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On the intensities of electron diffraction rings
By M. BLACKMAN
(Communicated by Q. P. Thomson, F.R.S.—Received 14 June 1939)

The intensities of the rings formed when a beam of fast electrons is sent
through a polyerystalline film were first studied by G. P. Thomson (1929)
in the case of thin films of gold. The intensities were found to fit very well
(Mott 1929) with those calculated theoretically on the assumption that the
Laue theory held for scattering of electrons by the crystallites. Results
also in accordance with the theory were obtained by Mark and Wierl (1930).
A recent investigation by Ornstein and his collaborators (1938) on poly-
crystalline films of copper and silver have led to results diverging widely
from the theoretical in the sense that if the (222) ring were fitted to the
theoretical value the (111) ring, which is the strongest, had an intensity
too low by a factor of two to three.

It had also been pointed out by Kirchner (1932) that the amount of
scattering by atoms of the heavy elements (Au, Ag) is so large that the
Laue theory can hardly be expected to hold, and he discounted the signifi-
cance of the agreement between theory and experiment.

In view of the results of Ornstein and his co-workers, a consideration
of the theoretical aspect of the scattering by small crystals seems to be
necessary. In particular it is of interest to find out what size of crystal of
a particular substance is compatible with the assumption of Laue scattering.
In the following the scattering is regarded from the point of view of the
dynamical theory in the form given by Bethe (1928). The dynamical theory
is particularly applicable when the scattering is large, but there is no
reason why the theory should not be used to discuss the case where the
scattering is small, providing that it can be shown that the assumptions
of the theory still hold. We shall consider the dynamical theory for thin
crystals, and shall discuss the limiting case when it goes over into the
kinematical (or Laue) form. In this way we obtain criteria as to when a
crystal is sufficiently small to allow the Laue theory to be applied.

In applying this to the scattering by polyecrystalline films, the results of
the investigation are not quite as definite. The dynamical theory in its
present form can be applied only to a parallel-sided slab; in a polyery-
stalline film the electrons entering through one face of a crystallite will, after
reflexion, emerge from a face in general not parallel to the first. It seems
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reasonable to assume, however, that where the dynamical theory in its
present form shows large deviations from the Laue theory, these will also
be found in a more exact theory.

§ 1. Bethe's theory. The Schroedinger equation for an electron in the
periodic field of a lattice takes the form

8mme
AY’+T(E+V)W=O, (1)
where 87*meV[h* = Ly, e*""®®) and V is the potential at a point in the
crystal. The vector g is a vector in the reciprocal lattice, i.e.

g =g1b;+g,b;+g;by, (2)

where by, b,, b; are the basis vectors of the reciprocal lattice, and g,, ¢,, ¢4
are whole numbers; v, is written instead of V5,040% for convenience, and this
convention will be used wherever feasible.
The solution of the Schroedinger equation can be expressed as a super-
position of plane wayes,
W p waei(k.ﬁzn.r), (3)
g

where K, is a vector giving the direction of propagation of a representative
wave, and having the magnitude 27/A, where A is the wave-length. g is
the vector defined above.

Inserting (3) in (1) we find that in order that the Schroedinger equation
should be satisfied at all points, the following relation must hold between
the amplitudes of the waves in the crystal

'//h(Kg +v0—k,2,) +Z'vﬂ¢'h-a =0, (4)

where K? = 87*meE[h*. X' denotes that the term containing v, is to be
omitted; ky =k,+ 27h and k), = | ky |.

The relations (4) show that the amplitudes of the waves are all inter-
related. These equations can be reduced in number by considering only
those waves for which the amplitude is large. It will be seen from (4) that,
in general, a large amplitude is obtained only when the Laue condition

ki = K2+ v, = K2 (5)

holds either exactly or very nearly so.
In figure 1, O and P are two lattice points in the reciprocal lattice. PO
represents the direction of the incident wave modified by refraction and
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| PO | =1/A, where A is the wave-length in the crystal. The condition
which would give a very large amplitude for the reflected wave is
| PO || PH| =0,
and hence the difference | PO |—| PH| plays an important part in the

theory. In Bethe's notation it is put equal to {/27; { is called the “ex-
citation error”.

