
MAX-PLANCK-INSTITUT
••

FUR

INFORMATIK

(
On the Intellectual Terrain around NP

s. Chan J. Hartmanis

MPI-I-94-103 January 1994

o

mPD
_________ IN F 0 R M AT I K __

Im Stadtwald

66123 Saarbrücken

Germany

On the Intellectual Terrain around NP

s. Chari J. Hartmams

MPI-I-94-103 January 1994

On the Intellectual Terrain around Npt

Juris Hartmanis1 and Suresh Chari2

1 Comell University and Max-Planck Institut für Informatik
2 Comell University

Abstract. In this paper we view Pd,NP as the problem which symbolizes
the attempt to understand what is and is not feasibly computable. The paper
shortly reviews the history of the developments from Göde1's 1956 letter ask
ing for the computational complexity of finding proofs of theorems, through
computational complexity, the exploration of complete problems for NP and
PSPACE, through the results of structural complexity to the recent insights
about interactive proofs.

1 GÖDEL'S QUESTION

The development of recursive function theory, following Gödel's famous 1931 paper
[Gö31] on the incompleteness of formal mathematical systems, clarified what is and
is not effectively computable. We now have a deep understanding of effective pro ce
dures and their absolute limitations as weil as a good picture of the structure and
classification of effectively undecidable problems. It is not clear that the the concept
of feasible computability can be defined as robustly and intuitively satisfying form as
that of effective computability. At the same time it is very clear that with full aWa.:.:'e
ness of the ever growing computing power we know that there are problems which
remain and will remain, in their full generality, beyond the scope of our computing
capabilities. One of the central tasks of theoretical computer science is to contribllte
to a deeper understanding of what makes problems hard to compute, classify prob
lems by their computational complexity and yield a better understanding of what is
and is not feasibly computable.

It is interesting to observe that the effort to understand what is and is not ef
fectively computable was inspired by questions about the power of formal systems
and questions about theorem proving. Not too surprisingly, the questions about the
limits of feasible computability are also c10sely connected to questions about the
computational complexity of theorem proving. It is far more surprising and interest
ing that it was again Gödel, who's work had necessitated the investigations of what
is effectively computable, who asked the key question about feasible computability
in terms of theorem proving. In a most interesting 1956 letter to his colleague at the
Institute for Advanced Study, John von Neumann, Gödel asks for the computational
complexity of finding proofs for theorems in formal systems(cf. [Har89]). Gödel is
very precise, he specifies the Turing machine as a computational model and then
asks for the function which bounds the number of stel's needed to compute proofs

t This work is supported in part by NSF grant CCR-9123730

of length n. It does not take very long to realize that Gödel was, in modern termi
nology, asking von Neumann about the deterministic computational complexity of
theorem proving and thus about the complexity of NP. In the same letter Gödel also
asks about the computational complexity of problems such as primality testing and
quite surprisingly, expresses the opinion that the problem of theorem proving may
not be so hard. He mentions that it is not unusual that in combinatorial problems
the complexity of the computation can be reduced from the N steps required in the
brute force method to log N steps, or linear in the length of the input. He mentions
that it would not be unreasonable to expect that theorem proving could be done in
a linear or quadratic number of steps. Strange that the man who showed the unex
pected limits of formal theorem proving did not seem to suspect that computational
theorem proving and therefor NP may be at the limits of feasible computability. It
is very unfortunate that von Neumann was already suffering from cancer and passed
away the following year. No reply to this letter has been found and it seems that
Gödel did not pursue this problem nor try to publicize it.

