a

challenge which goes beyond today’s systems engi-

neering paradigm. Present day systems engineering

relies on specifying every eventuality a system will

have to cope with in the execution of its task(s), and

programming the appropriate response in each case.

Challenge 2 aims to extend systems engineering

to the design of systems that can carry out useful

tasks ... in circumstances that were not planned for

explicitly at design time.

Research and development efforts should aim at

generating actual design principles. They will con-

tribute to establishing scientific foundations for such

principles. Alternatively, they may aim to achieve

significant engineering progress, e.g. through inte-

gration.

The anticipated approaches can of course be seen as extensions

of model-driven systems engineering, with more dynamism

(design subject to change during system operation) and flexible

definitions of what is data and what is meta-data. Nevertheless,

the quote very well captures the challenges of our work, and

it means we need to bring semantics into system integration

such that not only data is structured into information, but also

that there are machine readable definitions of the meaning of

information. That forms what we refer to as knowledge, which

should be declarative rather than normative.

Robots comprise the key challenge due to their flexibility

(not designed for a specific application), their compliance due

to the dexterous mechanical design (e.g. compared to CNC

machines), and their motion deviations when process forces

are present (e.g. during assembly and machining). The nominal

models (such as inverse kinematics) only covers a small part

of the information needed for productivity in manufacturing.

Robots at manual workplaces, in close interaction with humans

that have a variety of expectations on what a robot can do,

make the cognitive approach even more tractable.

Today, most knowledge about how to deal with uncertainties

during setup and programming resides in the head of system

integrators and advanced users. Reuse and support for less

advanced users would require knowledge to be acquired and

utilized within the system and its components. Many such

attempts have been proposed over the years, but it is important

to take into consideration:

• Experienced system integrators and expert users are very

busy persons that make a profit out of their knowledge,

and they will of course not spend time on entering their

knowledge into some fantastic expert system unless they

get immediate return on investment.

• Tasks today describe the nominal case, while manage-

ment of variations are implicit in terms of the sensor data

processing it entails. To enable reuse, the use of sensing

(and motion settings that contribute to robustness) need to

be made explicit in, telling “why” and “when” in addition

to the standard “how”.

• Basically production systems today do rarely fail, because

when they did during startup there were the experts fixing

it, which means making the system robust in accordance

with available human experiences. Hence, a cognitive

approach should gather information from failure situation

and how they were fixed.

• Solutions have to match business models (should be

profitable to use, from week one), responsibilities (who

are to be contacted in each error situation), safety (can

certification be done easily when needed), and IPR issues

(who owns the obtained knowledge).

A widely applicable approach considering these items such

that it builds on existing tools and practices, but enables

cognitive functions to be added, is the topic of this paper.

C. Approach and methodology

Cognitive robotics is still in its beginning with many fun-

damental difficulties when it comes to autonomous behaviors

and human interaction in fully unstructured environments [4],

[5]. To reach industrial use within a reasonable number of

years, our approach is to do full scale prototyping to confront

scientific claims with real application settings. As a step in

that direction, industrial collaboration with relevant laboratory

setups forms our methodology.

We start with actual data from description of systems and

processes (but not with predefined models), then making use of

whatever structure there is (e.g., from XML schemas and from

data types that are part of component interfaces) but converting

it into the RDF-based triple store [6]. By linking the data

together based on the relation, that RDF data forms graphs that

we also refer to in terms of predicate argument structures. That

also permits graphs to be combined in new ways over Internet

connections [7], and representation of semantic information

is supported, just like the semantic web but now focused on

robotics in manufacturing. The predicate-argument structure is

also the main representation in natural language understanding,

which we are also interested in for the human-robot interaction

later on.

Based on actually obtained data, structure and knowledge

will be inferred. For building the actual systems, considering

robotics research being a small domain compared to networked

software in general, it is crucial to build systems based on

available standards and (freely) available software packages.

The aim is then to create a portable system that seamlessly

integrate with current engineering practices and facilitates

stepwise refinement of knowledge, ranging from low-level

motion control with adaptive functions and up to interactive

task definitions including explicit models of uncertainties and

the intention of motions in the context of manufacturing.



