
On the Integrity and
Trustworthiness of web
produced data
Luís A. Maia
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciência de Computadores

2013

Orientador
Professor Doutor Manuel Eduardo Carvalho Duarte Correia, Professor Auxiliar do

Departamento de Computadores, Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Acknowledgments

I would like to express my appreciation for the help of my supervisor in researching

and bringing different perspectives and to thank my family, for their support and

dedication.

3

Abstract

Information Systems have been a key tool for the overall performance improvement of

administrative tasks in academic institutions. While most systems intend to deliver

a paperless environment to each institution it is recurrent that document integrity

and accountability is still relying on traditional methods such as producing physical

documents for signing and archiving. While this method delivers a non-efficient work-

flow and has an effective monetary cost, it is still the common method to provide a

degree of integrity and accountability on the data contained in the databases of the

information systems.

The evaluation of a document signature is not a straight forward process, it requires

the recipient to have a copy of the signers signature for comparison and training

beyond the scope of any office employee training, this leads to a serious compromise on

the trustability of each document integrity and makes the verification based entirely

on the trust of information origin which is not enough to provide non-repudiation

to the institutions. Digitally signed documents provide an interesting solution to

this problem, not only the validation of the document is automated, its integrity

verifiable, but may be implemented in such way that the information contained in such

documents can be directly dematerialized to different information systems without

human intervention allowing cost reduction and leading to faster process workflows.

4

Keywords

Keywords:

• Smartcard

• HSM

• Digitally-signed documents

• Integrity

• Trust

• Long-term archives

5

Acronyms

HSM — Hardware Security Module

XML — Extensible Markup Language

HTML — Hypertext Markup Language

HTTP — Hypertext Protocol

IETF — Internet Engineering Task Force

IP — Internet Protocol

PKI — Public Key Infrastructure

TLS — Transport Layer Security

SSL — Secure Socket Layer

JDK — Java Development Kit

XaDeS - XML Advanced Electronic Signatures

SIGARRA

SGML - Standard Generalized Markup Language

DBMS - Database management system

SQL - Structured Query Language

EUNIS - European University Information Systems

CA - Certificate Authority

I/O - Input/Output

6

Contents

Acknowledgments 2

Abstract 3

Keywords 4

Acronyms 5

List of Tables 10

List of Figures 11

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Features . 3

1.4 Proposal . 5

1.5 Application Domain . 5

1.6 Contributions . 5

1.7 Outline . 7

2 Information system at the University of Porto 8

7

8

2.1 Information System . 8

2.1.1 Database . 9

2.1.2 Document’s Dematerialization 9

2.1.3 Risks to data integrity . 10

2.2 Trust . 11

2.3 Hierarchy and trust . 11

2.3.1 Role attribution as delegation of trust 12

2.3.2 Student Evaluation . 13

2.3.3 Risks in the grading process context 14

3 Technical Background 15

3.1 Public Key Cryptography . 15

3.1.1 Public Key Infrastructure . 16

3.1.2 Digital Certificates . 17

3.1.3 Digital Signatures . 19

3.2 Smart-card . 20

3.2.1 Portuguese National Identity Card 20

3.2.2 University of Porto Smartcard 21

3.2.3 University of Porto Certificates 22

3.3 XML . 22

3.3.1 XML signatures . 22

3.3.2 XML Canonicalization . 23

3.3.2.1 Inclusive and Exclusive canonicalization 26

3.3.3 XMLdsig structure . 27

3.3.4 XaDeS . 29

3.4 Marklogic Database . 32

9

3.5 Signserver . 32

3.6 HSM . 34

4 Comparison with similar systems 36

4.1 University of Murcia e-Government . 36

4.1.1 Security Services . 36

4.1.2 Documentary Management . 37

4.1.3 Client Architectures . 37

4.1.4 Electronic Registry . 38

4.1.5 Electronic Marks Certificate . 39

4.1.6 Analysis of solution . 40

5 Proposal 41

5.1 Document-Oriented Data . 41

5.2 Data persistence . 42

5.3 Document Trust . 42

5.4 Hierarchies and trust delegation . 43

5.5 Grading Documents . 46

5.5.1 Professor Signatures . 46

5.5.2 Institutional Signature . 46

5.5.3 External Timestamp . 47

6 Implementation 48

6.1 Architecture . 48

6.2 User Signatures . 49

6.2.1 Java Applet . 49

6.3 Signserver . 53

10

6.4 Differences with University of Murcia Framework 57

7 Conclusions 58

8 Future Work 60

A XaDeS Signing Module 61

B XaDeS validator Module 67

References 71

List of Tables

3.1 Canonicalization scheme for a XML document 25

11

List of Figures

2.1 Lifecycle of grading record . 13

3.1 Certificate validation in a trust chain 16

3.2 Portuguese Government certification chain 21

3.3 Terena Personal certificates chain . 22

3.4 Linefeed signature mismatch . 24

3.5 Signserver Framework architecture . 33

3.6 LUNA SA solution architecture . 35

4.1 Client Architecture . 38

4.2 Sending an application form . 39

5.1 Document Structure . 43

5.2 Trust delegation diagram . 44

5.3 Delegation hierarchy . 45

6.1 New Information system architecture 48

12

13

Chapter 1

Introduction

The reputation of an organization is an highly important and intangible asset which

plays an important role in the competitive advantage over other organizations[1]. This

is also one of the key elements that is taken into consideration by the University ranking

models[2], thus stimulating the institution’s attractiveness to future applicants and

directly influencing the final prestige of the alumni’s CV.

While the institutional prestige and ranking ascertain the organization’s data as a

trustworthy resource,this by itself is not sufficient and some assurance about its integ-

rity has to be provided by the institution itself in order to protect its trustworthiness

and reputation.

Information produced by and circulating within the universities comes from a multi-

tude of sources, with different trust parties, trust-delegation and information commit-

ments.This poses an effective challenge when establishing policies that protects the

interests of the institution while at the same time providing sufficient accountability

mechanisms to enforce non-repudiation and commitment.

The information systems in Universities tend to be considered more complex than

their counterparts in similar sized commercial organizations [3] and with the massive

amount of data produced by student evaluations and student records, information

assurance from record creation to long-term archive poses a serious challenge that

must be properly addressed.

When establishing the required degree of information assurance [4] to manage the risks

to the institutions reputation, information security plays an important key role[5]. The

information system currently deployed at the University of Porto takes into account

1

CHAPTER 1. INTRODUCTION 2

authentication, authorization and confidentiality but lacks appropriate integrity and

non-repudiation mechanisms and still relies on the inefficient document as a source of

truth for its most crucial data.

After careful analysis and research of the different problems and inefficiencies of the

current approach, a new architecture and process workflows providing stronger and

better guarantees to information integrity across academic information systems overall

is proposed.

1.1 Motivation

While the growth in complexity and functionality being provided by the University of

Porto information system, centralizing every work task in the institution, namely user

management, course management, professor attribution and grading, transformed the

information system from an ad-hoc tool to the source truth for academic records, the

existing systems still rely on the institution blind trust on the data integrity in the

system databases and paper based records.

In order to reassure that a person with special privileges across the infrastructure is not

able to modify or otherwise manipulate parts of the data, a document copy on paper

is produced, requiring traditional physical verification of the document and of the

imprinted signatures or other marks like seals or stamps. This sort of integrity checks

have some costs and pose a few more challenges as to when and how the integrity is

verified, how to verify forgeries and what early mitigation and fraud detection must be

put into place to mitigate this situations. This materialization and dematerialization of

paper based documents to assure integrity is not only error-prone and cost-ineffective

due to human and supplies costs, but it also requires an extraordinary effort on the

maintenance of huge volumes of paper in archives making early mitigation and fraud

detection highly unlikely.

The evolution of information systems to a purely paper-less environment is the en-

visioned path. It would allow for the reduction of costs, a higher degree of free-

dom, speedier workflow and an extra degree of security by providing external entities

the ability to automatically verify document integrity and easier materialization and

dematerialization of documents in and out of different information systems. By

providing new types of digital documents which can be trusted, a scenario where

different institutions can share verifiable documents and directly import them into

CHAPTER 1. INTRODUCTION 3

their own information systems, without human intervention, would not only benefit

the institution but would also provide a useful tool for information sharing across

different institutions.

1.2 Objectives

Huge volumes of documents are produced by academic information systems. While we

can extend our proposals to all the different kinds of documents currently generated by

the system, the main focus are the documents produced during the students grading

process. Due to their transitive nature and to the complexity of implied trust hierarchy

which requires the delegation of trust, creating a trust-chain from the university to

each faculty, and finally to the professors grading the student. By managing to retain

an high level of trust on documents employed in the grading process, the ability to

produce subsets for any kind of document involved in business processes that require a

similar trust chain should be effortless and mainly focused on producing new document

structures that can include the data that needs to be stored.

In this dissertation, we propose an entire subsystem, from the analysis of the implied

structured trust hierarchies already existing in the institution to the development of

the supporting infrastructure, web services, definition of work procedures, document

structures and archival methods.

1.3 Features

The proposed architecture and its implementation touches on the following topics:

• Delegating trust - The process of entrusting an individual or a set of individuals

should retain the non-repudiation property. Since this delegation of trust is not

immutable with time, long-term archive of documents describing this delegations

is required.

• Revoking trust - Trust can be removed from an individual at any time, since a

delegation establish a trust time-frame, revoking trust on an individual requires

an extra document stating that trust is revoked from a specific delegation doc-

ument. Newer document should be able to re-establish trust on the individual.

CHAPTER 1. INTRODUCTION 4

• Mutual Non-repudiation - The institution which accepted the document and

the signer should not be able to challenge a document. An accepted document

automatically binds the document to the author and the institution which had

to verify and accept that the author had the ability to produce such a document.

• Proof of authorship - Documents can be produced in context of a workflow

pertaining to a group, the document must bind a specific author to a document

created in this context.

• Trusted-party commitment to produced information - Every document must carry

a trusted-party timestamp. The trusted party should be a third-party outside

the control of both the user and institution.

• Institutional commitment to produced information - Documents stored in the

institution’s archives with valid signatures and third-party timestamps are con-

sidered irrevocably true.

• Data integrity assurance in long-term archives - The data contained inside docu-

ments is duly signed and archived following good practices for long-term archives.

The institution is responsible for producing new signatures for documents which

cannot be externally verified or no longer containing valid certificates.

• Efficient document materialization and dematerialization - Document’s material-

ization should carry enough information for third parties to verify the documents

are legitimate.

• Efficient workflow - The workflow for producing signed documents should be

mostly transparent to the user and unobtrusive.

• Policies enforcement - Implementing a new paradigm for documents workflow

requires a strong policy establishing which documents are required to be digitally

signed and which documents can follow the old procedures.

• Auditing capabilities - Institution archives are required to be recurringly audited,

and preemptively verified against fraud and should have put in place secure

mechanisms to facilitate these tasks.

CHAPTER 1. INTRODUCTION 5

1.4 Proposal

This dissertation presents a new approach for the existing information system work-

flows currently in use by the University of Porto, which requires signed documents to

be physically produced, and proposes a paradigm where paper signature requirement is

naturally unneeded. In this new paradigm, it is possible to extend existing verifications

and establish a trust chain between the institution and the document signee that can be

easily verified by third-parties, while maintaining integrity,accountability,auditability

and non-repudiation of the produced documents.

1.5 Application Domain

Dealing with data integrity and asserting trust is a huge transversal problem to

information systems. Although the solution presented in this dissertation is centered

on the university’s information system, the same principles apply to other informa-

tion systems with similar requirements. Taking into account the volatile hierarchies,

trust attribution and delegation delimited by timeframe, staff autonomy and massive

amounts of information being shared with other institutions implying both material-

ization and dematerialization of documents, the general solution devised in this paper

can be applied to information systems with only a subset of these requirements.

1.6 Contributions

The research during the elaboration of our proposal lead to interesting developments

and enabled the possibility to publish two papers while at the same time develop

solutions to some challenging problems.

• Smartcard support in Android

Android based tables are a growing trend around the university campus. Al-

though the initial intentions of supporting this devices, not being able to provide

strong non-repudiation by using smartcards and simply using a software based

solution was a compromise we did not intend to make.

MicroSD cards with secure elements were an obvious solution, but although they

offered solutions based on manufacturers SDKs there was no apropriate solution

CHAPTER 1. INTRODUCTION 6

enabling portable code with simple abstraction around Java classes. Android

application developers would need to write code specifically to each microSD

manufacturer.