2 Complexity theory and complete problems

The full understanding of the importance of Gödel's question had to wait for the
development of computational complexity which was initiated as an active computer
science research area in the early 1960's. The basic hierarchy results were developed,
the key concept of the complexity class, the set of all problems solvable(or languages
acceptable) in a given resource bound, was defined and investigated[HS65, m,S65].
In a very general sense, the most important effect of this early work in complexity
theory was the demonstration that there are strict quantitative laws that govern the
behavior of information and computation. A turning point in this work came in 1971
with Cook's proof that SAT, the set of satisfiable Boolean formulas, was complete
for NP, the dass of nondeterministic polynomial time computations [Coo71](these
results were independently discovered a year later by Levin [Lev73]). In other words,
any problem that can be solved in polynomial time by guessing a polynomiaJly
long solution and then verifying that the correct solution had been guessed, could
be reduced in polynomial time to SAT. In 1972 Karp [Kar72] showed that many
combinatorial problems were in NP and could be reduce to SAT. On of the key
problems in this set was the Clique decision problem: given a graph G and an
integer k, determine if there is a clique of size k in this graph. Cook's and Karv's
work virtually opened a flood gate of complete problems in NP and PSPACE. From
all areas of computer science mathematics, operations research etc. , came complete
problems in aIl sizes and shapes aIl reducing to SAT and SAT reducing to them (see
[GJ79] for a compendium).

Later, many other complexity dasses were defined and found to have com
plete languages or problems. Among the better known ones are SPACE(logn),
NSPACE(logn), P, NP, SPACE(n) , NSPACE(n), the Polynomial Hierarchy(PH),
PSPACE, NPSPACE(which is the same as PSPACE), EXPTIME, NEXPTIME,
and EXPSPACE. The reassuring aspect ofthese classes is that they are very robust
in their definition and that they appear naturally in many other settings which may
or may not be directly connected to computing. For example, a variety of these com
plexity classes appear naturally as the classes definable by different logics, without

any direct reference to computing(cf. [Imm89] for a survey). There is nO doubt that
comple.x:ity classes are a key concept and that they reveal a natural and important
structure in the classification of computational problems and mathematical objects.

3 Structural Complexity Theory

The exploration of the structure of the complexity of computations has been an
active area of research for more than a decade. This research explores the rela
tions between various complexity classes and it investigates the internal structurc
of individual comple.x:ity classes. Figure 1 presents the key complexity classes below
EXPSPACE, the class of all problems solvable with tape size bounded by an expD
nential in the length of the input. Besides the space and time bounded classes such
as P, PSPACE etc. mentioned earlier the figure also shows the second level of the
Polynomial Hierarchy in detail. pSATII[k) is the class of languages recognizable by
polynomial time oracle machines which can make up to k non-adaptive queries to
a SAT oracle. The language of uniquely satisftable formulas, USAT, is in Er, the
second level of the PR and also the complement of USAT is in Er. In fad, USAT,
is in the class pSATII[2). pSAT(logn] is the class of languages accepted by polynomial
time oracle machines which make logarithmic number of queries to SAT and pSAT

is the dass of languages recognizable with a polynomial number of queries to SAT.
For several NP optimization problems where the optimum value is bounded by a
polynomial in the input size, such as the Clique problem (the maximum clique size
is the number ofvertices), the optimum value can be computed with logarithmically
many queries to SAT, by a binary search on the polynomial sized range of possible
values. Optimization problems such as the Traveling Salesperson Problem can be
solved with polynomially many queries to SAT.

Though we know a tremendous amount about the relations between these com
plexity classes, we still have no proof that they all are distinct: There is no proof
that Pisnot equal to PSPACE! There is a very strong conviction that all the ma
jor comple.x:ity classes are indeed different, but in spite of a.ll our efforts there is no
nontrivial separation result. A major result would be any separation of: P and NP,
NP and PSPACE, the various levels of the Polynomial Hierarchy, PSPSACE and
EXPTIME, EXPTIME and NEXPTIME, and the last twofrom EXPSPACE. Less
dramatic, but still very interesting would be the separation of the lower complexity
classes, including SPACE(logn) and P or some even lower classes (defined by circuit
models) not discussed here. It is clear that there are major problems facing complex
ity theory on which no substantial progress has been made since their definition, in
some cases more than twenty years ago. The successes in recursive function theory
have come from diagonalization arguments whose sharpness and sophistication has
been elevated to a fine art. Unfortunate1y, though structural complexity theory has
been strongly infiuenced by concepts from recursive function theory, diagonalization
prooftechniques have failed to dent the notorious separation problems. Since we can
not diagonalize over these classes to construct a language just outside of the class,
i.e. in a higher but not too high a class, we lack proof techniques to be able to deal
with all possible ways of computing a problem in a given class to show that a certain
problem from the class above can not be so computed. We badly need new concepts

EXPSPACE

EXPTIME

PSPACE

PSATI1[2j

PSATII[l]

NP

P

Fig.l. Key complexity classes be10w EXPSPACE

and techniques to reason about all the possible eomputations in a eomplexi.ty clc.ss
to show their limitations.