II. PRELIMINARIES

With a goal of easy and productive usage of robots, we need

to care about system integration and robot programming steps

to reach that goal, but software and feedback-control difficul-

ties should be abstracted away from production engineering.

While that is the aim of the engineering tools, we are far away

from that situation today. This section presents some of the

overall issues that should be understood before an integrated

and practically applicable approach can be developed, and it

also contains references to related work.

A. Robot systems engineering

Since the start, some 50 years ago, of the domain of

robotics, large amounts of useful robotics functionalities have

been developed: controllers, planners, kinematics and dynam-

ics transformations, estimation and learning algorithms, con-

strained and multi-objective optimization, etc. An impressive

amount of human ingenuity, knowledge and experience has

found its way into many millions of lines of robotics software

code, integrating developments and insights from various “sup-

porting” domains, such as mechatronics, systems and control

theory, computer science, machine learning, (probabilistic)

logic, or computer vision.

The bad news, however, is that this steady growth of useful

functionalities has outpaced the speed with which developers

can use all those functionalities effectively, in ever more

complex robot systems. A major bottleneck is the amount

of knowledge that human developers have to master, before

they can integrate components, in such a way that they

can work together in the first place, and be exploited to

their full potential in the second place. As part of so called

Model-Driven Engineering (MDE), software functions are put

into composable components that should be designed such

that “pure” knowledge is separated from application-specific

configuration in particular contexts.

The trend in MDE is to generalize by defining (and stan-

dardizing) meta-data descriptions, and to improve efficiency

by better engineering principles and more powerful software-

development tools. Despite that, the closed-world mindset

remains, for instance in XML schemas that define what meta

data (or model data) is correct. However, things change, and

so do meta-data and agreed interfaces. Therefore, the semantic

web techniques provide a better basis for the composition and

usage of components, which means integration of knowledge

in an incremental manner that can stand inconsistencies and

human preferences. That is the aforementioned Open World

Assumption (OWA), which (at Page 11) in [8] is formulated

as :

An open world is one in which we must assume

at any time that new information could come to

light, and we may draw no conclusions that rely on

assuming that the information available at any one

point is all the information available.

Wikipedia provides a similar formulation according to

(http://en.wikipedia.org/wiki/Open world assumption):

Heuristically, the open world assumption applies

when we represent knowledge within a system as we

discover it, and where we cannot guarantee that we

have discovered or will discover complete informa-

tion. In the OWA, statements about knowledge that

are not included in or inferred from the knowledge

explicitly recorded in the system may be considered

unknown, rather than wrong or false.

Whereas MDE and software engineering teaches design first,

the OWA permits a data-first approach, and then gradual

introduction of the modeling concepts that actually appear. To

connect to actual engineering principles, the approach taken

here is to have components with self-descriptive interfaces

that also can be embedded in physical devices for real-time

operation, to store interface descriptions as initial knowledge

(see next subsection), and to support semantic tagging (grad-

ually by users) that is then stored in the knowledge base. That

way closed-world components can meet the open-world usage,

and loose coupling between subsystems is promoted. The self-

descriptive interfaces must use semantic tags that are described

in an ontology.

B. Obtaining initial knowledge

A large amount of information about products, equipment

(and other resources) and production processes, is available

in terms of documentation, programs, configurations or data-

sheets for devices. That information is mainly in text (or

available software can convert from native formats to text with

structure), and to separate structure from content it is common

to use XML. Clearly, it is useful to have some basic structure

for the fundamental definitions that even competitors can agree

on, which is what an ontology is useful for as explored in

our earlier work [9]. Such an ontology should be small, not

covering parts that competitors will not agree on anyway, and

it should not be normative in case of modeling alternatives.

Ontology data that fulfills certain requirements on consistency

and completeness can also be used to generate compilers and

for compilation into imperative code definitions [10].

Based on these insights, our project Rosetta started with

implementation of a Knowledge Integration Framework (KIF)

built on mainstream semantic web standards such as RDF,

and including transformation from text to knowledge-base data

[11]. Primary source documents are in the AutomationML

XML format. During import of such documents, the infor-

mation is converted to RDF and some basic knowledge about

the separation of products, resources and processes is used

to maintain some basic structure of the knowledge, such that

automation engineers can continue utilizing the information

via the well-known hierarchies (such as instances, system

units, and roles).