Op— 4 o H
P
Ficure 1. Vectors in reciprocal Ficure 2. The representation in the re-
lattice space fulfilling the Laue ciprocal lattice of the ‘‘excitation error™
conditions. { and the resonance error €.

In the simplest case where we have only one reflected wave, the relations
(4) reduce to a set of two. The condition for a solution is that the deter-
minant of the coefficients of the i functions vanish. If we put x —k, = ¢,
k —ky, = €,, where k; and Kk, represent a primary and a secondary wave
respectively (figure 2), then ¢, can be shown to depend on ¢, and {. Inserting
these expressions into the reduced form of (4), a quadratic equation for ¢
will be found to result from the condition that the determinant of the
coefficients of i/, and i, should vanish. There are hence two different sets
of values of k&, and %, .

To fix the waves uniquely, it is necessary to take the boundary con-
ditions into account. These may be summed up by stating that the com-
ponents of the wave vectors of the primary waves tangential to the surface
must be the same as those of the incident wave. Assuming that the normal
to the surface, the incident ray and the normal to the reflecting planes lie
in the same plane, we can arrange for the boundary conditions to be
satisfied by a construction given in figure 2. The vector PO represents the
original wave incident on the crystal modified by refraction,i.e. | PO | = 1/A.
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Through P a line PN is drawn parallel to the normal to the surface of the
crystal. Then the primary waves in the crystal are obtained by joining
two points on PN to O, since the vectors representing these waves will have
the correct projection on the surface. The secondary waves are obtained
by joining the points to H. The actual position of these points is deter-
mined from (4) by transforming the equation for ¢, into one for d, where
d is the distance from P along the line PN. In this way the solution for the
sets of waves inside the crystal is fixed completely.

§ 2. The intensity of the reflected waves. The theory as outlined in § 1
can be applied directly to the case of a parallel-sided slab, because in that
case the two secondary waves. will fit together at the lower surface to
form a single wave outside the crystal. The direction in which the waves
travel can be found from the condition that the secondary wave outside the
crystal should have the same wave-length as the incident wave.

The calculations show that completely different results are obtained
(@) when the electrons emerge from the surface on which they fall, (5) when
they emerge from a different surface. Case (@) is known as the Bragg case,
case (b) as the Laue case. The Bragg case is of little importance for the
purpose of this paper, and we confine ourselves to the Laue case.

This case can be treated on lines indicated by Bethe (1928), and the ratio
of the scattered intensity to the incident intensity for a film of thickness H
can be shown to be

I = I, sin® {A(W2+ 1)} /(W2 +1), (6)

where A = vH (cos 0,)}/2k cos 6, (cos 6,)t and W = x{/v. Here the angles 6,
and 0, are those shown in figure 2. The suffix of the Fourier coefficient has
been dropped because we deal with the case where there is only one
reflexion. For fast electrons, with which we are concerned, the Bragg
angle is small, and the ratio (cos 6,/cos 6,)! can, in general, be put equal to
unity. Though the angle 6, has been defined in figure 2 in the particular case
where the incident ray, the normal to the surface and the normal to the
reflecting planes lie in the same plane, the above formula holds for fast
electrons in the general case with 6, again the angle between the direction
of the reflected wave and the normal to the surface.

We consider first the intensity of the reflected wave when the Laue
conditions are exactly fulfilled, i.e. { = 0. The intensity will depend on the
thickness of the plate and the direction of incidence relative to the normal
to the surface. Keeping this direction fixed, the intensity has a periodic
character as a function of the thickness, an effect first pointed out by
Ewald (1917) in the case of X-rays. For very small thicknesses it has a
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value proportional to H? reaches a maximum when 4 = /2 and has its
second zero value when A = 7. Besides this the intensity will vary as the
crystal is turned out of the Bragg angle. Except in the region near 4 =,
2m, ete., the intensity will drop steadily to zero and then go through a
series of secondary maxima, the intensity of which decrease steadily. In
the region near 4 =, 2m, etc., the intensity will first rise to a maximum
and then decrease to zero. Typical curves are shown in figure 3.