Given the eurrent situation, a working hypothesis in structural eomplexi.ty theory
is that Pis different than NP and further more that the Polynomial Hierarchy is
infinite. In particular, there have been many very interesting results which show that
a given assumption impliesthat PH is finite, and thus giving in our view, a strong
indieation that the assumption is not true. We will illustrate some such results.

In 1977 Len Berman and the first author were led to eonjecture on the strength
of many special eases and with analogy to the eorresponding situation in reeur
sive function theory, that all NP eomplete sets are isomorphie under polynomial
time eomputable isomorphisms [BH77]. This means that for any two NP eomplete
problems there exists a bijection, reducing the problems to each other, and which
is polynomial time eomputable in both directions, thus asserting that all NP eom
plete problems are indeed very similar in strueture. It is easily seen that this, the
Berman-Hartmanis eonjecture, implies that all NP eomplete sets must have roughly
the same density. If we refer to a set as sparse if it has only polynomially many
elements up to size n, then the eonjecture implies that no sparse sets ca.n be NP
eomplete. Indeed, a former student of the first author, Steve Mahaney, proved the
following very interesting result.

Theorem 1 (Mahaney [Mah82]). 11 a sparse set is NP complete then P=NP.

This leads us to aceept, using our working hypothesis, that no sparse set ca.n be
eomplete for NP. Thus, there ca.n not be a polynomially large dictionary which we
ean eonsult to solve an NP eomplete problem in polynomial time with its help. We
describe the gist of the proof of this result with a new method due to Ogiwara and
Watanabe [OW90), which has made a hard proof [Mah82] quite manageable. As you
will see, the key ideas are deeeptively simple, but please do not underestimate the
originality and difficulty of the original proof and the very clever choice of the right
NP eomplete set in the new proof.
Proof Outline: Instead of SAT, we will eonsider the set

A = ((x,F) I Fan r-variable formula, lxi = r, and (3y) x < y and F(y) = 1}.

It is easy to see that this set is NP eomplete; it is in NP and by fixing x = 00 0,
it is SAT.

Let S be asparse NP eomplete set, and let the density funetion of S, i.e. I{xl:t: E
Sand lxi $ n}l, be bounded by nie. Let 1 be the polynornial time eomputable
funetion which reduees A to S with I/(x)1 $ N(lxl). Think ofthe 2" r-Iength binary
strings arranged on a line in inereasing ordp..r. Divide this line in 2(N(n))k segments
and eompute the value of the reduction 1 of A to S at the 2(N(n))k points at the
beginning of each segment. Should all these values of 1 be different then we know
that among the first (N(n))1e + 1 values there must be one that is not in Sand thus
shows that there is no y to the right of it which ean satisfy F . Therefore we ean
remove the right half of the line sinee no solution exists there. We now repeat this
proeess on the first half. Clearly, if our luck holds and, in all following eomputations
the 1 values are distinct, in polynomially many rounds we will reach polynomially
many values which must eontain the satisfying assignment if there is one and we
check all possibilities, solving the satisfiability problem in polynomial time.

Clearly, we can not expect that all the I values will be distinct aJ.] the time. At
the same time, equal values also contain a lot of good information and can be used
to eliminate from consideration the segments between any pair of values with same
function value. To see this, observe that if for x < x', we have I(x) = I(x') not in
S, then there is no solution to the right of x and therefore no solution between x
and x'. If I(x) = I(x') is in S, there are solutions to the right of x', and hence we
can eliminate the segment between x and x' without losing all solutioDS. Again it is
seen that if there are many equal values we toss out all the segments between pairs
of equal values and the line is shortened. It is not too hard to see that combining
both methods the totallength of the remaining segments to be searched decreases
by at least half each time and we can determine in polynomial time if a the formula
F is satisfiable, which implies that P=NP.