Our conversion of the original tree-structured XML doc-

uments into graph-based knowledge (information intercon-

nected with relations and semantic data expressing the mean-

ing) has worked well for a variety of test cases. Therefore,

although much work remains to make it industrially useful and

maintainable, we do not see that part as the main problem. It



Data source #1 Data source #2

Native XML
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Knowledge
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Fig. 1. Harvesting information from XML documents for establishment of
automation knowledge.

should be noted, as indicated in Figure 1 and commented in

[11], data and knowledge sources can be distributed over the

Internet by means of the utilized semantic web techniques and

software packages. The top three remaining issues are:

1) AutomationML (and other sources) is focused on ex-

plicit production plant data, with the task descriptions

(e.g., in terms of state machines, robot programs, and

PLC data) being implicit and difficult to reuse. To

prepare for reusable task descriptions, we need a way

to represent both desired and actual engineering/user

decisions such that it can be captured and gradually

enhanced when things change.

2) Knowledge-based solutions (e.g., to the previous item)

need to be connected to existing engineering tools such

that current practices continue to work, but also such that

new knowledge-based features can be tried out without

major thresholds.

3) Productivity implies performance demands, and in com-

bination with OWA (the Open World Assumption) it

can be concluded that third parties should be able to

extend the sensing and motions control of any robot.

The issue is then how the high-level engineering tools

and knowledge-based techniques can be connected to

the low-level real-time control of physical motions.

The third item also implies that application-specific motion

control should be possible to map back to the user/engineering

level for human interaction, including the case with virtual

control when physical dynamic models are missing. For in-

stance, for visualization in an engineering environment without

a physics engine, force controlled motions can be emulated by

direct commanding of the position variations it is expected to

cope with.

C. Separation of concerns

The lack of reuse of information such as software and

formalized knowledge is a problem in many areas, and since

robotics and automation has to build on tools and principles

from other domains, we better ask ourselves what remedies can

possibly be applied. First of all, keeping the OWA in mind, it

is not about defining one new tool chain (in the open world

you cannot prescribe engineering environments), but portable

reference implementations of compositional solutions can be

useful. Most important is to find simple principles that can

be applied in different environments and for different types of

systems. As confirmed within our earlier FP6 projects RoSta,

SMErobot and PalCom the most central engineering approach

is to keep apart the following concerns [12]:

- Communication defines how agents communicate with

each other.

- Computation defines the implementation of the behavior

of individual agents. It thus determines what is being

communicated.

- Configuration defines the interaction structure, or con-

figuration. It states which agents exist in the system and

which agents can communicate with each other.

- Coordination defines patterns of interaction, i.e., it de-

termines when certain communications take place.

That is also well in line with other published results [13],

[14], [15], although there are variations such as splitting

configuration or treating configuration and coordination in the

same way [16].

The concept of separation of concerns is classic within com-

puter science, but we need practical examples from application

areas. Communication is typically based on connection-based

asynchronous messages, so that is not a major issue. In au-

tomation there is already a good practice about configuration,

which is what is done before the system is put into operation.

Thus: Keep computation and coordination apart.

D. Constraint-based task specification

The constraint-based task specification framework specifies

the relative motion of objects by imposing constraints. To be

able to specify these constraints a so called kinematic chain is

needed, and it consists of two object frames and two feature

frames. The first object frame is usually attached to the object

one wants to manipulate and the second object frame is usually

attached to the robot. The feature frames should be attached

to features on the object to manipulate and on the robot.

They should be chosen in such a way that the task constraints

become as easy as possible to specify.

A kinematic chain should have 6 degrees of freedom, and

they are distributed over the transformations between the

feature and the object frames [17]. These six degrees of free-

dom are represented by χf , the so called feature coordinates.

There might also be uncertainties in the pose between the

previously defined coordinate frames, which is represented by

an additional transformation between each of the previously

mentioned coordinate frames is introduced. These uncertainty

coordinates are denoted χu.