At least one of the manufacturers were at the time intending to support a

PKCS#11 wrapper in their product and the huge amount of users requesting

gave us the incentive to solve this problem.

The method for porting the required tools and providing a simple abstraction

to the Android Java virtual machine enabling the use of Java keystores with the

secure element present in the MicroSD card was published in a paper[6] at the

CISTI2012 conference.

• Document sharing format

With the analysis of the standard methods for sharing information across European

institutions during mobility exchange programs, a new type of document was

devised and a paper[7] published at the EUNIS conference.

• XaDes Support for Signserver

PrimeKey’s signserver[8] did not support XaDeS and due to the opensource

nature of the project, we have developed a module that enables signing and

validation workers for XaDeS. This functionality was highly requested in the

project forums and we have therefore produced a patch that was later adopted

by PrimeKey’s development team and integrated into current releases.

During the test phase of the developed module, while cross-validating the pro-

duced signed documents with a different library (Componentes de Firma) created

by the Spanish government, a bug in the document validation[9] was identified

and reported to the library developers.

• PDF Signature Applet

Following the needs to improve the trust-ability of documents in exchange pro-

grams, an applet providing the ability to sign PDF documents in SIGARRA was

developed.

This Java applet provides the ability to create a visual representation of each

signature, where each specific document tag is found. The first document signer,

before performing the signature parses all the information system internal tags

and generates the according signature fields, enabling external entities to perform

easy signatures using different tools.

CHAPTER 1. INTRODUCTION 7

1.7 Outline

The remaining chapters of this thesis are organized as follows:

The description of the current state of the information system in chapter 2, not only

describes the current workflow but identifies risks to data integrity and trustworthiness.

Exploring the institutional hierarchies and implied trust chain provides insight into

the main problem with trust delegation.

Chapter 3 contains the technical background required for understanding the architec-

ture and design of our solution. The solution is proposed in chapter 5 along with the

analysis of each problem identified and their associated solutions to mitigate the risks

introduced in chapter 2. Chapter 6 focus on the implementation of the changes to the

information system to support the proposed solution, with an overview of the main

architecture, components and the software needed to support these changes.

In chapter 7 we explore the difficulties that arose during implementation, as well as the

derived proof of concept and effectiveness of the proposed solution in fraud detection

and its mitigation.

Chapter 2

Information system at the

University of Porto

In this chapter we succinctly describe the current information system in production

at the University of Porto and the tools that will play an important role in the

development of the proposed solution. While many of these tools are already developed

and in use, due to the specificity of our environment, with shifting hierarchies of trust.

We also describe a new subsystem that provides the infrastructure needed to delegate

trust and the trusted signee a platform to perform digital signatures that plays a

crucial rule on creating an Institutionally trusted document archive that can maintain

its long-term integrity and accountability even when assuming that some elements of

staff can not be fully trusted.

2.1 Information System

The information system currently in use was created in 1992 and it has been under

development until today. While its first version in 1992, developed by the rectorate,

had the main objective of managing student records in the faculty offices, by 1996 an

integrated system with web interface was developed thus setting the path to provide

a web oriented information system [10].

While in the following years huge improvements and new functionalities have been

developed [11], this information system was still not being used by the entire academic

community, and it was not until the year 2003 that this information system, denom-

8

CHAPTER 2. INFORMATION SYSTEM AT THE UNIVERSITY OF PORTO 9

inated SIGARRA, spread to most faculties transforming itself from an important tool

for academic records management into the truth source of academic achievements

itself. The spread of the information system across every faculty in the University of

Porto created the opportunity to develop solutions extendable to the entire university,

allowing information sharing across the entire institution and providing the framework

to move the entire grading workflow to a paperless environment.

Since the information system has a huge set of functionalities unrelated to our object-

ives,only a subset of functionalities related to the management of academic records

are described in the following subsections which provide some insight on the changes

required to implement grading document’s signature and establishing their allowed

signees.

2.1.1 Database

The U.PORTO Information System is supported by an Oracle SQL relational data-

base. Data is added to the database via the application layer of the information system,

the information is recorded and simultaneously logged with timestamp values and in-

formation about the user who interacted with the system. All changes to the database

are recorded in the change logs of DBMS, enabling auditability mechanisms[7].

2.1.2 Document’s Dematerialization

Materialization and dematerialization of documents is a very important process in

the university workflow. When considering separate instances of the information

system and documents moving across institutions, easy document materialization

and dematerialization between different instances of the information system becomes

important.

Verifying a physical document integrity is not a simple process, as it requires the

verifier to have a pristine copy of the signature for comparison and trusted documents

containing the university stamp to compare stamp features. This poses yet another

problem, staff training to spot signature forgeries is nonexistent and a time-consuming

task[12], leading to a huge effort in the verification of documents in transit between

information systems or, in the worst scenario, the non-verification of their integrity.

In order to address the difficulties with information sharing across different institu-

CHAPTER 2. INFORMATION SYSTEM AT THE UNIVERSITY OF PORTO 10

tions participating in a student exchange programs, Europass guidelines have been

drafted[13] in an attempt to standardise the document format used in such exchanges.

The Europass specification is divided into 5 different types of documents:

• Curriculum Vitae - Document defining a curriculum vitae structure for the

presentation of an individual’s qualifications and competences

• Mobility - Document recording study periods abroad in an exchange program.

• Diploma Supplement - Document supplying information on its holder’s educa-

tional achievements at higher education level.

• Certificate Supplement - Document describing the competences and qualifica-

tions corresponding to a vocational training certificate

• Language Passport - Document providing individuals with the opportunity to

present their language skills.

The main focus is on the three types of documents that are issued to citizens by

competent organizations, namely the Europass Mobility, the Europass Certificate

Supplement and the Europass Diploma [14] which has been jointly developed by the

Council of Europe and UNESCO [15].

In the context of information sharing across different institutions, document mater-

ialization is as important as document dematerialization.An effective solution must

enable the ability to import materialized documents to new information systems,

preserving the integrity verifications and document structure as well as the human-

friendly form. Document types that provide such flexibility have been presented

at EUNIS[7] which can help shape the standard for document sharing among the

European partners .

2.1.3 Risks to data integrity

In this current information system, the database does not adequately separate domains

of trust [16] and the database administrators as well as every member of staff which has

privilege in the information system servers have the power to modify and manipulate

any data related to student records, effectively positioning themselves as a trusted

party in the institutional trust chain and increasing responsibility and accountability

CHAPTER 2. INFORMATION SYSTEM AT THE UNIVERSITY OF PORTO 11

in the staff. Also, any intrusion to the information system or its databases may result

in changes to the information pertaining to student academic information that would

be almost blindly trusted by the institution except for a manual verification of the

paper trail which, obviously, has associated costs.

When moving away from a paper-backed environment, the threat posed by a lack of the

separation of trust-domains is not exclusive to whomever has the ability to manipulate

the data, but the simple possibility of offering a degree of distrust in the integrity

of the data allows the issuer of each grade the ability to repudiate the previously

submitted information, thus subverting the required non-repudiation property on a

trusted information source.

2.2 Trust

The concept of ”Trust” derives mainly from the social sciences and can be defined

as the degree of subjective belief about the behaviors of a particular entity[]. Trust

is also context-dependent coexisting at different levels even between the same agents

within a collective.

Huaizhi [17] defines trust as a measure on the belief that an entity is capable of

performing reliably, dependably, and securely within a certain context. Trust man-

agement has traditionally been described as a special case of risk management and clas-

sified as evidence-based trust management and monitoring-based trust-management.

Although there is so debate about the notion of transitivity and unintentional trans-

itivity in trust [18], under certain semantic constraints, trust can be transitive [19],

given that a trust referral mechanism preserving the context in which trust given is

used.

2.3 Hierarchy and trust

The University of Porto is comprised of fourteen faculties and a business school,

providing a large variety of courses which covers the whole range of study areas

and all levels of higher education. The schools of the University have administrative

autonomy, and this organizational separation creates the need to ensure that the

information systems maintain local particularities and allow administrative processes

CHAPTER 2. INFORMATION SYSTEM AT THE UNIVERSITY OF PORTO 12

to be dematerialized contemplating the structures defined in the University hierarchy.

In heterogeneous academic environments such as this, a technological solution must

enable the transfer of University’s organizational hierarchies to the digital world,

ensuring for example that the documents electronically generated are digitally signed

and retain the required hierarchical dependence.

When replicating such hierarchical dependence, trust has an implied transitive nature.

Trust is delegated not uniquely on an individual but also for each task within a given

time-frame. While tasks can be entrusted to an individual, they can also be delegated

to a set of individuals that can only produce a valid document by cooperation.

Establishing and maintaining this degree of flexibility in trust chains requires deep

changes into the information system and associated workflows, the definition of do-

mains and sets of trust for each task while producing tamper-evident documents

and providing non-repudiation properties to protect both sides of the trust chain.

Recreating this institutional trust hierarchy which may not be known to external

entities requires that all the final signed documents available to external entities must

contain the signature of the most trusted signee, namely the institutional signature

being provided by the digital signature services and the timestamp obtained from an

external entity as to offer non-repudiation by the university itself.

2.3.1 Role attribution as delegation of trust

The production of any trusted document requires the ability to assert if the requester

has been entrusted with the ability to generate a document for the given intent.

While authentication and authorization play an important role on the production

of documents, the policy establishes that documents must be materialized and signed.

This requirement arises from the fact that authentication does not assert identity by

itself thus enabling the non-repudiation of documents. When authorizing a user to

produce any given set of documents such as grading terms, a legally binding document

entrusting individuals this ability must be produced.

While multiple frameworks have been defined for cascade delegation[20] [21] and

specifically hierarchical delegation tokens[22], in order to preserve the real-life im-

plied hierarchies and multiple delegations with respective storage in trusted long-term

archives, a new set of documents representing the trust delegation have to be created.

CHAPTER 2. INFORMATION SYSTEM AT THE UNIVERSITY OF PORTO 13

2.3.2 Student Evaluation

The current grading process in the information system can be described by the series

of events required to produce a grading record as described in Figure 2.1.

The academic services create a term for each evaluation period, distributing that term

to the professor responsible for each curricular unit. When entrusted that term, the

professor proceeds with the grading of each student present in the document and

submits it to the academic services again where the information would be validated

and registered. After this process of validation, this document is sent to the professor

back again who signs the document committing himself to its content and sends it

back to the academic services for archival, at which point the student classifications

in the information system are considered final.

Figure 2.1: Lifecycle of grading record

The process described above, assures that both authentication and authorization are

valid in the information system and asserts the user’s identity when physically signing

the document thus offering non-repudiation from the signer, effectively committing

himself to the produced document.

As previously specified, the level of complexity of the information system’s workflow

as a whole creates the necessity of reducing the set of functionalities as to subdivide

our problem by employing a divide-and-conquer strategy. Providing a flexible enough

solution to the intricacies of the grading problem and defining a model to the largest

CHAPTER 2. INFORMATION SYSTEM AT THE UNIVERSITY OF PORTO 14

trust-delegation chain in the information system inherently solves some of the less

complex workflows not requiring such a long-term validity. Using the same approach

provides an anchor-point to a general solution that can be applied in the most general

contexts.

2.3.3 Risks in the grading process context

The grading process as described in the previous subsection takes effort on legally

binding the document to the issuer, mitigating some of the risks by requiring a

presential signature after the document is materialized. The problem with this method

arises from the necessity of long-term validity in archived documents.

While document signatures are validated when issuing a document, not only the cross-

validation between the archived documents and the data contained in the information

system is rarely done mainly because the verification of signatures is a complex time

consuming process which requires a level of expertise not in the scope of staff training.

This loss of trust in the archived information over time creates serious risks that have

to be addressed:

• Forged documents, if present on the archives, might therefore be considered valid

and trusted by the institution services.

• Non-repudiation of old documents by the issuer

• Mismatch of information contained in the archives and in the information system

not detected

• Grade certification issued relying on an untrusted source

Mitigating these risks while maintaining the same workflow is an inefficient costly

process. Even the simpler cross-validation between archives and the information

system would require staff training to spot forgeries, adding complexity to the process

and eventually, delays.

Chapter 3

Technical Background

3.1 Public Key Cryptography

Public key cryptography is a cryptographic scheme that relies on a pair of asymmetric

keys for the crypto operations. Although the keys are mathematically related, the

private key cannot be easily deduced from the public key. Both keys have different

purposes, while the public key serves as the encryption key, the private key is used as

decryption key.