A</
1
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Ficure 3. The reflected intensity as a function of { for a thin plate
(a) when A <€m/2, (b) when A = m.

This behaviour will probably not be observable in the case of a poly-
crystalline film. It is, however, probable that thin coherent films, e.g. of
mica or of molybdenite, may be sufficiently regular to show the effect on
rotation or when they are bent. When such a thin film is rotated out of the
position where it gives a strong reflexion (£ = 0), it will come into a position
where the reflexion is weak; on being further rotated the value of { will
change to one for which the intensity of reflexion is a relative maximum,
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and these maxima will appear at regular intervals. Their position on a
photographic plate exposed during the rotation will depend on the way the
direction of the secondary wave is changed as a function of {. This can be
shown (Thomson and Blackman 1939) to depend on { tan 6/« in the above
notation. The angular spacing of the secondary maxima would be A tan 6,/H
if A <m/2 for the case given in figure 2. In the general case the angle must
be replaced by another; for the details, we refer to the paper by Thomson
and Blackman (1939).

If such a film is bent and adjusted to give reflexion from a set of planes,
there will be a large part of the area for which the incident beam does not
make the correct angle with the planes, i.e. { =+ 0. There will be a progressive
change in the value of { for the planes lying on each side of those for which
¢ = 0; in that case there will be reflected rays corresponding to all values of
{, and these rays will emerge at slightly different angles and will have
intensities determined by the particular value of {. We can, therefore,
obtain all the secondary maxima at one setting of the crystal, the angular
spacing of these being practically identical with that given above.

For thin films (4 <n/2) the effect becomes indistinguishable from
another, due to the small size of the crystal. When the thickness is very
small the solution of the Schroedinger equation in the above form is no
longer valid; the reason is that the mathematical point in the reciprocal
lattice spreads out into a region and the reflected beam can show the
secondary maxima given by the Laue theory. Such cases have been found
by Finch and Wilman (1936) in the case of thin sheets of graphite.

It is hence extremely difficult to separate the two effects either in a
rotation photograph or in a bent crystal photograph. There is, in addition,
the question of the interaction of these very weak waves with other waves
in the crystal, as the assumption of the dynamical theory, that the re-
flected waves considered are stronger than all the others, is no longer
fulfilled. At should be possible to observe the split maxima in the region

A=~sm, if the films are sufficiently regular in thickness.

The size of the periods referred to above is of some interest, especially
as it can be shown to be of the order of 100 A, i.e. of the order of the
size of the crystals and films used in electron diffraction work on trans-
mission of electrons. The first maximum in the scattered intensity at the
Bragg angle (i.e. at { =0) considered as a function of v or H is reached
for A = m/2, i.e. vH = 7k cos f,. Taking cos 6, = 1, which will give the value
of H for direct transmission, we have vH = frix. Now

vﬂx 0305 8mme [/",l U Ua/ hi,



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

74 M. Blackman

where ¥, ,,, is the actual Fourier coefficient of the potential, and putting
V in volts, H in angstroms and taking for x a value 100 x 10® cm.~!

(corresponding to an energy of 37-5 kV), this becomes

376

H=V;'

(7)

Taking the (111) reflexions of gold, silver and aluminium for which the
values of V are 24-2, 17-3 and 6-6 V* respectively, the values of H become
45-5, 70, and 180 angstroms respectively. It is hence clear that the
kinematical theory is not applicable to a polycrystalline film of gold or
silver of thickness a hundred angstroms, though it might be in the case of
aluminium,

It can be seen from these, as also from more elementary considerations,
that it is the product vH which determines whether the scattering is small
or not. In the case of the outer rings, e.g. (531), the value of v is in general
so low that the kinematical theory of Laue can be applied. To obtain a
numerical estimate of the value of H below which the theory can be applied
to all rings, we consider the intensity of the scattered wave (at { = 0) in the
case of the strongest reflexion (111).f Table 1 shows these values when
the ratio of the scattered intensity to the incident intensity is-5 and 10 9,.
The error made in these two cases if the kinematical theory is assumed is 1-9
and 3-5 9, respectively.