III. EXAMPLE APPLICATIONS AND EXPERIMENTS

The specifics for the following two application examples

(in terms of application context, algorithms, and control im-

plementations) are detailed in other recent publications. The

focus here is to illustrate the task specification and system

integration that we have used to experimentally verify the

targeted semantic approach. A complete description does not

fit into a few pages, but it deserves to be mentioned that all

the proposed concepts (although not yet in a single packaged

system) have been implemented and experimentally verified.

A. Force-controlled assembly

The assembly scenario in this paper is to assemble the

internals of an emergency stop button. An electric breaker

should be snapped into the middle one of five available slots,

and in this case the breaker can be grasped either on its long

or its short sides using a parallel gripper. Optionally, however,

more breakers for additional switching functions (such as

connecting alternative equipment upon the emergency stop)

can be placed in the adjacent slots, and then the grasping in

practice is constrained to the short sides of the breaker. With

the short side contact only, there is a rotational uncertainty

around the axis intersecting the two gripping points, which

can be handled in different ways:

a) All uncertainties in fixtures, feeder locations, grasping,

work-piece variations, and variations between robot in-

dividuals can be analyzed and (for the actual type of

robot at hand) motion specifications in terms of robot

programs can be engineered.

b) If the bottom part is accurately fixed at a known location

relative to the robot, we can make use of product data.

That is, by using angled fingers that grasp on the short

side but touches one long side such that the undesired

rotation would be fixed.

c) Sensor-based motions can be used, which could mean vi-

sion and/or force. While vision would be appropriate for

locating parts, we decided to implement the mounting

by means of force-torque (F/T) control, which permits

an online adaptation during the physical contact and the

F/T sensor can be used to detect when the mounting is

completed (by the force transient from the final snap).

Alternatives a and c were fully implemented (in laboratory

environments) and b will simply be finished just for complete-

ness. The algorithmic aspects including the F/T-control and the

detection of the final snap are detailed in [18]. Alternative b is

a production-suitable way of limiting the uncertainty (physical

solution by means of product-related finger design) avoids the

extensive production engineering of item a, as well as the need

for external sensors of item c (but then without snap feedback).

In the following alternative c implementation, force sensing

is used to resolve these uncertainties, and the motions have

been specified using the constraint-based task specification

methodology (iTaSC) [17]. The assembly task and the object

and feature frames related to it are shown in Figs. 2 and 3,

whereas Fig. 4 shows how the frames are related to the feature

coordinates.

x

y

z

o1

x

y

z
f1

x

y

z

f2

Fig. 2. Illustration of the different
coordinate frames in the assembly
task.

o2

y

z

y

z
f2

zu

Fig. 3. Illustration of the uncer-
tainty coordinate zu between the
two frames f2 and o2.

χfI

χfII

χfIII

q

w

constant

transformation o1 f1

f2o2

Fig. 4. Schematic description of the kinematic chain in the assembly task. w
denotes the world coordinate frame and q denotes the robot joint coordinates.

• Object frame o1 is attached to the box. It is related to the

world coordinate frame by a constant transformation.

• Feature frame f1 is attached to one end of the switch.

The orientation is the same as o1.

• Feature frame f2 has its origin in the same position as

f1, but the orientation is the same as the robot flange

frame.

• Object frame o2 coincides with the robot flange frame.

The feature coordinates χf are divided into three groups

depending on which frames they relate. The coordinates are

χfI = (x, y, z) o1 → f1
χfII = (ϕ, θ, ψ) f1 → f2
χfIII = (−) f2 → o2

The coordinates χfI give the position of the origin of f1
using Cartesian coordinates in o1. χfII describe the rotation

from f1 to f2 using Euler ZYX-angles. χfIII has no feature

coordinates, since the transformation between f2 and o2 is

fix. All feature coordinates were chosen as outputs:

y1 = x y2 = y y3 = z

y4 = ϕ y5 = θ y6 = ψ

Uncertainties in the task include the exact location of the

box and its orientation. They are however resolved using

guarded search motions, i.e., the motion is velocity controlled

in the search direction and stopped when a contact force is

detected. Once contact is made, it is maintained by using force

control, and hence no explicit uncertainty coordinates are used

to model this uncertainty. The exact position of the grasp is

also assumed to be uncertain, and the z-distance from f2 to

o2 (Fig. 3) is therefore modeled as an uncertainty coordinate

zu.