The public key encryption scheme must retain two properties :

• Completeness

The encryption function and decryption function are inverses.

Given any message and a key pair (k1,k2):

Ek1(Dk2(m)) = Dk2(Ek1(m)) = m

• Semantic Security

The encryption of different plaintext is computationally indistinguishable.

Since the public keys used for encryption cannot be used to deduce the private key,

the public key can be as its name indicates published without affecting the security

of the scheme. This provides a solution to the requirement of secret key sharing in

symmetric encryption, allowing anyone with access to the public key to effectively

encrypt data only decipherable by someone who has access to the private key.

15

CHAPTER 3. TECHNICAL BACKGROUND 16

Although it is not necessary to exchange secret keys, the security of the encryption

scheme has to rely on the trustworthiness of the obtained public key as pointed out

in Diffie and Hellman’s seminal paper [23] .

The necessity of trusting the distribution of private keys to different actors is solved

by using a Public Key Infrastruture.

3.1.1 Public Key Infrastructure

A public key infrastructure is responsible for certificate storage and management. It

provides the ability to issue, revoke, store, retrieve and assert trust on certificates

by introducing the concept of Certification Authority. A certification authority, also

known as CA, is a trusted entity which has public certificates pre-shared with different

software vendors (root certificates) and it retains the ability to sign other certificates

using its private key, extending their trust to the signed certificate by creating a chain

of trust. Having such an important role in asserting the trust to other certificates, the

CA has a central role in a Public Key Infrastructure by leveraging its trustworthiness

and reputation. A certification path, also referred as a trust chain, is the list of certi-

ficates used to authenticate an entity. The verification process of the trustworthiness

of a certificate is determined by verifying the authenticity and trustworthiness of all

the previous certificates confiding trust as described in Figure 3.3.

Figure 3.1: Certificate validation in a trust chain

CHAPTER 3. TECHNICAL BACKGROUND 17

3.1.2 Digital Certificates

A certificate, as defined in the Merriam-Webster dictionary, is a document containing

a certified statement especially as to the truth of something. Different properties help

verify the identity of the certificate holder (signature, photograph) and embedded

security features establish the integrity of the document thus offering a degree of

protection against forgeries. Digital certificates are therefore the digital equivalent to

their physical counterparts. Actually they serve as containers to bind a public key

with an identity or a set of attributes.

The X509v3 certificate commonly used in SSL contains the following attributes:

• Version - The version field contains the version of the certificate. The original

1988 version has the value of zero. This field facilitates the implementation of

changes in the certificate format over time.

• Serial Number - This field contains an unique identifier for each certificate

generated by the issuer. The issuer is therefore responsible to guarantee that

no colliding certificates (with same serial numbers and Distinguished Name) are

generated.

The serial number is used when identifying revoked certificates in a Certificate

Revocation List.

• Signature - This field identifies the algorithm used by the Certificate Authority

to sign the certificate.

• Signature Value - The signature value contains a digital signature computed

upon the ASN.1 encoded certificate.

• Issuer - The issuer name provides a representation of it’s issuers identity in the

form of a DN. The issuer name is used to select the appropriate issuer in order

to validate a certificate.

• Validity - Identifies the duration interval in which a certificate is considered valid

by carrying a pair of date and time indications.

• Subject - The subject identifies the entity associated with the public key stored

in the subject public key field. The field must contain an X.500 distinguished

name.

CHAPTER 3. TECHNICAL BACKGROUND 18

• Subject Public Key Info - This field contains the public key and the identification

of the algorithm with which the key is used.

• Issuer unique ID - This field must only appear on versions above two and should

not be used. This identifier permits disambiguating certificates with identical

issuer names.

• Subject unique ID - This field permits the disambiguation of certificates with

identical subject names.

• Extensions - This field must only appear in version 3 of a X509 certificate.

If present, contains a sequence of one or more certificate extensions. This

additional extensions provide the methods for associating additional attributes

with users and public keys and for managing a certification hierarchy.

The certificate signature determines that the certificate was vouched for, and it is only

able to guarantee that the signed identity information is bound to the specified public

key.

Asserting the security of private keys at all times is obviously infeasible, so mechanisms

able to revoke the digital certificates are required.

In RFC 5280 [24] two states of revocation are defined:

• Revoked - This is a final irreversible state. The certificate is considered no longer

trusted and will be present in all future certificate revocation lists

• Hold - This is an intermediary state. The certificate is invalidated temporarily

and may be removed from further revocation lists if requested.

There are many reasons to revoke a certificate and they can be specified in the

revocation entry:

• unspecified - unspecified reason for certificate revocation.

• keyCompromise - the private key of the certificate was compromised.

• cACompromise - the private key of the certificate issuer was compromised.

• affiliationChanged - the certificate subject does no longer correspond to organ-

ization.

CHAPTER 3. TECHNICAL BACKGROUND 19

• superseded - A new certificate replaces the certificate.

• cessationOfOperation - The certificate subject does no longer require the certi-

ficate.

• certificateHold - the certificate is revoked temporarily.

• privilegeWithdrawn - privileges granted to the certificate’s subject have been

withdrawn.

• aACompromise - it is known or suspected that aspects of the Attribute Authority

validated in the certificate have been compromised.

When validating a certificate, verifying its revocation status can be achieved using

different methods: using a certificate revocation list containing a list of certificate

serial numbers parsed by the verifier, or using the Online Certificate Status Protocol.

This protocol uses ASN.1 encoded messages communicated over the HTTP protocol

to return the status of the certificate.

3.1.3 Digital Signatures

A Digital Signature is a mathematical scheme based on asymmetric cryptography used

to demonstrate the authenticity of a digital document, by relying on a private key

for generating a signature of the document which can be verified by the public key.

Establishing the document’s authenticity implies the properties of non-repudiation

,authentication and integrity are satisfied.

• Authentication - Authenticating the sender of a message or document with a

high degree of confidence is important in some occasions. In digital signatures,

when a given key is bound to a user, the authenticity of origin can be established

with a digital signature.

• Integrity - To guarantee that each message or document is not altered in transit

and assure the accuracy of the information. Digital signatures intend to provide

this degree of confidence on data integrity by using cryptographic hashes, relying

on the computationally infeasibility of generating data with the same hash

values.

• Non-Repudiation - This property assures that an entity that signed a given

message is bound to it and cannot in a later stage deny having signed it.

CHAPTER 3. TECHNICAL BACKGROUND 20

3.2 Smart-card

A smart card is a device that contains an embedded integrated circuit chip. Although

they are usually associated with their most common types, the smart card with

embedded secure micro-controllers, there are different kinds of smart cards available,

providing simple I/O functions or supporting on-card functions such as encryption

and mutual authentication and interacting with the reader using specific protocols.

When dealing with micro-controller smartcards, the ability to generate and store

certificates in a tamper-proof environment with irrecoverable keys inside the secure

element and perform on-card functions provides an effective control of the keys used in

cryptographic operations or other cryptographic objects being stored in the smartcard

filesystem. This ability to ensure that keys cannot leave the card, provides an effective

means to ensure non-repudiation.

3.2.1 Portuguese National Identity Card

The Portuguese National Identity Card [25] is an EAL4+ compliant smart card re-

taining the ability to produce qualified signatures. The smartcard contains a micro

controller supporting the latest Java Card version, and a 64K EEPROM supporting

on-card cryptographic functions:

• Signature and Verification of 1024 bit RSA

• DES and 3DES

• MD5

• SHA1 and SHA256

• Message Authentication Code (MAC)

The certificates contained in the card (Authentication and Signature certificates) are

issued by the respective sub-certificate authority. The sub-certificate authorities are

branches of the Common Certificate Authority for the Portuguese government.

CHAPTER 3. TECHNICAL BACKGROUND 21

Figure 3.2: Portuguese Government certification chain

In respect to security, the smart card is known to be resistant to different known

attacks on smartcards like Hardware Attacks, Timing Attacks, Simple Power Analysis

and Differential Power Analysis [25].

3.2.2 University of Porto Smartcard

The University of Porto identity card is an Optelio Contactless D32 R5, PayPass

certified smartcard produced by Gemalto [26]. Complying with the Javacard 2.2.1,

the smartcard contains a Cryptographic co-processor and a 32K EEPROM providing

a dual-interface both contact and contact-less.

The contact interface complies with ISO7816 standard, supporting both character and

block level transmission protocols (T=0 and T=1).

The contact-less interface complies with ISO 14443 -2,-3 and -4 standards, operates

at a frequency of 13,56 MHz and includes a Mifare 4K emulation.

The Optelio smartcard supports RSA (up to 2048 bits), DES/3DES and SHA-1

cryptographic algorithms and contains different installed applets, namely:PayPass

M/Chip4 (Mastercard)[27], VSDC2.7.1 (Visa), DualVSDC (Visa), Classic IAS V3

(GemSAFE) (PKCS#11 PKI application), WG10 and Welcome Realtime (WRT) XLS

V7 (Xena).

CHAPTER 3. TECHNICAL BACKGROUND 22

3.2.3 University of Porto Certificates

The University of Porto smartcards come uninitialized and do not contain previous

certificates, thus relying on Terena as a Certificate Authority to issue signed certificates

for advanced digital signatures. To support self-service card-initialization,an Applet

which matches the user to its Portuguese Identity card using the card authentication

certificates provides the users the ability to request a signed certificate for their role

inside the institution. By requesting the users to authenticate themselves with a

government issued ID and assuming these are registered users at the university, the

applet can bind both identities (citizen’s and user) and allow a new certificate to be

requested and immediately imported into the smartcard.

Figure 3.3: Terena Personal certificates chain

3.3 XML

The Extensible Markup Language or XML is a markup language defining a set of

rules to encode documents in both human and machine friendly format. Derived from

SGML and defined in the XML 1.0 specification by the W3C, the XML provides a

very flexible text format. Using the XML document’s flexibility we can replace the

entire relational database scheme with a XML-centric database containing signed XML

documents as described in section 3.4.

3.3.1 XML signatures

XML Signatures are digital signatures defined for the XML document format in the

xmldsig namespace providing integrity assurance, message authentication and signer

CHAPTER 3. TECHNICAL BACKGROUND 23

authentication for any kind of data objects.

The message integrity is guaranteed by the computation of a a message digest using a

cryptographic hash algorithm and the difficulty of finding two meaningful collisions of

messages, ensuring that an attacker could not change the message without breaking the

digest. Although the digest reflects message tampering, a message could be modified

in transit and a corresponding hash computed for the modified message.

In order to guarantee that the digest cannot be modified after the message is signed,

the digest value is encrypted with the private key of the sender. Using the public key

available from the sender public certificate, the recipient of the message can decrypt

the digest and verify the message.

The XML signatures can be present in the same document as enveloped, enveloping

or outside the document (detached signature).

• Enveloping - The signature wraps the signed elements. In this method the

signed elements appear inside an Object tag inside the signature element and

are identified using a Reference.

• Enveloped - The signature is produced inside the element that contains the data

to be signed. Producing this signature types requires a special care not to include

the signature fields when calculating the signature value.

• Detached - Detached signatures, as the name implies, sign elements that are

external to the signature element. This signatures can also be present in the

same document but having both the signature element and signed element as

siblings.

3.3.2 XML Canonicalization

Digest algorithms are agnostic to the XML syntax and work over a sequence of bytes.

This unawareness of the syntax implies that two syntactically equivalent messages will

produce two different signatures.

Line endings, for instance, are represented in a platform-dependent way, producing

different XML representation in different architectures and obviously, different message

digests.

CHAPTER 3. TECHNICAL BACKGROUND 24

Figure 3.4: Linefeed signature mismatch

In order to address the problem of serializing XML documents and inadvertently

producing different documents, a Canonicalization Specification proposes a trans-

formation denominated canonicalization that standardizes the document to a single

serialized representation. The canonicalization takes a well-formed document and

produces a syntactically equivalent XML document and further canonicalizations

would always produce the same document. To produce a canonical form, a set of

rewrite rules must be defined which, when applied in any order the result is always a

canonical form,Table 3.1 presents such a set of rewrite rules.

CHAPTER 3. TECHNICAL BACKGROUND 25

Table 3.1: Canonicalization scheme for a XML document

Possible Variations Canonicalization
Character Encoding Convert to UTF-8 if any other encoding is

used.
Character sequence used for line
breaks

Standardize to #xA (line feed).