To illustrate an assumption which forces the Polynomial Rierarchy to be finite
we will consider deterministic polynomial time computations which can query a
SAT-oracle, i.e. during the computation a polynomial number of questions can be
asked about the outcome of NP computations. These considerations will also lead
us to some recent interesting results about probabilistic computations \vhich are
intuitively very satisfying. To recall' P SATII[k] denotes the dass of polynomial
time computations with k parallel i.e. non-adaptive queries to the SAT oracle.

Theorem2 (Kadin [Kad88]). 1110r any k, pSATII[k - 1] = pSATIHk] , then

the Polynomial Hierarchy is finite.

Not only can sparse sets not be NP complete if Pis not equal to NP, but if the PR
is infinite as we strongly expect, there is no way of even saving a single query to
SAT out of millions of queries. On the other hand, our intuition suggests that as the
number of queries to SAT increases the value of additional queries should decrease.
Kadin's result shows that this is not the case, but there is another way of looking at
this problem which indeed justifies our intuition of the decreasing value of queries
as the numbers increases. To see this we consider randomized reductions:

Definition 3. A language H :5~ reduces to language K, with probability p if there
exists a polynomial time function I such that

xE H => Prob[J(x,z) E K] ~ P

x ~ H => Prob[/(x,z) ~ Al = 1

wheu zischosen at random from q(n) long binary strings, where q is a polYllomial.

The :5~P (two-sided error) reduction is defined similarly, with the condition being

Prob[x E H iff I(x,z) E K] > p.

The question now is, with what probability can languagesin pSATII[k] be reduced to

p SATlI[k - 11. A very recent result by a former student of the first author, Pankaj
Rohatgi, shows that there are very interesting threshold results about randomized
reductions.

Theorem4 (Rohatgi [Roh92]). Every language in pSATll[k] can be reduced to

a language in pSATll[k - 11 with two-sided error reductions 01 probability 1- th.
And this result is optimal: il there is a such a reduction possible with probability

1 - :d:r + pol~n) then the PH is finite, where n is the size 01 the input to the

reduction.

This is a very interesting result: First it shows that with increasing k the value
of additional queries to SAT decreases since the probability that it reduces to a
problem solvable by one less query increases as k grows. At a million queries to SAT
an additional query indeed has a small value. It also shows, surprisingly, that in
randomized reductions there are very sharply defined threshold efiects such that if
it is possible to passthis threshold then the polynomial hierarchy collapses, just as
in the deterministic case, according to Kadin's result. It is also interesting to note
that the proof of this result uses the 'hard-easy' method used in Kadin's proof ili a
new setting with technically interesting methods. The results for the one-sided error
case are similar but because of the stricter reductions the threshold prob ability is
1- [I.~21. Agam the violation of this threshold forces PH to be finite. The delightful
part in the proofs is that it the reductions that achieve the desired probability bound
are simple and it is surprising that the 'natural' method is also an optimal one. We
urge you to read Rohatgi's PhD dissertation[Roh94].

4 Interactive Proofs

In 1985 two models of interactive randomized computation were introduced with VE:ry
different motivations. In order to extend NP class slightly to capture some problems
not known to be in NP, Babai defined the Arthur-Merlin games[Bab85l(see also
[BM88]). Motivated by possible applications to cryptographic protocols, Goldwasser,
Micali and Racko:ff defined the dass oflanguages with interactive proofs[GMR89]. To
motivate the introduction to this computing model, let us recall that NP is simply
that class of problems for which, when a solution is suggested, it can be verified in
polynomial time that the solution indeed solves the problem. We can think of this
as a very powerful prover seeing the problem posed to the verifier and then simply
sends him the solution, which than can be checked for validity by the verifier. Also,
if no such solution exists, no prover, however powerful, can convince the verifier of
the existence of a solution. Here the communication is one-way from the prover to
the verifier. It is easily seen that adding a two way interaction in this model does not
increase the computing power. To see this, we just have to observe that the verifier
is a deterministic polynomial time machine and that the very powerful prover can
compute the questions which the verifier will ask upon seeing the posed problem
and in response to the answers from the old prover. Thus the prover after seeing
the problem can send the whole exchange of questions and answers to convince the
verifier that there is indeed a solution to the posed problem, and we are back to
NP case. To have a unpredictable interaction between the pro ver and the verifier we
need to add randomness to the arsenal of the verifier and give up the total certainty
of verification of the solution as in the case of NP case. This leads us to the following
definition of languages with interactive proofs.