Fig. 5. Interactive testing of the drilling skill with motions constraints
evaluated within the user dialog but in generic external code (as dynamically
loaded Java code) from the knowledge base.

The portability of the motions specifications were success-

fully verified by letting the neighbor robot hold the bottom

part, which corresponds to a dual-arm assembly operation. The

point is, since the iTaSC constraints are declarative with the

property of compositionality, it is well suited as a basis for

specification of motions below the symbolic level and on top

of the actual motion controls of a (set of) specific robot(s). We

then refer to the breaker mounting in terms of a skill SnapFit,

which has been implemented and experimentally verified.

B. Manually guided drilling

While the SnapFit illustrates how declarative (and KIF

suitable) knowledge (being part of what we will refer to as a

skill) can be used to specify the motion and the uncertainties,

the following prototyped drilling example exemplifies other

compositional skill properties such as boundary conditions

(depicted below) and rules for force interaction near singu-

larities (omitted for brevity). The following was implemented

and tested for the PlanarDrilling (Fig 6):

• F/T-control parameters (exposed and semantically tagged

for the KIF as for SnapFit) were set to force-control only

with the tool orientation fixed according to the vertical

drilling orientation.

• As for the SnapFit the F/T-control was accomplished via

an external skill- and motion-level controller.

• The force control was mapped to position interaction

during configuration and task description in ABB Robot-

Studio (ABB-RS, depicted in Fig 5).

• A bounding-box for permitted work-space for the manual

guidance was introduced. That could be from the pro-

duction engineering by selecting boundary conditions for

the skill at hand, or imposed from rules in the KIF and

then extending the description of the skill instance. Based

Fig. 6. Physical testing of the drilling skill with manual guidance (force-
controlled motions) implemented as a real-time extension with 4ms sampling
rate. Boundary conditions are evaluated by calling the corresponding C code.

on the declarative description, either code for real-time

force control or for the ABB-RS interaction control can

be generated.

• The overall coordination permits hand-over from iTaSC

motions to teach-pendant interaction and to explicit mo-

tions according to the robot language. In this case, using

ABB robots, there is always a piece of Rapid code that

represents the skilled motion on the user-programming

level, and this also works with the virtual control as part

of ABB-RS (see Fig 5 with the bounding-box visualized

as a semi-transparent surface to the left around the tool).

Note that the integration with KIF was done such that knowl-

edge about the native properties of the engineering tool (ABB-

RS) is kept on the KIF side, and code extending the ABB-RS

with semantic interactive functions is dynamically generated

and loaded into a JVM that interacts with native ABB-RS

code (in C#) via self-descriptive communication interfaces

([19] with descriptions generated from KIF data). This way,

production knowledge can be separated from engineering tool

design, and reuse is also improved by having configuration,

coordination and computation handled as separate concerns.

IV. BRINGING SEMANTICS INTO ROBOT AUTOMATION

The experiments verified the applicability of having declar-

ative information as the basis for the task and motion de-

scriptions including uncertainties and boundary conditions,

thereby facilitating the reuse of manufacturing solutions also

when products, processes and resources change (within those

stated boundaries). The two main questions now are: Who

will have the reasons to start using such an approach, and

how can initial usage contribute to gradual improvement of

the knowledge? The following proposes a possible solution

based on integrating semantic level information into existing

engineering practices and tools.



A. Skills

A key concept for the highly desired reuse of robot pro-

grams is that of so called Skills. At a first glance skills can

be perceived as capabilities of devices or equipment, provided

by abstract services that also can be compositions of lower

level skills/capabilities [20]. However, for robots, we found

that to be just a special case of a skill concept that better

promotes reuse. The reason is that robots can be comparably

inaccurate machines that (like humans but opposed to CNC

machines) need to adapt their motions to the task and to the

environment, and to also support interaction with humans the

knowledge how that adaptation is done need to be explicit.