Optional XML declaration Remove.
Optional DTD declaration Remove.
Character references Expand character references.
Use of CDATA sections rather
than escaping special characters

Replace all CDATA sections with the equi-
valent character content. Special characters
are replaced with character references.

Use of empty element tags Replace all empty tags with a start/end tag
pair.

<a/> replaced with <a>

Whitespace within tags Remove.

< a > replaced with <a>

Whitespace before the root ele-
ment and after the end of the
document

Remove.

Whitespace in element content Retain.
Choice of quotations marks in
attribute values

Always use double quotes to delimit attrib-
ute values.
Single quotes (’) replaced with double quotes
(”).

Attribute values Use attribute value normalization defined in
XML specification.

Default attributes Add all missing attributes for which default
values are available.

Attribute order Sort all attributes by their namespace URI
and local names in lexicographically ascend-
ing order.
Attributes with no namespace come first.
Namespace nodes come before other attrib-
utes, and the default namespace node comes
first.

Namespace declaration Normalization depending on either inclusive
or exclusive canonicalization specification.

CHAPTER 3. TECHNICAL BACKGROUND 26

The rules defined in Table 3.1 can be applied in any order producing a document in

canonical form. Although most of the rules are easily applied, the namespace declar-

ation canonicalization introduces two different possibilities for rewriting namespaces,

inclusive or exclusive canonicalization.

3.3.2.1 Inclusive and Exclusive canonicalization

Extracting a document subset and inserting it into a different context may cause

problems with signatures because canonical XML includes the document’s ancestor

namespace declarations and attributes within the XML namespace. Take for instance

a document in canonical form:

<set>

<element>example</element>

</set>

The document subset can be encapsulated in an envelope.

<envelope xmlns="http://www.example.pt" xml:lang="pt">

<set>

<element>example</element>

</set>

</envelope>

When inclusive canonical form is obtained from the enveloped document, the docu-

ment is a little bit different:

<set xmlns="http://www.example.pt" xml:lang="pt">

<element>example</element>

</set>

The original document does not have the same canonical form even though it is the

same document thus having a different digest.

While inclusive canonicalization includes the the context of the subset’s ancestors ,

and in order to address the previously identified problems, exclusive canonicalization

was devised.

CHAPTER 3. TECHNICAL BACKGROUND 27

In exclusive canonicalization, namespace declarations and the attributes in XML

namespace of a a subset ancestor are excluded from the canonicalization process.

Taking the previously described example, the canonical form of the enveloped set

would be :

<set>

<element>example</element>

</set>

As we can observe, the document’s exclusive canonicalization produces a canonical

form identical to the initial and intended form.

3.3.3 XMLdsig structure

An XML Signature element structure can be described with the following elements:

• SignedInfo

The SignedInfo Element is the root of the structure used to identify the methods

used in the verification of a given signature.

– CanonicalizationMethod

This method provides information for the transformation of the information

into a canonical form to be used in the signature operations.

– SignatureMethod

This element identifies the algorithm to convert the canonical form of the

element into the signature value. This method is a combination of an

Hashing algorithm and a signature algorithm such as RSA-SHA1.

– Reference

Each of the multiple reference elements that may be present includes in-

formation on the digest methods and corresponding result values over the

referenced data object.

• Transforms

The Transforms element is optional, and may contain a list of transform ele-

ments, passing the results through the different transform elements which contain

CHAPTER 3. TECHNICAL BACKGROUND 28

the attribute defining the algorithm and respective content parameters operating

on the node set.

• DigestMethod

This element identifies the digest algorithm to be applied to the object being

signed.

• DigestValue

Containing the encoded value for the digest, the DigestValue element content is

encoded using Base64.

• SignatureValue

As the name implies, this element contains the final signature value encoded in

Base64.

• KeyInfo

This optional element enables the recipient of the document to obtain the key

required to validate the signature. This information may be composed of keys,

names, certificates or other public key management information required to

obtain the needed key. Since the element is optional and when this element

is not present, it is assumed that the party validating the document is able to

identify the needed key in the application context.

• Object

This element is typically used in enveloping signatures where the signed element

must be contained inside the signature element. The object’s id is referred from

a reference element either in the SignedInfo element or Manifest.

CHAPTER 3. TECHNICAL BACKGROUND 29

<Signature>
<SignedInfo>
<CanonicalizationMethod />
<SignatureMethod />
<Reference>

<Transforms>
<DigestMethod>
<DigestValue>

</Reference>
<Reference />

</SignedInfo>
<SignatureValue />
<KeyInfo />
<Object />

</Signature>

Code Block 3.1: ”xmlDsig structure”

An XML document may contain multiple signatures implying that multiple signature

tags may be present in the document. These signatures can be produced at different

times by different entities who may sign different elements. The widespread usage

of signed XML documents identified several problems with this signature specifica-

tion, namely the non-repudiation and long-term validity of signed documents. To

address these issues with the XML-dsig specification a new specification (XadES) was

developed by the European Telecommunications Standards Institute extending the

previous XMLDSIG specification.

3.3.4 XaDeS

The XML Advanced Electronics Signature specification defines different profiles that

can be used to sign XML documents extending the existing XMLDsig by providing

qualifying information and non-repudiation to the signature.

These profiles can be defined in levels. Each level not only inherits the requirements

of the parent but requires more information effectively adding stronger assurances to

the signed data.

The simpler form of XadeS profile adds the following elements to the previous spe-

cification:

• QualifyingProperties - Element containing the qualified properties, a sequence

CHAPTER 3. TECHNICAL BACKGROUND 30

containing one or more elements of type SignedProperties and Unsigned Prop-

erties.

• SignedProperties - Element containing the signed qualified properties.

• SignedSignatureProperties - Element containing the properties that qualify the

XML signature specified with the Target attribute of QualifyingProperties.

• SigningTime - The SigningTime property specifies the time at which the signer

performed the signing process.

• SigningCertificate - This property contains references to certificates and digest

values computed on them, preventing the substitution of the certificate.

• SignaturePolicyIdentifier - The signature policy identifier is a signed property

qualifying thesignature.

• SignatureProductionPlace - Element that may contain the place where the signer

was at the time of signature creation.

• SignerRole - Signed property qualifying the signer, specifically the role in which

the signature was created.

• SignedDataObjectProperties -Ccollection of signed XML elements with proper-

ties individually qualifying signed data objects.

• DataObjectFormat - element providing information that describes the format of

the signed data object.

• CommitmentTypeIndication - Signed property qualifying the signed data objects,

specifying the commitment type.

• AllDataObjectsTimeStamp - Time-stamped ds:reference elements within Signed-

Info referencing whatever the signer wants to sign except the SignedProperties

element.

• IndividualDataObjectsTimeStamp - Element containing the time-stamp com-

puted before the signature production, over a sequence of some ds:Reference

elements within the SignedInfo element.

• UnsignedProperties - Element containing a number of properties not signed by

the XMLDsig signature.

CHAPTER 3. TECHNICAL BACKGROUND 31

• UnsignedSignatureProperties - element that may contain properties that qualify

XML signature itself or the signer.

• CounterSignature - Element containing a counter-signature.

The described Xades profile provides integrity protection and basic authentication.

In order to offer stronger non-repudiation, five more profiles are defined by the spe-

cification.

• Timestamped (Xades-T)

This XML Advanced Electronic Signature profile includes a timestamp to ensure

non-repudiation by introducing a new element - SignatureTimeStamp. Produ-

cing a document with a timestamp requires therefore a TimeStamp Authority

(TSA) , binding the signature of the document to the date obtained from that

external entity.

• Complete (Xades-C)

This profile adds references to the required data supporting signature validation

such as certification path and revocation information.

• Extended (Xades-X)

The extended profile requires a timestamp either on the whole signature (as in

Xades-T) or in the information supporting signature validation (Xades-C). By

providing this possibility, the verifier can be assured that the information about

the certification path and revocation status was valid at the specific time the

timestamp was added to the document.

Assuming that a Certificate Authority can be compromised and its certificates

revoked, the timestamp established the validity of the signature by assuring that

the timestamp is earlier than the revocation event.

• Extended Long-Term (Xades-X-L)

Information required to validate documents may become obsolete on the long-

term. To solve this problem, this profile provides the possibility to add the

certification path and revocation data to the document ensuring that document

validity can be asserted in the long-term.

CHAPTER 3. TECHNICAL BACKGROUND 32

• Archival (Xades-A)

This profile adds a timestamp to the information used by the Extended Long-

Term profile.

As computational power increases, keys and other cryptographic data may be-

come weak. The ability to ascertain the integrity in the archives requires, there-

fore, the ability to produce stronger signature over time. Xades-A considers this

problem and by providing the support to generate multiple stronger timestamps

guarantees that the integrity of the information to validate the signatures is not

compromised.

3.4 Marklogic Database

Marklogic[28] is a document-centric, transactional,search-centric, structure-aware and

schema-agnostic database server. Using XML document as its core data model and

providing XQuery and XSLT support, marklogic is a perfect tool for our architecture.

Although it is possible to retain the OracleSQL database, relational databases have

table-centric models having higher complexity with an obvious impact in performance.

Marklogic supports the full set of ACID properties:

• Atomicity - sets of changes only happen as a whole.

• Consistency - system rules are enforced so there are no colliding identifiers

between documents.

• Isolation - uncompleted transactions are not otherwise visible.

• Durability - once a transaction has been committed it will not be lost even in

the event of a power loss.

Indexing both text and structure, the two can be queried together efficiently facilitat-

ing search of highly structured documents.

3.5 Signserver

SignServer is an application framework performing cryptographic operations for other

applications. [8]. Based on loadable modules that perform a wide range of operations,

CHAPTER 3. TECHNICAL BACKGROUND 33

this framework is able to perform signatures on different types of file formats,namely

PDF,XML,ODF,OOXML,MRTD,CMS and supports online document validation.

The modules can be used using HTTP or webservices interfaces.

The framework defines three different processable services:

• Signers - responsible for signing or otherwise processing the requested data.

• Validation services - services enabling the validation of a certificate against a set

of backed issuers.

• Group key service - framework enabling management and distribution of group

keys.

In order to perform sets of operations at defined intervals of time, the framework

provides plug-ins denominated Timed Services. PrimeKey’s sign server already sup-

ports different kinds of hardware security modules and PKCS#11 devices, thus provid-

ing the required flexibility to implement a HSM-backed signing module as denoted in

Figure 3.5.

Figure 3.5: Signserver Framework architecture

While Primekey’s Signserver supports XML it did not support XaDeS with the XML

signature module supporting only xmlDsig. Since signserver is an opensource project,

the development of a new module providing the required XaDeS support not only is

possible but the modules source contained in the project can serve as the basis for

development.

CHAPTER 3. TECHNICAL BACKGROUND 34

The fact that signserver is an opensource project made it the inevitable choice for our

architecture, providing the ability to create complex modules aware of the in-house

trust-delegation chains which establish the trust anchors for any document.

3.6 HSM

A Hardware Security Module is a device containing one or more secure cryptopro-

cessors, providing strong authentication when accessing keys, secure key storage by

using tamper-resistant secure elements and accelerating cryptographic processes by

using dedicated hardware to offload the cryptographic operations from application

servers.

The private keys are generated on-board and remain irrecoverable inside the secure

elements, providing both logical and physical protection to the cryptographic keys.

Tamper protection is, therefore, a key element in Hardware Security Modules which

support a multi-part user authorization schema enforcing cooperation when dealing

with sensitive materials like private keys.

Physically protecting the keys in hardware requires a mix of techniques:

• Tamper Resistance - Packaging the hardware in a hardened shell casing, making

access to the inner parts difficult.

• Tamper Evidence - Protecting the device with seals and labels designed to

visually identify any attempt to open the device.

• Tamper Detection

Using a conductive mesh embedded with the packaging provides the internal cir-

cuits with a method to monitor different properties that would signal tampering.

• Tamper Response - Using an active response when tampering is detected, either

by logical destruction of data or, in military condition,s physical destruction of

both the equipment and data.

The HSM acquired by the University of Porto is Safenet’s Luna SA 5.0 , supporting

a PKCS#11 API and a wide range of cryptographic algorithms:

• Asymmetric: Diffie Hellman (1024-4096 bit) , RSA(512-8192 bit) , DSA (512-

1024 bit),ECDSA signing with over 50 standard curves.