DefinitionS ([GMR89]). A language L is in IP (i.e. it has an interactive proof)
if there exists a verifier V, a randomized polynomial time maehine sueh that

x e L ~ There exists a prover P* sueh that Prob[(V, P*) aceept on x] = 1

1
x ~ L ~ For all provers P Prob[(V, P) aceept on x] < 3.

Note that repeated, independent exeeutions of this protoeol reduees the probability
of failure exponentially fast. For some time after the introduction of these eoneepts
it was not clear how powerful interactive proofs were. There is a very niee proof that
the graph non-isomorphism problem, which isin eo-NP and is not known to to be
in NP, has an interactive proof [GMW86]. The protoeol is indeed simple: For any
pair of graphs (H, K), the Verifier selects randomly H or K, randomly permutes
the graph, and asks the Prover to identify the graph as H or K. If H and K are
not isomorphie a honest prover has no diflieulty identifying the graph. If they are
isomorphie, no Prover is capable of distinguishing between the randomly permuted
versions of Hand K, which are isomorphie. Thus, no prover can do any better than
guessing the answer and henee cannot deeeive the verifier with probability more than
t. Again, by arepetition of this question-answer exchange, the probability that the
verifier is fooled by a dishonest prover can be made exeeedingly small.

It is also interesting to recall that there were oracle results[FS88] which gave rel
ativized worlds in which eo-NP was not eontained in IP. This suggested, incorrectly,
that IP was not very powerful or, aceording to the heuristie use of oracle results,
indieating that it should be very hard to prove that eo-NP is eontained in IP in the
real (unrelativized) world. The oracle hueristic implied that such a proof ean not
be obtained with "known methods".

The determination of the full power of IP came very suddenly and it was a great
surprise. In 1990, Lund, Fortnow, Karloff and Nisan [LFKN90] developed the tech
niques to show that the entire polynomial hierarchy is eontained in IP and Shamir
[Sha90] finished the characterization of the power of interaction and randomization
by showing that IP=PSPACE. This was indeed a startling surprise with further
unexpected eonsequenees. The proof exploits in a very elegant way our better un
derstanding of polynomials than Boolean formulas. The fact that polynomials can
be 'fingerprinted' be evaluating them at a random point, was the key to the very
ingenious proof. We know that if two polynomials, p and q of low degree evaluate
to the same value with high probability at a randomly chosen point x, then, with
high probability they are identical polynomials, sinee x is a root of the low degree
polynomialp(x) -q(x), and such polynomials have few roots unless identically zero.
The leey idea in the proof is to replace· a given quantmed Boolean formula, which
constitute a PSPACE eomplete problem, QBF, by operations over a field of integers
modulo a large prime. To eonvert a QBF into a polynomial, 'or' is replaced by +,
'and' by x, 'not'x by (I-x), 'for all'x by IIz=o,l' and 'there exists'x by L:z=O,l. After
that, a clever sequence of questions about the resulting polynomials and their evdl
uation (fingerprinting) at random points, yields the interactive protocol to test if
the given QBF is satisfiable, thus showing that QBFeIP, and since QBF is eomplete
for PSPACE, PSPACE~IP. This startling result also gives a natural eounterexelJIlple

to refute the random oracle hypothesis. It is shown in [HCRR90b) that with prob
ability 1, for a random oracle A, IPA #PSPACEA. The IP=PSPACE result also
allows one to tie the tuidth of a proof of a theorem in a formal system to the ease of
convincing a verifier of its correctness with high probability[HCRR90a). Informally,
we can think of a proof of a theorem as being written on a two-dimensional page
so that it can be verified easily, for e.g. by a finite automaton which can read one
symbol on 2 adjacent lines of the proof. This can be shown to be a robust definition
with the finite automaton replaced by several other models, all yielding the same
class of proofs. It can then be shown that PSPACE is the class of languages with
proofs with polynomially wide proofs, where the width of a 24iimensional proof
being the largest number of symbols on any one line. IP=PSPACE thus implies that
width, as opposed to the length, of the proof determines how quickly one can give
overwhe1ming evidence that a theorem is provable without showing its fun proof.