At the same time, that knowledge also needs to be explicit

with respect to its dependencies and its properties (e.g.,

concerning its usage in the control systems for productive

work). To that end, and based on the separation of concerns

presented earlier, we bring forward the definitions of a Skill by

putting it into the context of hierarchical control as configured

coordination of actions/motions, which we found could be

accomplished in a coherent way on all levels. Specifically:

Task:

It was determined that the task level should be based

on symbolic information with compositional/additive

entities. Both the desired (abstract) task and the

actual (executable) task should be explicitly repre-

sented. Sharing, reuse and enhancement of knowl-

edge can be facilitated by a knowledge-integration

framework that interacts with the engineering and

operator interaction in a mixed-initiative manner.

Skill:

The coordinating skill level should accept robot in-

dependent symbolic specifications (including uncer-

tainties) of actions and motions. By means of com-

putations (generic solvers and code generated from

the symbolic level) and coordination (of real-time

interaction with the motion level), the robot specific

parts are synthesized such that motion specifications

get reusable. The same applies to perception skills.

Motion:

The combination of proprietary motion control (op-

timized for the robot and key applications) and

external control was shown to provide the desired

combination of flexibility and performance. Self-

descriptive interconnections with the skill and task

levels promote reuse of sensor-based motions.

The constraint-based task specification methodology

(iTaSC) [17] is a skill-suitable general framework that

makes it easy to algorithmically incorporate multiple sensors,

geometric uncertainties and to handle both redundant

manipulators and redundant tasks. Note that in the solution

approach b for the implementation for the SnapFit skill above,

the geometries imply that multiple breakers no longer can be

placed in any-order [21], but have to be placed sequentially

with the supporting side of the fingers on the free side.

Thus, low-level physical aspects relate to high-level symbolic

Fig. 7. The SnapFit state machine as an SFC

information; this is about knowledge integration not to be

confused with the common hierarchical control systems.

The SnapFit application example shows that not only high-

level knowledge (such as an assembly graph) and reusable

motion specifications (such as those based on iTaSC) are

needed, but also the real-time motion control that combines

microsecond latencies with semantic information about its

interfaces, parameters and properties. The benefit of having

coordination as a separate concern was experienced in the

SnapFit example.

An initial implementation using Stateflow was made as it

is an integrated Matlab tool. Due to the tight connection with

computations as done in Matlab however, all variables need to

have predefined sizes, which limited reuse. It is further on dif-

ficult to export the state machines in some appropriate format

for storage in the KIF-server, and the separation between the

state machine and the rest of the program is not very clear.

An alternative to implementing the state machine was done

by separating it totally from the control computations, by

replacing it with input and output ports communicating via a

real-time network connection [19]. The coordination in terms

of a state machine now being a separate concern, permitted

an implementation based on SFC as in AutomationML (or

JGrafChart, a Java based graphical SFC implementation). A

screenshot of the used state machine for the SnapFit is shown

in Fig 7.

Note that the SFC above expresses the nominal task in

an executable manner and without all possible error situa-

tion. Since application errors are expected to be unexpected

(otherwise they would be taken care of already), we need a

compositional meta-level description that can be queried via

the KIF upon operator interaction concerning the error. That

is what our RDF-based implementation is facilitating; Fig 8

shows the KIF-level representation that is more suitable for

error analysis.



Fig. 8. Finding the transition and the guard using KIF/RDF predicates, which
are represented semantically such that it provides meaning to an operator
reporting an error.
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Fig. 10. The Knowledge Integration Framework (KIF) gradually improving
the Knowledge Base (KB) by online connections to interactive users.

B. Knowledge-based robot programming

As indicated in the application examples, we keep the

established robot programming tools, which in addition to

the added KIF also maintains its connection to the native

control system (Fig 9). That is perfectly in line with the

configuration concern, but semantic tagging is needed for the

native connection via KIF. The Task Execution part added

contains iTaSC and extended control functions.

It is commonly believed that tool support for knowledge

integration may facilitate more flexible robot programming

and systems integration and thereby support the use of robots

in one-off or short series manufacturing. The experiences

reported above support that belief in principle, but the two

main questions (reasons to start and gradual improvement)

posed at the beginning of this section need to have good

answers.