CHAPTER 3. TECHNICAL BACKGROUND 35

• Symmetric: 3DES,AES,RC2,RC4,RC5,CAST

• Hashing: MD2,MD5,SHA-1,SHA-2 (150,224,256,512 bit)

• Message Authentication Codes: HMAC-SHA1 and HMAC-SHA256

In order to enforce division of operational roles, the HSM requires the use of PEM

keys in order to perform some management and maintenance operations:

• Security Officer - configure HSM and change device’s security policies.

• User/Partition owner - activate partitions and generate keys.

• Domain - control and define the security domain, replicate and backup keys.

• Remote PED Auth - assure logical trusted path to remote PED

• Tamper Recovery - recover from a tampered status, enable safe transport.

This HSM also provides mechanisms to avoid unilateral action by key holders by

allowing the requirement of multiple PEM keys to perform operations.

The application server is connected with the HSM using Network Trust Link using

four layers of security: IP Address, TLS with client authentication, Administrator

controled trust database and partition access password.

Figure 3.6 describes the overall architecture.

Figure 3.6: LUNA SA solution architecture

Chapter 4

Comparison with similar systems

Information systems have for long strived with the importance of document demater-

ialization as a means for cost-reduction.

While documents have been moving to digital archives, processes and document

work-flows had problems retaining the same level of trustworthiness as their physical

counterparts. To address this concern, multiple solutions have been proposed from

which we will explore in detail the University of Murcia e-government solution[29].

The coincidental similarity of the University of Murcia and our solution, provides a

good starting point to evaluate the differences and impact of both solutions in order

to achieve the main goals.

4.1 University of Murcia e-Government

The proposed solution by the University of Murcia intends to provide transaction

security and document management through a secure platform, by delivering two

groups of services.

4.1.1 Security Services

• Signature Service - This service provides the ability to sign and verify documents.

• Timestamp Service - In order to ascertain proof that a document existed at a

certain time, a timestamp service is provided.

36

CHAPTER 4. COMPARISON WITH SIMILAR SYSTEMS 37

• Certificate Validation Service

The validation of certificates used in digital signatures is performed using this

service.

• Accounting Service - The accounting service is responsible for logging activities

of the previous services.

4.1.2 Documentary Management

The document management service set represents the group of services required for

secure generation, archive and query of documents while preserving electronic evid-

ences.

• Archiving Service - Stores electronic documents in the university documentary

database while assigning an unique identifier.

• Query Service - Locate and Retrieve documents using the unique identifier.

• Document Generation Service - A service for creating automatically documents.

4.1.3 Client Architectures

In order to generate signatures and perform authentication using the University of

Murcia Smartcard, client-side applications have been developed by the University of

Murcia. With cross-platform operation as a goal, the architecture supports both the

Windows Crypto API and CAPICOM within the Microsoft Windows environment and

PKCS#11 with NSS when using a Linux Operating System as depicted in Figure 4.1.

The UMU crypto-Applet verifies the client’s browser and operative system and provide

digital signature support using the MSCAPI Java provider or the NSS Provider

accordingly and transparently to the user.

CHAPTER 4. COMPARISON WITH SIMILAR SYSTEMS 38

Figure 4.1: Client Architecture

Figure 4.1 displays the separation that occurs when using different browsers, this

approach requires the smartcard middleware to be previously installed and the use

of non standard methods to access the cryptographic interface. The CAPICOM [30]

interface is discontinued although as yet supported by most of Microsoft Operating

Systems.

4.1.4 Electronic Registry

The electronic registry provides the ability to send electronic documents and forms

to the University retaining the same level of trustworthiness as the physical registry.

This application intends to retain both authenticity, integrity and non-repudiation

properties of the transactions.

An example of such a transaction is shown in Figure 4.2

CHAPTER 4. COMPARISON WITH SIMILAR SYSTEMS 39

Figure 4.2: Sending an application form

The client fills and sign a form and sends to the application server. The application

server after validation and timestamping, records the form in the registry database

and delivers an acknowledgement of receipt. A previously sent form can be verified

by sending the acknowledgement receipt to the application server which verifies the

timestamp and signature, searches whether the form is present in the registry database

and returns the result to the client.

4.1.5 Electronic Marks Certificate

The electronic marks certificate service extends on the Electronic Registry to provide

professors the ability to perform marks certificates without having to deliver docu-

ments containing an handwritten signature. The electronic marks are created as an

XML document, signed by the professor, providing the ability to verify the authenticity

and integrity of each mark through the digital process.

CHAPTER 4. COMPARISON WITH SIMILAR SYSTEMS 40

4.1.6 Analysis of solution

The solution implemented at the university of Murcia although providing a good

starting point to develop an environment for securing digital documents presents some

problems that must be addressed.

• Guaranteeing the long-term verifiability of the document author authorization to

produce the document - The document is produced with a context that may be

considered volatile, and cannot be easily audited in the future.

This problem arises when a user produces a colluding document which the

original author is unaware off, the document would be signed, timestamped

and archived. A future audit, if it does not possess a reliable information

source containing the authorized identity to produce the document, cannot

disambiguate which document is to be considered valid, since both authors had

valid certificates at the signing time.

• Non-repudation only for the author of a document - The effort to produce a

document receipt is not enough to provide mutual non-repudiation. A process

of dispute arbitration in which one of the challengers has set itself as the trusted

party is flawed by design. Mitigating this problem requires the presence of a

trusted third-party, with mutually agreed jurisdiction, producing signatures and

arbitrating disputes [31].

The receipt of acknowledgement, cannot provide mutual non-repudiation unless

a trusted third-party is relied upon.

Chapter 5

Proposal

The development of a system that can handle the identified problems while retain-

ing strong confidence of document integrity requires a careful workflow design and

architectural changes to the existing information system.

In Chapter 2 we introduced multiple risks that could lead to the untrustworthiness of

the system data. In order to minimize these risks a solution is described in detail with

sections identifying which problems are being tackled.

5.1 Document-Oriented Data

The information contained in the information system is document-oriented. Data

cannot be viewed as single fragmented piece of information mainly because it is mostly

produced in-context, structure-dependent and bound to other information blobs.

An example of such document relates to student grading,where each grade is bound

to a specific student, the document’s date, course, class and professor. Given that a

student can take the same class in different time periods and be evaluated more than

once by different professors, committing to such information’s trustworthiness implies

committing to the entire structure and not simply to the grade alone. Furthermore, a

grade can be attributed in multiple ways, such as an equivalence in a student mobility

program. Identifying the origin and legitimacy of such a document, requires not only

signed atomic data, but also information of the context in which it was produced.

Retaining such a document structure is not convenient when dealing with relational

41

CHAPTER 5. PROPOSAL 42

databases that imply the use of their formal data structures.

While the current information system materializes documents in order to retain this

structure information and trust, this physical support is expensive and workflow inef-

fective as workflow is concerned. To address this problem, a shift to XML documents

is required, that by their semi-structured nature provide us the ability to retain

the complex structures used during document production and by leveraging digital

signatures ascertain integrity and non-repudiation.

5.2 Data persistence

While the current information system stores its information in a relational database,

in the previous section problems were identified when using relational databases and a

solution that fits the specificity of the information system’s environment was provided.

The move to XML documents introduces a new requirement: XML document storage.

In order to address this requirement, a change in the overall architecture of the inform-

ation system was introduced, an XML database was added providing the information

system with the ability to store and operate over XML documents.

5.3 Document Trust

In subsection 2.3.3 we identified the threats leading to the loss of trust in document’s

integrity in the current system workflow. The move to XML documents requires,

therefore, that we can assure the integrity of every document stored in the database

and mitigate the risks that were also present in the previous scheme.

To trust the documents contained in the database we must retain the ability to:

• Authenticate the person who produced the document

• Provide non-repudiation of document’s authorship

• Assert that the document was not tampered with

• Assure that the document was produced in a given timeframe

CHAPTER 5. PROPOSAL 43

To address these requirements, the documents must be digitally signed by a certific-

ate, bound to the user (authentication, non-repudiation and integrity assurance) and

timestamped by an external entity to provide a trustable date source. While simple

documents can be produced in such a way, in an academic environment with shifting

hierarchies we must provide a method to assure that the given user was indeed acting

on behalf of the university when producing the given document. This delegation of

trust in the individual to produce a document requires another digital signature from

the institution itself assuring that at the time of document production a user was in

fact able to create such document.

Figure 5.1 describes the required properties in such a document:

Figure 5.1: Document Structure

Delegating trust is itself an anchor to the entire trust of the document and when

dealing with complex hierarchies entrusting a user to perform a given activity requires

a long chain of trust delegation. To cope with this problem, we must introduce a

document that can describe such trust chain.

5.4 Hierarchies and trust delegation

Trust delegation is implicit in the current information system as users are authentic-

ated by their credentials and attributed a set of roles that provide them with the ability

to perform a set of functions. Producing documents and assuring that the producer

had the legitimacy to perform it extends the trust past the document and requires

a trusted document describing the role assumed by the user. In order to simplify

the development process and minimize the impact of changing roles, the current roles

present in the system were assumed and defined in an XML document describing

CHAPTER 5. PROPOSAL 44

the user and his role. Documents describing this chained trust delegation are bound

together. This delegation chain can be observed in the following picture.

Figure 5.2: Trust delegation diagram

Validating a user’s role requires the recursive validation of delegations from the root

trust anchor to the delegation that entrusts the user with a given role. Since each

delegation document is itself signed, the integrity of the document can be guaranteed.

While this diagram of trust delegation is simplified it does not account for temporal

delegation, the documents produced contain the date the delegation takes effect and its

expiration date. A simplified delegation document describing this temporal delegation

can be exemplified the xml document in Code Block 5.1.

Roles are defined by complex types.

Delegated roles are context-dependent. In fact, not only a user can be delegated mul-

tiple roles but those roles can be context-specific. A professor assumes his delegated

role for a small subset of classes and attains this role by delegation from the director. A

user may assume, therefore, multiple roles which demands for example that a director

for instance is required to assign himself a set of roles by delegation in case he intends

to lecture a class.

CHAPTER 5. PROPOSAL 45

<delegation>
<delegate>

<user></user>
<role></role>
<starts></starts>
<expires></expires>

</delegate>

/∗ Signature nodes ∗/

</delegation>

Code Block 5.1: ”Delegation XML document”

The establishment of a role is generically described as traversing recursively the

institutional hierarchy. One example is presented in the diagram Figure 5.3

Figure 5.3: Delegation hierarchy

CHAPTER 5. PROPOSAL 46

5.5 Grading Documents

Dealing with trust sensitive documents and establishing document integrity through all

the document phases (creation, approval, distribution and archival) is a key aspect to

ensure the trustability of student records. In section 5.3 we identified the requirements

to produce a trusted document and the same principle applies to grading documents.

The grading document is therefore an XML document using the XML Advanced

Electronics Signature specification, namely XaDes-A as to provide support to long-

term archives.

An XML schema is included in the Apendix section describing a structure tying

students and the obtained grades and can be modified to different needs.

5.5.1 Professor Signatures

Asserting the authorship of a grading document is very important when assuming

that any system can be broken into or subverted in some way. Digital signatures

not only provide us with the required proof of authorship but also with the non-

repudiation property the document’s author cannot refute that he did not produce

such a document. Since professors are just temporarily assigned to a class, the

author cannot be able, at a later time (when the delegation has expired) to create

documents referring to the previous time-frame. To provide a stronger guarantee that

the document was in fact produced in the given timeframe, a timestamp is required

along with the document’s signature.

5.5.2 Institutional Signature

Documents signed only by the professor grading the student may be trustable enough

for the institution, but trust must be bidirectional. A professor may require that not

only he is bound to the document but also the institutions commits itself to the receipt

of the document. Institutional signatures provide the author of the document with

a guarantee of non-repudiation and acceptance from the institution. A institutional

signature commits the institution not only to the reception of the document but also

to the ability of the author to sign the document by assuring that the institution did

traverse the delegation chain and accepted the document, thus protecting the author.

CHAPTER 5. PROPOSAL 47

5.5.3 External Timestamp

A problem arises when observing that the university controls the entire infrastructure

such as the certificates for accepting documents, timestamp servers and so on. In order

to attain a stronger trust on the entire scheme and independence of a possible, although

improbable, full infrastructure compromise, a timestamp based on an external entity

can be used when signing the document with the institutional signature. Anchoring

the trust to an external entity which is independent of the institution’s public key

infrastructure and provides a timestamp for the document assures that the institution

cannot later subvert previous documents.