Theimpact ofthe IP=PSPACE result is still being explored in complexity theory
but some related results followed in rapid succession. Motivated again by their possi
bl1! application in cryptographic protocols, Ben-Or, Goldwasser, Kilian and Wigder
son [BGKW88) had earlier proposed, MIP, a multi-prover version of interactive
proofs. Babai, Fortnow and Lund [BFL90) showed that this model, which has two

provers who do not communicate with each other, increases the computational power
substantially: MIP = NEXPTIME. Fortnow, Rompel and Sipser [FRS88) showed
that the MIP model was equivalent to the following oracle model

Definition 6. A language L is in MIP if there exists a polynomial time probabilistic
oracle machlne Y (the verifier) such that

xE L ~ There exists oracle 0 such that Prob[YO(x) accepts 1 = 1

1
XE L ~ For all 0 Prob[YO(x) accepts 1 ~ 3

Since the oracle answers can be thought ofas an exponentially long 'proof' of mem
bership, the result MIP=NEXPTIME, says that for languages in exponential time
there are exponentially long proofs of membership which can be checked by in
spection at a polynomial number of places. This charactenzation of MIP and the
MIP=NEXPTIME were surprisingly used to show the hardness of approximating
the clique problem [FGL +91) unless EXPTIME=NEXPTIME. This also initiated
the attempt to 'scale down' the result on proofs whose correctness ca.Il be checked
by inspection at very few places[BFLS91]. Two big breakthroughs followed: The
results of [AS92] showed that indeed languages in NP had proofs which could be
v~rified by checking at logarithmical.ly many (in fact even smaller) places of the
proof. Finally Arora et al. [ALM+92] showed that NP is the set of languages which
have proofs which can be checked by verifiers which use logarithmically many ran
dom bits and which inspect the proof at only a constant number of positions! Thhl
surprising characterization has led to many results on the hardness of approximating
many combinatorial problems[ALM+92, LY93, ABSS93j, whose approximability has
been open for several years.

References

[ABSS93] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes and systems of linear equatioDS. In Proceeding$ of tke
34tk IEEE Sympo$ium on Foundatiom of Computer Science, pages 724-733,
1993.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proofverüic:ation
and the hardness of approximation problems. In Proceeding$ of the 33r

" IEEE
Sympo$ium on Foandatiom of Computer Science, pages 14-23, 1992.

[AS92] S. Arora and S. Sa.fra. Probabilistic checking of proofs. In Proceeding$ of

the 33r
" IEEE Sympo$iv.m on Foundatiom of Computer Science, pages 2-13,

1992.
[Bab85] L. Babai. Trading group theory for randomness. In Proceeding$ of the 11"

Annual ACM Sympo$iv.m on Theory of Computing, pages 421-429, 1985.
[BFL90] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has

two-prover interactive protocols. In Proceeding$ of tke 31 n IEEE Sympo$ium

on Foundatiom of Computer Science, pages 16-25,1990_
[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computatioDS in

polylogarithmic time. In Proceeding$ of the ~sr" Annual ACM Sympo.,iumm

Theory of Computing, pages 21-31, 1991.
[BH77] L. Berman and J . Hartmanis. On isomorphism and density of NP and other

complete sets. SIAM JO'arnal on Computing, 6:305-322, 1977.
[BM88] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system and

a hierarchy of complexity classes. Journal of Computer and SY$tem Science$,
34:254-276, 1988.

[BGKW88] M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi prover inter~c
tive proofs: How to remove intractability. In Proceeding$ of the 2t!" Anntal

ACM Sympo$ium on Theory of Computing, pages 113--131, 1988.
[Coo71] S. Cook. The complexity of theorem proving procedures. In Proct:eding$ of

the sr" Annual ACM Sympo$ium on Theory of Computing, pages 151-158,
1971.

[FGL +91] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating
clique is alomst NP-complete. In Proceeding$ of the 32"" IEEE Sympo$iv.m
on FOTJ.nda.tiom of Computer Science, pages 2-12, 1991.