Starting to use knowledge-based features requires those

features to be added on the back of the existing tools. The

reason is that changing tool-sets for engineering is too costly

for the user, and a technology provider has no business reasons

for spend resources on vendor-independent solution. Hence,

we would like the developed ABB-RS extensions to be freely

available including source code. The new business opportunity

associated with the values of obtained or learned knowledge

we leave to industry. The presented way of obtaining initial

knowledge (automatically from XML documents), and the

seamless integration is ABB-RS, motivates the initial usage

among the ABB customers.

Gradual improvement of knowledge (which similar to an

induction proof in mathematics will lead to extensive use)

is accomplished by extending the instance hierarchy of the

engineering tool with popup menus for querying KIF, which

typically includes the registration of available instances (such

as work-pieces and selected type of robot) and obtaining

suggestions (such as an alternative choice of gripper) that

have been inferred from KIF and the available knowledge. The

user always stays in charge for selecting the most appropriate

option, and when doing so new knowledge is generated. Also

when no useful answer can be suggested by the system,

new knowledge (about what information that is missing) is

generated, and so on as depicted in Fig reffig:data2info.

The resulting in-process mixed-initiative integration of KIF

with the engineering tool can now be summarized as:

• Reasoning on the meta level will include also ”why” and

”how”, in addition to the standard ”what”. By linking and

storing such data, knowledge is created.

• The connection with engineering tools have to be inte-

grated behind the scenes such that complexity is hidden.

Interactivity and online usage of KIF is important. If the

knowledge base can initiate a dialog about a potential

issue that the user is unaware of.

• The networked data interfaces facilitate spreading and

keeping data consistent across an organization or between

organizations.

– Use reasoning and meta-level knowledge to deter-

mine if an action may be affected by, or possibly in

conflict with, earlier decision made by another party.

– Help engineers by informing them about previous

work that may affect their work, but that they may

not be aware of. That is applicable both to purely

technical details and standards/safety aspects.

• Another possibility is to let local system integration

contribute to knowledge transfer that has a value outside

the organization.

A special feature of our implementation (not detailed here for

brevity) is that only a small part is dependent on the specific

version of the engineering tools, which means that also the

knowledge-based support for reuse is reusable.



V. CONCLUSIONS

System integration still is a challenge in large-scale man-

ufacturing and traditional automation using machines that

perform according to normative models, but progress was

made in standardization (e.g., of interfaces, PLC programs,

and plant descriptions), modularization (e.g., by self-contained

units including processing and standard network interfaces)

and in engineering tools (supporting both vertical and hori-

zontal integration). Skilled technicians are still required for

the integration work, in which the closed-world assumption

applies. The closed-world assumption is a simplification that

promotes efficiency during development of specific tools and

components, as carried out by a variety of stakeholders using

state of the art methods such as model-driven engineering.

Motivated by the needs in small-scale manufacturing and by

the aim for reuse of solutions and knowledge in applications

such as assembly and machining, in which the deviations be-

tween actual and modeled behavior require human know-how,

it was found that system integration also should work under

open-world assumptions. Similar to Internet content, which is

practically unlimited and not complying with common defini-

tions except for some structure of meta-data and underlying

protocols, the desire to share (some, not beforehand known)

information and knowledge calls for a semantic approach.

That is, data and information can get meaning in the context

of the (always different) robot user. Therefore, the open-

world assumption applies to the integration of future agile

manufacturing systems, including robots performing sensor-

based motions in semi-structured uncertain environments.

The practical development of systems should thus be based

on techniques that already have proved successful on the

market, and extensions should be designed to promote usage

of third party solutions. On each level of control, there will

typically be a closed and an open part, at large coinciding

with native/proprietary subsystems and generic/open-source

extension respectively. Access to, and ownership of, acquired

or learned knowledge is a non-technical issue that remains

to be investigated. The developed prototype systems verify

the feasibility of the proposed concepts, which we claim

pave the way for system integration with versatile robots in

the upcoming open-world era. The described and prototyped

technique with piggybacking a semantic-level triple-store to

existing engineering tools is believed to be new.