Chapter 6

Implementation

6.1 Architecture

The implementation of such a cryptographic scheme to retain document trustworthi-

ness requires deep architectural changes to the existing information system. Producing

client-side signatures requires a Java applet to be delivered to the user so he can

perform cryptographic operations on the documents also, a document repository has

to be included due to the insufficiency of the current database to store xml documents

and a signserver to perform server-side signatures.

In public key cryptography, the entire scheme relies on the security of the private

key. To address this concern, a Hardware Security Module is connected to the

signserver,thus protecting the private keys and performing cryptographic operations.

Figure 6.1: New Information system architecture

48

CHAPTER 6. IMPLEMENTATION 49

In the architecture described in Figure 6.1, a separation of administrative domains

can be perceived. The information system (SIGARRA) has only direct read privileges

from the repository, although transitional write privileges are available by delivering

documents to be validated and institutionally signed, which are recorded into the

repository. This model provides a strong guarantee that documents in the repository

are approved and signed by the institution (offering non-repudiation to the author)

and ensures that documents cannot be removed by anyone with administrative rights

to the information system.

6.2 User Signatures

Signing a document with the university supplied smartcard requires client-side code

capable of using the smartcard’s private key. In order to provide support to client-

side signatures to XML documents, a Java applet with the ability to digitally sign

documents complying with the XML Advanced Electronics Signature specification

was developed.

6.2.1 Java Applet

In a complex system, it is not feasible to produce different applets for different contexts.

Taking into account that a single applet able to cope with all the contexts can be

developed, a more generic approach is devised, where different parameters related to

the workflow can be defined.

The applet takes these different parameters:

• Document

This parameter should contain the document that was generated by the inform-

ation system to be signed and is encoded in base64. The main reasoning behind

this encoding requirement is because XML documents may contain tags similar

to the ones used in the HTML page and, in order to avoid problems when

rendering such documents, encoding the document in base 64 is a reasonably

simple method for solving such cases.

• Signee

CHAPTER 6. IMPLEMENTATION 50

This parameter contains the identifier to be matched against the certificates

unique name. While the information system may reject documents signed by

someone who didn’t have privileges to sign a document, users may, by mistake,

introduce a smartcard with a certificate not pertaining to themselves. Using this

parameter, the applet is able to match the expected signee with the certificate

ensuring that the user is indeed using the required smartcard.

• PostTO

The PostTO parameter contains the service that will be used to consume the

signed document. Different document types can be signed in different contexts

which have to obviously be signed by different web services.

The ability to provide a URL indicating where the applet should deliver the

signed documents is an approach that provides a generic method to reuse the

same applet in different contexts.

In a typical usage scenario, the web server generates a document containing an applet

and the parameters above.

The initialization of the applet takes into account the parameters contained in the

generated HTML and initializes the internal variables.

@Override
public void init() {

xmlDOC = this.getParameter(”xmlDoc”);
postTO= this.getParameter(”postTO”);
signeeUN = this.getParameter(”SigneeUN”);

}

Code Block 6.1: Applet Initialization

The document base64 encoded and passed as a parameter to the applet, which requires

the XML to be decoded from the parameter..

CHAPTER 6. IMPLEMENTATION 51

/∗
(...)

xmlDOC = this.getParameter(”xmlDoc”);
(...)

∗/
public Document decodeB64Document() throws SAXException,

ParserConfigurationException, IOException{

Document doc = null;
byte decoded[] = Base64.decode(xmlDOC);
InputStream in = new ByteArrayInputStream(decoded);
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);
DocumentBuilder builder = factory.newDocumentBuilder();

doc = builder.parse(in);

return doc;
}

Code Block 6.2: Decoding XML document

Signing a document requires the instantiation of a XadesSigner as in

Code Block 6.3 where a BES profile is being used.

public XadesSigner XadesBESSign() throws XadesProfileResolutionException{

KeyingDataProvider kdp = getPKCS11rovider(new certSelector(signeeUN),
new passwordProvider(), new keyEntryProvider());

XadesBesSigningProfile xbp= new XadesBesSigningProfile(kdp);
xbp.withSignaturePropertiesProvider(signatureProperties.class)

.withAlgorithmsProvider(myProvider.class);

return xbp.newSigner();
}

Code Block 6.3: Xades-BES profile

In order to sign a document, we are required to define which kind of Xades signature

we intend to perform. We defined a Enveloped signature to provide self-contained

XML documents.

CHAPTER 6. IMPLEMENTATION 52

public void signFile(Document doc) throws XAdES4jException, ProviderException {
XadesSigner xs = XadesBESSign();
Node n = doc.getDocumentElement();
SignedDataObjects dataObjs = new SignedDataObjects(

new EnvelopedXmlObject(n)).withCommitmentType(
AllDataObjsCommitmentTypeProperty.proofOfApproval());

xs.sign(dataObjs,doc);
sendTo(postTO,doc);

}

Code Block 6.4: Signing a Document

Signed documents as observed in Code Block 6.4 are sent to the URL defined in the

postTO applet parameter.

public void sendTo(String postTO, Document doc)
throws IOException,ParseException,TransformerException {

ByteArrayInputStream inputStream = null;
HttpClient httpclient = new DefaultHttpClient();
httpclient.getParams().setParameter(CoreProtocolPNames.PROTOCOL VERSION,

HttpVersion.HTTP 1 1);
HttpPost httppost = new HttpPost(postTO);
MultipartEntity mpEntity = new MultipartEntity();
Writer writer = new StringWriter();
TransformerFactory tf = TransformerFactory.newInstance();
tf.newTransformer().transform(new DOMSource(doc), new StreamResult(writer));
inputStream = new ByteArrayInputStream(writer.toString().getBytes(”UTF−8”));
ContentBody cbody = new InputStreamBody(inputStream,”file”);
mpEntity.addPart(”File”, cbody);
httppost.setEntity(mpEntity);
String response = EntityUtils.toString(httpclient.execute(httppost).getEntity(), ”

UTF−8”);
httpclient.getConnectionManager().shutdown();

}

Code Block 6.5: Uploading a document

Smartcards require middleware to operate,but in order to avoid problems such as

requiring the user to have previously installed the smartcard’s middleware, the ap-

plet can identify the operative system and its architecture obtaining the middleware

online without the user’s intervention. Currently, the supported cards are both the

Portuguese National identity card and the university card.

CHAPTER 6. IMPLEMENTATION 53

6.3 Signserver

PrimeKey’s signserver did not support XaDes signatures at the time the implement-

ation started. In order to solve this issue, a XadeS signer module which can per-

form HSM-supported XaDes signatures with different profiles was developed and

subsequently adopted by Primekey ??.

Signserver exposes three different kinds of processable services:

• Signers

Responsible for processing requested data and performing signatures

• Validation Services

Service that provides the capability to validate a signed document’s certificate

against a set of backed issuers.

• Group key service framework

Service that manages and distributes group keys for different applications.

Our solution requires implementation of both the signer service and validation service

in order to provide an effective method for signing documents as well as validating

signed documents.

The creation of a service in signserver is as simple as extending the base signer class.

public class XadesSigner extends BaseSigner{

@Override

public void init(int signerId, WorkerConfig config,

WorkerContext workerContext, EntityManager workerEntityManager) {

}

@Override

public ProcessResponse processData(ProcessRequest signRequest, RequestContext

requestContext) throws IllegalRequestException, CryptoTokenOfflineException,

SignServerException {

}

}

Code Block 6.6: Extending Base Signer

CHAPTER 6. IMPLEMENTATION 54

In order to perform XaDes signatures with different profiles the xades4j library was

selected due to its open source nature and support of different XadeS profiles.

Configuration follows the same principle as with other signserver services. When using

a generic signer supporting XaDes,the configuration of the profile to be used in the

signature process is required and the following properties are recognized by the signer:

• XADESFORM

This property defines which XaDes profile is used by the signer instance to

perform the signature. Currently this property can have the following values

BES,C,EPES and T.

• TSA URL

Using a profile that requires a timestamp to be obtained, makes this property

required. The TSA URL string is used as a timestamp URL.

• TSA USERNAME

This property defines the username to be used when TSA authentication is

required. It defaults to non-authenticated if the property is not set.

• TSA PASSWORD

This property sets the passwords to be used with the username if set. Defaults

to null otherwise.

• MARKLOGIC URL

The MARKLOGIC URL property when set, provides signed documents archival

in a mark logic database. When the property is not set, the signer does not

archive the document and simply returns the signed version to the requester.

• MARKLOGIC PORT

The Marklogic’s server port can be set with this property. Required if MARK-

LOGIC URL is set.

• MARKLOGIC USER

The property establishes the username to be used in the database authentication

process. Required if MARKLOGIC URL is set.

CHAPTER 6. IMPLEMENTATION 55

• MARKLOGIC PASSWORD

The password to be paired with the username. Required if MARKLOGIC URL

is set.

As previously described, the signers take multiple configurable parameters defined in

a property file.

Example Xades Signer configuration

GLOB.WORKERGENID1.CLASSPATH = org.signserver.module.xadessinger.XadesSigner

#GLOB.WORKERGENID1.SIGNERTOKEN.CLASSPATH = org.signserver.server.cryptotokens.

SoftCryptoToken

General properties

WORKERGENID1.NAME=XadesSigner

WORKERGENID1.AUTHTYPE=NOAUTH

#XADESFORM can be BES,C,EPES,T

WORKERGENID1.XADESFORM=T

#(required if implicit in xades profile)

WORKERGENID1.TSA URL=http://localhost:8080/signserver/tsa?workerName\=TSA

#optional

#WORKERGENID1.TSA USERNAME=

#optional

#WORKERGENID1.TSA PASSWORD=

#optional

#WORKERGENID1.MARKLOGIC URL=

#WORKERGENID1.MARKLOGIC USER=

#WORKERGENID1.MARKLOGIC PASSWORD=

Code Block 6.7: Sample Configuration

Although a generic implementation was developed in order to contribute with patches

to the sign server project, a specific signer and validator aware of our dynamic trust

delegation chains is required. While performing an institutional signature committing

to the validity of a document, the verification of document’s authorship while estab-

lishing the author’s permission to produce the document is of extreme importance.

An approved and institutionally signed document cannot be refuted, and it is bound

to the institution’s reputation.

CHAPTER 6. IMPLEMENTATION 56

In order to facilitate this verification, two validators were developed for the documents:

• Intermediate Document Validator

It validates documents that do not contain institutional signatures.

The document’s integrity is verified using the signatures present in the docu-

ment and using the document representing the delegation chain. The validator

recursively verifies the delegations until the main trust anchor is reached.

Documents which do not provide at least a signature from a trusted signee are

rejected as invalid.

• Final Document Validator

Final documents are required to contain institutional signatures.

The document’s signatures are validated using the intermediate documents ser-

vice and, if a positive response is obtained, a signature containing the institu-

tion’s certificate in the document is searched before establishing the document’s

validity.

The validators are extended from the BaseValidator class as described in Code Block 6.8

class XadesValidator extends BaseValidator {

public ProcessResponse processData(ProcessRequest signRequest, RequestContext

requestContext) throws IllegalRequestException, CryptoTokenOfflineException,

SignServerException {

}

private GenericValidationResponse validate(final int requestId, byte[] data) throws

SignServerException {

}

Code Block 6.8: Extending Base Signer

The full validator responsible for verifying if a document was accepted by the institu-

tion (contains a valid institutional certificate) is available in Appendix B.

CHAPTER 6. IMPLEMENTATION 57

6.4 Differences with University of Murcia Frame-

work

In subsection 4.1.6 we identified some problems with the architecture of the University

of Murcia solution. In order to guarantee that an author’s ability to produce a given

document is verifiable in long-term archives, instead of relying on volatile permissions

recorded in the information system, we designed a method for delegating trust for

each user and role. By using signed documents guaranteeing long-term integrity and

verifiability we provide an effective mechanism which also allows authors to delegate

tasks while retaining audit capabilities.

Another problem identified in the University of Murcia framework pertains to the

absence of a trusted third-party and the impossibility to have mutual non-repudiation.

To address this concern, our proposal includes a timestamp obtained from an external

entity. An external timestamp, anchors a third-party to the document’s production,

guaranteeing non-repudiation of its existence.