TABLE 1

Thickness of film (angstroms)

Error
Ratio 9% Gold Silver Aluminium
0-05 1-9 65 10 26
0-10 35 9 14 38

A more general method of treating the scattered intensity is to consider
the integrated intensity, i.e. the total intensity scattered when the crystal
is turned relative to the incident beam.

* The data for calculating these Fourier coefficients were taken from a table of
fo values given by James and Brindley (1931), The method of calculation is given,
for example, by Froehlich, Elektronentheorie der Metalle.

t In the above work the absorption of electrons (due to inelastic collisions) has
been neglected. The absorption will, of course, materially reduce the intensity of the
elastically scattered wave. The sizes of the erystals deduced above will, however,
still be a rough measure of the point where the kinematical theory (with absorption)
will go over into the dynamical theory.
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The intensity reflected at any setting is
1 =1, sin® {A(W2+ 1)}/(W2+1),

where 4 =vH /2« cos 6,, and W =«{/v. { is, of course, zero when the
direction of incidence fulfils the Laue conditions. When the direction of
incidence differs from this direction by an amount « (in angular measure),
the value of { can be shown to be 2x6a. The total reflected intensity when
the crystal is rotated with angular speed w is

£ %fj:sinz{A(W2+ /(W2 41) dac

= 2::;“ ; sin2{A(W2+1)}/(W2+1) dW, (8)
where I, is the intensity incident per unit time.

The above assumes that the angle through which the crystal can be
turned relative to the incident beam while giving appreciable reflexion is
sufficiently small to allow I, to be treated as constant; it is further assumed
that the intensity has dropped sufficiently when « is large to allow the
limits to be extended to infinity. This approximation is justified in all the
applications made here.

The integral can be transformed into

A
Iy=h—p fo Jy(22) de. (9)

For small values of 4 the Bessel function Jy(2z) is practically a constant
(unity), and hence

I, = IyvA |*0w = L,v*H’ 230w,

where H’ = H|[cos 6,. The integrated intensity has there the kinematical
form; it is proportional to »* and to the volume of the crystal as the in-
tensity J, intercepted from the main beam will be proportional to the area
of the surface.

For values of 4 which are not so small, the value of I, deviates from the

A
kinematical value. In figure 4 the function R(4) = J. Jy(2z) dx has been
0

plotted as a function of 4. From this curve the value of the integrated
intensity I, can be obtained immediately ; the curve need only be multiplied
by the factors given in (9), the most important of which is the term w.
The characteristic feature is that the curve gives smaller values than would
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be expected from an extrapolation of straight line which represents it for
small values of 4. For very large values of 4

[Faeode = ["aena -4,

and the value of I, becomes
Iy =1v/2k%0w, (10)

i.e. the integrated intensity is proportional to », which is one of the
characteristic features of the dynamical theory for thick films.

6 R(4,)
R(4)

02 04 06 0-8 10 12 14
Frcure 4. The intensity function R(4) and the averaged intensity function R(4,);

A and 4, have been defined in the text. The ordinate is plotted in arbitrary units,
but R(A,) from the values given in the above curve for R(A4).

The point at which the value of I, differs appreciably (~59,) from the
v% law can be obtained from the curve as well. The values found with data
for the (111) reflexions of gold, silver and aluminium are 11-5, 18 and 46
angstroms respectively.

In the above considerations there are two points which require further
investigations. The first is that the theory, as it stands, is an extrapolation
of the theory for an infinite lattice: when one deals with films which may
be as little as ten atoms thick, the relation between the rays in the crystal
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as given by the Bethe theory is no longer valid. This can be expressed in
the form that a point in the reciprocal lattice should be replaced by a region,
which means that the intensity of the reflected waves would be changed.
Though it would be impossible to treat this problem exactly, the effect of
an extended region in the reciprocal lattice can be investigated by replacing
the region by two points of snitable weight, and carrying through the Bethe
theory for three waves instead of the usual two. An investigation was
carried through in a case where the value of v was that for the (111)
reflexion of gold, and the size of the crystal was taken to be 20 A. The two
points in the reciprocal lattice were chosen in weight (10: 1) and distance,
in such a way as to reproduce the features of the region as far as was
possible with such an approximation. The calculation showed that the
integrated intensity differed very little (less than 19,) from that found in
the case where one point in the reciprocal lattice was taken and the whole
weight attached to it.