[FRS88) L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover inter
active protocols. In Proceeding$ 01 the sr" Structure in Complr.zity Theory

Conference, pages 156-161, 1988.
[FS88) L. Fortnow ud M. Sipser. Are there interactive protocols for co-NP lan

guages? Information Procu$ing Letter$, 28(5):249-251, 1988.
[Gö31) K. Gödel. Über formal unentscheidbare Sätze der Principiua mathematica

und verwandter Systeme. MC>1UJbhejte fir Matkematilc und Ph!'$ik, 38:173-
198,193l.

[GJ79) M. Garey and D. Johnson. Computer$ and Intractability:A gUlde to tke thu·ry

of NP-Completeneu. Freeman, 1979.
[GMR89) S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge complexity of inter

active proof systems. SIAM Journal on Comp'ding, 18:186-208, 1989.
[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity and a methodology of cryptographic protocol desigr... In Proceeding$

of the 2~k IEEE Sympo$ium on Foundatiom of Computer Sciellce, pages
174-187,1986.

[Har89] J. Hartmanis. Gödel, von Neumann and the P=?NP problem. Bulletin o/the
EATCS, 38:101-107, June 1989.

[HCRR90a] J. Hartmanis, R. Chang, D. Ranjan, and P. Rohatgi. On IP=PSPACE and
theorems with narrow proofs. Bulletin 0/ the EATCS, 41:166-174, June 1990.

[HCRR90b] J. Hartmanis, R. Chang, D. Ranjan, and P. Rohatgi. Structural Complexity
Theory: Recent Surprises. In Proceeding& 0/ SWAT 90, pages 1-12. Lecture
Notes in Computer Science #447,1990.

[HLS65] J. Hartmanis, P. Lewis, ud R. Stearns. Hierarchies of memory limited com
putations. In Proceeding& 01 (fit. IEEE Sympo&ill.m on Switching Circll.it TheoMJ
and Logical De&ign, pages 179-190,1965.

[HS65) J. Hartmanis ud R. Stearns. On the computational complexity of algorithms.
Tran". AMS, 117:285-306, 1965.

(Imm89) N. Immerman. Descriptive and computational complexity. In J. Hartmanis,
editor, Proceeding& 01 SymPO&ia in Applied Mathematic&, pages 75-91. AMS,
1989.

[Kad88) J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy
collapses. SIAM Journ4l on Computing, 17(6):1263-1282,1988.

(Kar72] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complmty 01 Computer Computation", pages 85-103.
Plenum Press, 1972.

[Lev73) L. Levin. Universal'nyie perebornyie zada.chi(universal search problems).
Problemy Peredachi In/ormatni, 9(3), 1973.

(LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for inter
active proof systems. In Proceeding& 0/ the 31 ri IEEE Sympo&ium on F01l.n·
dation" 01 Computer Science, pages 2-10, 1990.

(L Y93] C. Lund and M. Yannabkis. On the hardness of approrimating minimizat:.on
problems. In Proceeding& 0/ the 2~1t. Annual ACM Sympo&ilI.m on Theory 01
Computing, pages 286-293, 1993.

(Mah82] S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman
and Hartmanis. Journal 01 Computer aM Sy&tem Science.s, 25(2):130-H3,
1982.

[OW90] M. Ogiwara and O. Watanabe. On poynomial time bounded truth-table re
ducibility of NP to sparse sets. In Proceeding& 01 the 21:"/' .4.nnual _4CM
Sympo&ium on Theory 01 Computing, pages 457-467, 1990.

[Roh92) P. Rohatgi. SaviDg queries with randomness. In Proceeding& 01 the 11t. Strac·

ture in Complezity Theory Conlerence, pages 71-83, 1992.
[Roh94] P. Rohatgi. On Propertie& 01 R4ndom Reduction". PhD thesis, Cornell Uni·

versity,1994. Available as Computer Science Department technical report TR
93-1386.

[Sha90] A. Shamir. IP = PSPACE. In Proceeding& 0/ the 31·t IEEE Sympo&ium on
FOll.ndation" 01 Computer Science, pages 11-15, 1990.

This article was processed using the Jl.TEfC macro pa.c.kage with LLNCS stylf

	94-1030001
	94-1030002
	94-1030003
	94-1030004
	94-1030005
	94-1030006
	94-1030007
	94-1030008
	94-1030009
	94-1030010
	94-1030011
	94-1030012
	94-1030013
	cover-hinten_2099-2897-300dpi