A specific implementation concern is the method for producing digital signatures

client-side. Using Microsoft deprecated CAPICOM and highly browser-specific im-

plementations may lead to a set of problems. Providing a PKCS#11-based cross-

platform solution based on Java Applets seems a better fit, smartcard middleware

could be loaded dynamically from online sources, and the maintenance of a single

Applet is less error-prone.

Chapter 7

Conclusions

The development in the information system is critical, prone to bureaucracy and,

unfortunately, fragmented, resulting in a longer project for completion. To solve these

problems, a similar system following the document’s workflow was created as a proof

of concept, providing a mechanism to test delegation attribution, student evaluation

and document signatures, as well as institutional signatures, document archive and

validators for generated documents.

While the objective of integrating the architectural changes to the current information

system was not concluded, a few problems that require changes in the university itself

were identified. Although it was reasonably assumed that the actors who perform

given tasks are well identified, some roles such as who can sign a given document

are not well defined (as when directors can sign grades for invited professors). Each

faculty inside the university may delegate the tasks to different persons and while

our delegation chain could cope with delegations, establishing trusted anchors would

require some effort). Also, in some cases, documents can be signed by a superior, thus

bypassing the actual document creator. Although we can provide an inheritance mech-

anism to our delegation chain, it subverts the non-repudiation property of document’s

authorship,which invalidates the general scheme for different faculties (inheriting trust

due to group roles).

The proof of concept was comprised by a set of web services and front-end controllers

which emulate the workflow of the grading process. A trusted anchor could delegate

evaluation tasks to professors who then could evaluate students by producing the

grading documents, that, after being institutionally signed, would be archived in the

XML database.

58

CHAPTER 7. CONCLUSIONS 59

The produced documents were validated and inspected to ascertain conformity with

the specification.

Different attacks were performed as to establish the information system ability to

detect manipulated documents, as well as revoked trust delegations and expired cer-

tificates.

Chapter 8

Future Work

During the research and development of this architecture, a new method for docu-

ment dematerialization was drafted in order to facilitate information sharing across

institutions. While XML provides the most efficient way to share information across

information systems, legacy systems must be taken into account. XML signatures

are not easily validated outside the scope of an information system and they do not

provide a visual representation per se.

To solve the problem of information sharing with institutions that still rely on older

mechanisms, providing an embedded XML inside an institutionally signed PDF doc-

ument with a visual representation of the given XML can support an easier offline

document verification in a legacy environment. While this draft was published [7]

the supporting mechanism for such a schema remain unimplemented and could rep-

resent an important step into adoption of different trusted document models across

institutions.

60

Appendix A

XaDeS Signing Module

package org.signserver.module.xadessigner;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.document.XMLDocumentManager;

import com.marklogic.client.io.DOMHandle;

import com.marklogic.client.io.XMLStreamReaderHandle;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.security.cert.X509Certificate;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.logging.Level;

import javax.persistence.EntityManager;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.stream.XMLStreamReader;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.signserver.common.CryptoTokenOfflineException;

import org.signserver.common.IllegalRequestException;

import org.signserver.common.ProcessRequest;

61

APPENDIX A. XADES SIGNING MODULE 62

import org.signserver.common.ProcessResponse;

import org.signserver.common.RequestContext;

import org.signserver.common.SignServerException;

import org.signserver.server.signers.BaseSigner;

import org.apache.log4j.Logger;

import org.bouncycastle.util.encoders.Hex;

import org.ejbca.util.CertTools;

import org.signserver.common.ArchiveData;

import org.signserver.common.GenericServletRequest;

import org.signserver.common.GenericServletResponse;

import org.signserver.common.GenericSignRequest;

import org.signserver.common.GenericSignResponse;

import org.signserver.common.ISignRequest;

import org.signserver.common.WorkerConfig;

import org.signserver.server.WorkerContext;

import org.signserver.server.cryptotokens.ICryptoToken;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.xml.sax.SAXException;

import xades4j.XAdES4jException;

import xades4j.production.Enveloped;

import xades4j.production.EnvelopedXmlObject;

import xades4j.production.SignedDataObjects;

import xades4j.production.XadesBesSigningProfile;

import xades4j.production.XadesCSigningProfile;

import xades4j.production.XadesSigningProfile;

import xades4j.production.XadesTSigningProfile;

import xades4j.properties.AllDataObjsCommitmentTypeProperty;

import xades4j.providers.KeyingDataProvider;

import xades4j.providers.impl.DirectKeyingDataProvider;

import xades4j.utils.XadesProfileResolutionException;

import xades4j.providers.impl.TimeStampProvider;

/∗∗

∗

∗ @author Luis Maia <lmaia@dcc.fc.up.pt>

∗/

public class XadesSigner extends BaseSigner{

private static final Logger LOG = Logger.getLogger(XadesSigner.class);;

static String XADESFORMDEFAULT=”BES”;

static String XADESFORM=”XADESFORM”;

static String TSA URL=”TSA URL”;

static String TSA USERNAME=”TSA USERNAME”;

static String TSA PASSWORD=”TSA PASSWORD”;

APPENDIX A. XADES SIGNING MODULE 63

public static final String DEFAULT ARCHIVETODISK FILENAME PATTERN = ”${

WORKERID}−${REQUESTID}−${DATE:HHmmssSSS}.pdf”;

/∗ Supported Xades Profiles∗/

public enum Profiles {

BES,

C,

EPES,

T

}

@Override

public void init(int signerId, WorkerConfig config,

WorkerContext workerContext, EntityManager workerEntityManager) {

super.init(signerId, config, workerContext, workerEntityManager);

}

@Override

public ProcessResponse processData(ProcessRequest signRequest, RequestContext

requestContext) throws IllegalRequestException, CryptoTokenOfflineException,

SignServerException {

ProcessResponse signResponse;

ISignRequest sReq = (ISignRequest) signRequest;

// Check that the request contains a valid GenericSignRequest object with a byte[].

if (!(signRequest instanceof GenericSignRequest)) {

throw new IllegalRequestException(”Recieved request wasn’t a expected

GenericSignRequest.”);

}

if (!(sReq.getRequestData() instanceof byte[])) {

throw new IllegalRequestException(”Recieved request data wasn’t a expected byte[].

”);

}

byte[] data = (byte[]) sReq.getRequestData();

/∗SHA1 fingerprint for the request returned∗/

byte[] fpbytes = CertTools.generateSHA1Fingerprint(data);

String fp = new String(Hex.encode(fpbytes));

XadesSignerParameters params = new XadesSignerParameters(workerId, config);

xades4j.production.XadesSigner xs=null;

Document doc = null;

try {

APPENDIX A. XADES SIGNING MODULE 64

xs = XadesSign(params);

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);

DocumentBuilder builder = factory.newDocumentBuilder();

doc = builder.parse(new ByteArrayInputStream(data));

if(!validateSignees(doc))

{

throw new IllegalRequestException(”Invalid Signer in document.”);

}

Node n = doc.getDocumentElement();

SignedDataObjects dataObjs = new SignedDataObjects(new EnvelopedXmlObject(n))

.withCommitmentType(AllDataObjsCommitmentTypeProperty.proofOfApproval()

);

xs.sign(dataObjs,doc);

} catch (SAXException ex) {

java.util.logging.Logger.getLogger(XadesSigner.class.getName()).log(Level.SEVERE,

null, ex);

} catch (IOException ex) {

java.util.logging.Logger.getLogger(XadesSigner.class.getName()).log(Level.SEVERE,

null, ex);

} catch (ParserConfigurationException ex) {

throw new SignServerException(”Document parsing error”, ex);

} catch (XadesProfileResolutionException ex) {

throw new SignServerException(”Exception in Xades Profile Resolution”, ex);

} catch (XAdES4jException ex) {

java.util.logging.Logger.getLogger(XadesSigner.class.getName()).log(Level.SEVERE,

null, ex);

}

ByteArrayOutputStream bout = new ByteArrayOutputStream();

TransformerFactory tf = TransformerFactory.newInstance();

Transformer trans;

try {

trans = tf.newTransformer();

trans.transform(new DOMSource(doc), new StreamResult(bout));

/∗Do the archiving∗/

archive(doc,params.getMarkLogicParameters(),sReq.getRequestID());

} catch (TransformerException ex) {

java.util.logging.Logger.getLogger(XadesSigner.class.getName()).log(Level.SEVERE,

null, ex);

APPENDIX A. XADES SIGNING MODULE 65

}

final byte[] signedbytes = bout.toByteArray();

if (signRequest instanceof GenericServletRequest) {

signResponse = new GenericServletResponse(sReq.getRequestID(), signedbytes,

getSigningCertificate(), fp, new ArchiveData(signedbytes), ”text/xml”);

} else {

signResponse = new GenericSignResponse(sReq.getRequestID(), signedbytes,

getSigningCertificate(), fp, new ArchiveData(signedbytes));

}

return signResponse;

}

public xades4j.production.XadesSigner XadesSign(XadesSignerParameters params) throws

XadesProfileResolutionException, SignServerException{

KeyingDataProvider kdp=null;

try {

kdp = new DirectKeyingDataProvider((X509Certificate)this.getSigningCertificate(), this.

getCryptoToken().getPrivateKey(ICryptoToken.PURPOSE SIGN));

} catch (CryptoTokenOfflineException ex) {

java.util.logging.Logger.getLogger(XadesSigner.class.getName()).log(Level.SEVERE,

null, ex);

}

Profiles config profile = Profiles.valueOf(params.getXadesForm());

XadesSigningProfile xsp=null;

switch(config profile){

case C:

//unimplemented yet

case EPES:

//unimplemented yet

case BES:

xsp = new XadesBesSigningProfile(kdp);

break;

case T:

TSAParameters tsaParameters = params.getTSAParameters();

if(tsaParameters==null){

throw new SignServerException(”TSA URL is required to use the ”+

config profile.toString()+” Profile”);

APPENDIX A. XADES SIGNING MODULE 66

}

xsp = new XadesTSigningProfile(kdp)

.withTimeStampTokenProvider(TimeStampProvider.class)

.withBinding(TSAParameters.class, params.getTSAParameters());

break;

default:

throw new XadesProfileResolutionException(”Unknown Xades Profile”, null);

}

return (xades4j.production.XadesSigner) xsp.newSigner();

}

private void archive(Document doc,MarkLogicParameters params,int requestID) {

if(params!=null){

DatabaseClient dbclient = DatabaseClientFactory.newClient(params.getURL(),

params.getPort(), params.getUsername(), params.getPassword(),

DatabaseClientFactory.Authentication.DIGEST);

XMLDocumentManager docMgr = dbclient.newXMLDocumentManager();

DOMHandle domHandle = new DOMHandle();

domHandle.set(doc);

/∗Create a docID ∗/

final SimpleDateFormat sdf = new SimpleDateFormat(”yyyy MM dd”);

String data = sdf.format(new Date());

String URI = ”/XadesSigner/”+workerId+”−”+requestID+”−”+data;

docMgr.write(URI,domHandle);

dbclient.release();

}

}

}

Appendix B

XaDeS validator Module

package org.signserver.module.xadesvalidator;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.cert.CertificateException;

import java.util.logging.Level;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.apache.log4j.Logger;

import org.apache.xml.security.utils.Constants;

import org.bouncycastle.asn1.x500.RDN;

import org.bouncycastle.asn1.x500.X500Name;

import org.bouncycastle.asn1.x500.style.BCStyle;

import org.bouncycastle.cert.jcajce.JcaX509CertificateHolder;

import org.signserver.common.CryptoTokenOfflineException;

import org.signserver.common.GenericServletRequest;

import org.signserver.common.GenericValidationRequest;

import org.signserver.common.GenericValidationResponse;

import org.signserver.common.IValidationRequest;

import org.signserver.common.IllegalRequestException;

import org.signserver.common.ProcessRequest;

import org.signserver.common.ProcessResponse;

import org.signserver.common.RequestContext;

67

APPENDIX B. XADES VALIDATOR MODULE 68

import org.signserver.common.SignServerException;

import org.signserver.server.validators.BaseValidator;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import xades4j.XAdES4jException;

import xades4j.providers.CertificateValidationProvider;

import xades4j.providers.impl.PKIXCertificateValidationProvider;

import xades4j.verification.XAdESVerificationResult;

import xades4j.verification.XadesVerificationProfile;

import xades4j.verification.XadesVerifier;

/∗∗

∗ lmaia@dcc.fc.up.pt

∗/

public class XadesValidator extends BaseValidator {

/∗∗ Logger. ∗/

private static final Logger LOG = Logger.getLogger(XadesValidator.class);

public ProcessResponse processData(ProcessRequest signRequest, RequestContext

requestContext) throws IllegalRequestException, CryptoTokenOfflineException,

SignServerException {

// Check that the request contains a valid GenericSignRequest object with a byte[].

if (!(signRequest instanceof GenericValidationRequest)) {

throw new IllegalRequestException(”Recieved request wasn’t a expected

GenericValidationRequest.”);

}

IValidationRequest sReq = (IValidationRequest) signRequest;

if (!(sReq.getRequestData() instanceof byte[])) {

throw new IllegalRequestException(”Recieved request data wasn’t a expected byte[].”);

}

if (signRequest instanceof GenericServletRequest) {

throw new IllegalArgumentException(”GenericServletRequest not yet supported”);

}

byte[] data = (byte[]) sReq.getRequestData();

GenericValidationResponse response = validate(sReq.getRequestID(), data);

return response;

}

APPENDIX B. XADES VALIDATOR MODULE 69

private GenericValidationResponse validate(final int requestId, byte[] data) throws

SignServerException {

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

try {

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);

DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(new ByteArrayInputStream(data));

KeyStore truststore = KeyStore.getInstance(KeyStore.getDefaultType());

char[] password = getConfig().getProperty(”TRUSTSTOREPASSWORD”).

toCharArray();

java.io.FileInputStream fis =

new java.io.FileInputStream(getConfig().getProperty(”TRUSTSTOREPATH”)

);

truststore.load(fis, password);

fis.close();

CertificateValidationProvider cvp = new PKIXCertificateValidationProvider(truststore

, false);

XadesVerificationProfile p = new XadesVerificationProfile(cvp);

XadesVerifier xv = p.newVerifier();

NodeList nl = doc.getElementsByTagNameNS(Constants.SignatureSpecNS, Constants.