In so far the extension to the region of small crystals seems to be
satisfactory. There is, however, a second feature which needs consideration.
A consideration of the kinematical theory shows that with the small wave-
lengths used, and with the small erystal size, there should he a number of
reflected waves at each setting of the crystal. This must still be true in
the dynamical theory for small crystals. These additional reflexions will
change greatly in intensity as the crystal is turned, and will sometimes add
to the intensity of the reflexion under consideration and sometimes reduce
it. Tt is, therefore, probable that the effect when averaged will be small.
An exact estimation will, however, be extremely complicated, and it is not
thought worth while extending the investigation in this direction.

§ 3. Application to a polycrystalline film. The main object of the above
investigation was to throw some light on the intensity of the electron
diffraction rings from a thin polycrystalline film. The application of a
theory based on a parallel-sided film can be regarded as justified only in so
far as it can be considered to be a good approximation to the exact theory.
Now the above theory does give all the features of the kinematical theory
(in the same way that a more complete theory should do) when the scat-
tering is small, and it seems reasonable to suppose that where the theory
deviates a great deal from the kinematical theory, this deviation will be
reproduced in the more exact theory. As will be shown below, the de-
ductions as to the deviations do seem to fit in with the experimental facts.

In the application of the theory, one has to consider first how the
experimentally determined intensities of the various diffraction rings are
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reduced to standard intensities for comparison with the theory. This is
done by adapting the X-ray formulae (Compton and Allison 1935) for
scattering by a polycrystalline film to the case of electrons. This scattering
formula is based on kinematical considerations, but an examination of the
method by which it was obtained shows that the same formula should
apply, provided the kinematical atomic scattering factor is replaced by a
dynamical one,

In equation (8), fcr example, we have a case in which the dynamical
factor D = vR(A) goes over into the kinematical factor »4 (which is pro-
portional to »%) for a thin plate. In the case of a polycrystalline film we
should again expect the »* term for sufficiently small crystals; the dyna-
mical factor will not be D but a suitable average value D, as D contains
the parameter A in which the angle between the reflected ray and the
normal to the surface enters. An exact calculation of the average value
would be very difficult and would, in any case, be impossible without an
exact theory. We have, therefore, to use qualitative considerations.

In finding the average it is clear that, other things being equal, surfaces
for which the angle between the incident ray and the normal to the surface
is large will be less important than those for which it is small, since the
area projected normal to the beam will be less in the former case.* To allow
for this the function D(A4) (or R(A4)) has been averaged over the region
+m/4>0,> —m/4, equal weight being assigned to all angles in this region.
It may be remarked that several other ways of arriving at the average
were tried, all of which led to the same type of curve and gave practically
the same results.

The averaged value of the function R(A4) is shown in the upper curve of
figure 4. The abscissa 4, differs from 4 in that the cosine term has been put
equal to unity. As is to be expected from the method of averaging, the
averaged function is not very different from the initial function R(A).

It will be shown below that this function does represent with surprising
success the intensities found by Ornstein and his co-workers when a
reasonable value is assumed for the average size of the crystals. The
comparison for silver is given below

* For the Bragg case the angle is always very large (for fast electrons); for this
reason we are justified in neglecting the Bragg case and in confining ourselves to the
Laue case.