ACKNOWLEDGMENT

The research leading to these results has received fund-

ing from the European Union’s seventh framework program

(FP7/2007-2013) under grant agreements #230902 (Rosetta:

RObot control for Skilled ExecuTion of Tasks in natural

interaction with humans; based on Autonomy, cumulative

knowledge and learning) and #258769 (COMET: Plug-and-

produce COmponents and METhods for adaptive control of

industrial robots enabling cost effective, high precision man-

ufacturing in factories of the future).

REFERENCES

[1] AutomationML, “AutomationML specification. Part 1 – Architecture and
general requirements,” AutomationML Group, Tech. Rep., January 2009.

[2] R. Drath, Ed., Datenaustausch in der Anlagenplanung mit Automa-

tionML. Integration von CAEX, PLCopen, XML und COLLADA.
Springer, 2010.

[3] European Commission, “FP7 cooperation work programme: Information
and Communication Technologies,” ftp://ftp.cordis.europa.eu/pub/fp7/
docs/wp/cooperation/ict/c wp 201001 en.pdf, July 2010.

[4] N. Hawes, J. L. Wyatt, M. Sridharan, H. Jacobsson, R. Dearden,
A. Sloman, and G.-J. Kruijff, Architecture and Representations, ser.
Cognitive Systems Monographs. Springer Berlin Heidelberg, April
2010, vol. 8, pp. 51–93.

[5] N. Hawes, M. Zillich, and P. Jensfelt, Lessons Learnt from Scenario-

Based Integration, ser. Cognitive Systems Monographs. Springer Berlin
Heidelberg, April 2010, vol. 8, pp. 423–438.

[6] RDF, “RDF/XML syntax specification,” http://www.w3.org/TR/
rdf-syntax-grammar/, February 2004.

[7] E. G. da Silva, L. F. Pires, and M. van Sinderen, “Towards runtime
discovery, selection and composition of semantic services,” Computer

Communications, vol. 34, no. 2, pp. 159–168, 2011.
[8] D. Allemang and J. Hendler, Semantic Web for the Working Ontologist;

Effective Modeling in RDFS and OWL. Morgan Kaufmann, 2008.
[9] J. Malec, A. Nilsson, K. Nilsson, and S. Nowaczyk, “Knowledge-based

reconfiguration of automation systems.” IEEE Press, 2007, pp.
170–175. [Online]. Available: http://dx.doi.org/10.1109/COASE.2007.
4341829

[10] A. Nilsson, R. Muradore, K. Nilsson, and P. Fiorini, “Ontology for
Robotics: a Roadmap,” in ICAR: 2009 14th International Conference

on Advanced Robotics, vols 1 and 2. IEEE, 2009, pp. 291–296.
[11] J. Persson, A. Gallois, A. Björkelund, L. Hafdell, M. Haage, J. Malec,

K. Nilsson, and P. Nugues, “A knowledge integration framework for
robotics,” in ISR/ROBOTIK 2010 : proceedings for the joint conference

of ISR 2010 (41st International Symposium on Robotics) and ROBOTIK

2010 (6th German Conference on Robotics), 2010.
[12] M. Radestock and S. Eisenbach, “Coordination in evolving systems,” in

Trends in Distributed Systems – CORBA and Beyond. Springer-Verlag,
1996, pp. 162–176.

[13] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Commun. ACM, vol. 35, no. 2, pp. 97–107, 1992.

[14] J. L. M. Lastra and I. M. Delamer, “Semantic web services in factory
automation: Fundamental insights and research roadmap,” IEEE Trans.

Ind. Informatics, vol. 2, pp. 1–11, 2006.
[15] I. Delamer and J. Lastra, “Loosely-coupled automation systems using

device-level soa,” in Industrial Informatics, 2007 5th IEEE International

Conference on, vol. 2, June 2007, pp. 743 –748.
[16] L. Andrade, J. L. Fiadeiro, J. Gouveia, and G. Koutsoukos, “Separat-

ing computation, coordination and configuration,” Journal of Software

Maintenance, vol. 14, no. 5, pp. 353–369, 2002.
[17] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
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