TAG SIGNATURE);

if(nl.getLength()==0){

return new GenericValidationResponse(requestId, false);

}

String signees = ””;

boolean isSignedbyServer = false;

for(int i=0;i<nl.getLength();i++){

Element sigElement= (Element) nl.item(i);

XAdESVerificationResult r = xv.verify(sigElement,null);

X500Name x500name = new JcaX509CertificateHolder(r.getValidationCertificate()).

getSubject();

APPENDIX B. XADES VALIDATOR MODULE 70

RDN[] rdn = x500name.getRDNs(BCStyle.CN);

String cn = rdn[0].getFirst().getValue().toString();

if(cn.equalsIgnoreCase(”Signature Service”)) //since we are ”pinning” certs this is

OUR cert

{

isSignedbyServer=true;

}

}

return new GenericValidationResponse(requestId, isSignedbyServer);

} catch (NoSuchAlgorithmException ex) {

java.util.logging.Logger.getLogger(XadesValidator.class.getName()).log(Level.SEVERE,

null, ex);

} catch (CertificateException ex) {

java.util.logging.Logger.getLogger(XadesValidator.class.getName()).log(Level.SEVERE,

null, ex);

} catch (KeyStoreException ex) {

java.util.logging.Logger.getLogger(XadesValidator.class.getName()).log(Level.SEVERE,

null, ex);

} catch (XAdES4jException ex) {

java.util.logging.Logger.getLogger(XadesValidator.class.getName()).log(Level.SEVERE,

null, ex);

}catch (NoSuchProviderException ex) {

java.util.logging.Logger.getLogger(XadesValidator.class.getName()).log(Level.SEVERE,

null, ex);

} catch (SAXException ex) {

java.util.logging.Logger.getLogger(XadesVerifier.class.getName()).log(Level.SEVERE,

null, ex);

} catch (IOException ex) {

java.util.logging.Logger.getLogger(XadesVerifier.class.getName()).log(Level.SEVERE,

null, ex);

} catch (ParserConfigurationException ex) {

java.util.logging.Logger.getLogger(XadesVerifier.class.getName()).log(Level.SEVERE,

null, ex);

}

//any error ocurring means the document is NOT properly validated (false)

return new GenericValidationResponse(requestId, false);

}

}

References

[1] J. Barney, “Firm resources and sustained competitive advantage,” Journal of

Management, vol. 17, pp. 99–120, 1991. 1

[2] R. Grewal, J. A. Dearden, and G. L. Llilien, “The university rankings game,”

The American Statistician, vol. 62, no. 3, 2008. 1

[3] X. Luo and M. Warkentin, “Assessment of information security spending and

costs of failure.,” in Proceedings of 2004 ISOneWorld International Conference,

Las Vegas, NV, 2004. 1

[4] R. Cummings, “The evolution of information assurance,” Computer, vol. 35,

no. 12, pp. 65–72, 2002. 1

[5] K. Dauch, A. Hovak, and R. Nestler, “Information Assurance Using a Defense In-

Depth Strategy,” in CATCH 2009: CYBERSECURITY APPLICATIONS AND

TECHNOLOGY CONFERENCE FOR HOMELAND SECURITY, PROCEED-

INGS, pp. 267–272, Dept Homeland Security, 2009. Cyber Security Applications

and Technology Conference for Homeland Security, Washington, DC, MAR 03-04,

2009. 1

[6] L. Maia and M. Correia, “Java jca/jce programming in android with sd smart

cards,” in Information Systems and Technologies (CISTI), 2012 7th Iberian

Conference on, pp. 1–6, 2012. 6

[7] L. A. Maia, L. M. Valente, M. E. Correia, and L. M. Ribeiro, “Trusted information

across student information systems,” 2013. 6, 9, 10, 60

[8] Primekey, “Primekey’s signserver.” http://www.signserver.org/, 2013. 6, 32

[9] M. L. Markus Kil̊as, Luis A. Maia, “Primekey bug tracker.” https://jira.

primekey.se/browse/DSS-12, Nov. 2013. 6

71

http://www.signserver.org/
https://jira.primekey.se/browse/DSS-12
https://jira.primekey.se/browse/DSS-12

REFERENCES 72

[10] L. M. Ribeiro, G. David, A. Azevedo, and J. M. dos Santos, “Developing an

information system at the engineering faculty of porto university,” Proceedings of

the EUNIS 97-European Cooperation in Higher Education Information Systems,

1997. 8

[11] G. David and L. M. Ribeiro, “Getting management support from an university

information system,” EUNIS 99 Information Technology Shaping European

Universities, 1999. 8

[12] J. Nickell, Detecting Forgery: Forensic Investigation of Documents. University

Press of Kentucky, 2005. 9

[13] C. S. et al?, “Guidelines on a european learner mobility model.”

http://wiki.teria.no/display/EuropeanLearnerMobility/Guidelines+

on+European+Learner+Mobility. 10

[14] C. o. E. European Commission and UNESCO/CEPES, “Outline

structure for the diploma supplement.” http://ec.europa.eu/education/

lifelong-learning-policy/doc/ds/ds_en.pdf. 10

[15] C. O. T. E. COMMUNITIES, “Report from the commission to the

european parliament and the council on the first evaluation of the

europass initiative.” http://eur-lex.europa.eu/LexUriServ/LexUriServ.

do?uri=COM:2008:0427:FIN:EN:PDF, July 2008. 10

[16] F. D. Schoorman, R. C. Mayer, and J. H. Davis, “An integrative model of

organizational trust: Past, present, and future,” Academy of Management review,

vol. 32, no. 2, pp. 344–354, 2007. 10

[17] H. Li and M. Singhal, “Trust management in distributed systems,” Computer,

vol. 40, pp. 45–53, Feb. 2007. 11

[18] B. Christianson and W. S. Harbison, “Why isn’t trust transitive?,” in Proceedings

of the International Workshop on Security Protocols, (London, UK, UK), pp. 171–

176, Springer-Verlag, 1997. 11

[19] A. Jøsang and S. Pope, “Semantic constraints for trust transitivity,” in Pro-

ceedings of the 2Nd Asia-Pacific Conference on Conceptual Modelling - Volume

43, APCCM ’05, (Darlinghurst, Australia, Australia), pp. 59–68, Australian

Computer Society, Inc., 2005. 11

http://wiki.teria.no/display/EuropeanLearnerMobility/Guidelines+on+European+Learner+Mobility
http://wiki.teria.no/display/EuropeanLearnerMobility/Guidelines+on+European+Learner+Mobility
http://ec.europa.eu/education/lifelong-learning-policy/doc/ds/ds_en.pdf
http://ec.europa.eu/education/lifelong-learning-policy/doc/ds/ds_en.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0427:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0427:FIN:EN:PDF

REFERENCES 73

[20] E. Barka and R. Sandhu, “Framework for role-based delegation models,” in

Computer Security Applications, 2000. ACSAC ’00. 16th Annual Conference,

pp. 168–176, 2000. 12

[21] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A rule-based framework for role-based

delegation and revocation,” ACM Trans. Inf. Syst. Secur., vol. 6, pp. 404–441,

Aug. 2003. 12

[22] Y. Ding, P. Horster, and H. Petersen, “A new approach for delegation using

hierarchical delegation tokens.,” in Communications and Multimedia Security,

pp. 128–143, Citeseer, 1996. 12

[23] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transac-

tions on Information Theory, vol. IT-22, no. 6, pp. 644–654, 1976. 16

[24] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,

“Rfc 5280: Internet x. 509 public key infrastructure certificate and certificate

revocation list (crl) profile,” URL: http://www. ietf. org/rfc/rfc5280. txt, 2008.

18

[25] SEMA/UMIC/AMA, “Projecto cartão de cidadão - especificações leitor

base.” http://www.cartaodecidadao.pt/images/stories/especificacoes%

20-%20leitores%20base_v1.0.pdf, Nov. 2013. 20, 21

[26] L. Valente, “Mecanismos seguros para o auto-aprovisionamento de certificados

do Cartão U.Porto,” Master’s thesis, Faculty of Science, University of Porto,

December, 2012. 21

[27] Mastercard, “Paypass – m/chip 4 - card technical specification,” 2008. Restricted

document. 21

[28] “Marklogic.” http://www.marklogic.com/, Nov. 2013. 32

[29] D. Sánchez-Mart́ınez, I. Maŕın-López, J. Fabre-Cascales, T. Jiménez-Garćıa, and

A. F. Gómez-Skarmeta, “THE BUILDING OF A UBIQUITOUS GOVERN-

MENT IN THE UNIVERSITY OF MURCIA,” 36

[30] MICROSOFT, “Capicom reference.” http://msdn.microsoft.com/en-us/

library/windows/desktop/aa375732%28v=vs.85%29.aspx, Nov. 2013. 38

[31] T. Coffey and P. Saidha, “Non-repudiation with mandatory proof of receipt,”

Computer Communication Review, vol. 26, pp. 6–17, 1996. 40

http://www.cartaodecidadao.pt/images/stories/especificacoes%20-%20leitores%20base_v1.0.pdf
http://www.cartaodecidadao.pt/images/stories/especificacoes%20-%20leitores%20base_v1.0.pdf
http://www.marklogic.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375732%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375732%28v=vs.85%29.aspx

	Acknowledgments
	Abstract
	Keywords
	Acronyms
	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Features
	Proposal
	Application Domain
	Contributions
	Outline

	Information system at the University of Porto
	Information System
	Database
	Document's Dematerialization
	Risks to data integrity

	Trust
	Hierarchy and trust
	Role attribution as delegation of trust
	Student Evaluation
	Risks in the grading process context

	Technical Background
	Public Key Cryptography
	Public Key Infrastructure
	Digital Certificates
	Digital Signatures

	Smart-card
	Portuguese National Identity Card
	University of Porto Smartcard
	University of Porto Certificates

	XML
	XML signatures
	XML Canonicalization
	Inclusive and Exclusive canonicalization

	XMLdsig structure
	 XaDeS

	Marklogic Database
	Signserver
	HSM

	Comparison with similar systems
	University of Murcia e-Government
	Security Services
	Documentary Management
	Client Architectures
	Electronic Registry
	Electronic Marks Certificate
	Analysis of solution

	Proposal
	Document-Oriented Data
	Data persistence
	Document Trust
	Hierarchies and trust delegation
	Grading Documents
	Professor Signatures
	Institutional Signature
	External Timestamp

	Implementation
	Architecture
	User Signatures
	Java Applet

	Signserver
	Differences with University of Murcia Framework

	Conclusions
	Future Work
	XaDeS Signing Module
	XaDeS validator Module
	References