T The effect of absorption has been neglected in the above considerations. As the
intensities given by experiment are only relative ones, the formulae used above will
still hold if the assumption is made that the intensity of each ring is affected in the
same way by the absorption. In the case of polycrystalline films and transmission
by fast electrons the deviation of the electrons in the scattering is a few degrees at



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

On the intensities of electron diffraction rings 79

TABLE 2. SILVER

Intensity functions

A
| T ~

Theoretical

Ring Experimental D B

(111) 113 117 166-3
(200) 93 105 132:7
(220) 66 66 66:0
(311) 51 477 451
(331) 27 24-2 21-1
(420) 24 224 19:5
(422) 20 17-4 150
(333) 11 14-6 12-8

In the above table the experimental intensity represents the intensity
of the rings reduced to the form in which it can be compared directly with
the theoretical function. The function ¥ is that deduced on the assumption
of kinematical scattering and is proportional to v}, The function D
(which is the averaged value of D) has been calculated from the upper
curve given in figure 4 with the assumption of an average value of the size
H = 50 A, this value being chosen by trial. The values of the v;;, which also
enter into this calculation are the same as those used to find the values
of E. The value of k is determined, of course, from the voltage used in the
experiments of Ornstein and his co-workers. As the experiment gives only
relative values of the intensity, the values of D and E are chosen so as to
fit the experimental results at the (220) ring, which is the best as regards
accuracy of measurement. In deciding on crystal size the main weight has
been given to the first few rings, as the photometric estimation is much
more accurate for the prominent rings and as the subtraction of the heavy
background is attended by less error than in the case of the weaker rings.
No correction has been applied for the effect of the heat motion; this
correction would be quite important for the weaker rings and the theoretical
intensities would have to be reduced. As the experimental accuracy is,
however, only +159,, it is hardly worth while including the heat cor-
rection.

Table 3 gives a comparison for the case of copper, the experimental
intensities again being those found by Ornstein and his co-workers.

The value of the average size of the crystals of copper assumed above
the most (in the case of the rings considered here); the sizes of the erystallites re-

sponsible for different rings can certainly be taken to be the same; so that the
assumption that the absorption affects each ring similarly seems to be justified.
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was 63 A, which is appreciably larger than the size of the crystals of
silver.

TasLE 3. CoPPER

Intensity functions

A

Theoretical
Ring Experimental D B
(111) 127 126 216
(200) 93 111 154
(220) 66 66 66
(311) 50 46 43
(331) 26 22-4 19:5
(420) 26 21-2 18-3
(422) 21 16-7 14-1
(333) 12 13-9 11-8

The above agreement is very good on the whole, but it should not be
taken as indicating more than the correctness of the general form of the
intensity function D which replaces the usual function £. It would be of
some interest if the estimate of the size of the crystals could be checked as
well.

The calculation of the Fourier coefficients is based on the Born theory
of the scattering of fast electrons. In the evaluation the Thomas-Fermi
atomic model is used so that the individual features of the electronic
arrangement in the atom is neglected.* Another factor of some importance
is that the scattering of the electrons cannot be considered as small in the
case of heavy atoms, so that the Born approximation is not strictly valid.
This point has been investigated by Henneberg (1933), who finds dis-
crepancies for mercury atoms but fairly good agreement for silver. The
numerical values of the ¥, are actually smaller by 10 %,, but the relative
values are practically the same as before over the range used.

The case for gold is interesting as an example of a particularly heavy
element. It was the first to be investigated (Thomson 1929) and the com-
parison with the theoretical values of £ made by Mott (1929) seemed to
give good agreement. A closer examination shows that there is a dis-
crepancy in the same sense as that found by Ornstein and his co-workers
(1938) for silver and copper. This can be seen in table 4.

* The method given by Bethe (1928), using hydrogen-like wave functions, yields
13-4 V for V,;, in the case of silver, whereas the method used above gives 16:5 V
according to Trillat and Hautot (1938).
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The theoretical calculations were made on the basis of the Born theory.
It will be seen that the most important rings ((111), (200)) give a value
which is too low if the curves are fitted to the (220) ring. The calculations
of Henneburg show that this discrepancy should be even greater, and also
that the agreement found above is to some extent accidental. The data
given are not sufficient to allow a detailed comparison to be made for gold,
but it would seem possible to fit the experimental results of Thomson
(1929) with an average size of 30-35 A. This value is a reasonable one, as
the films used had a thickness of 70 A in one case, and the rings them-
selves were not particularly sharp.

TasLE 4. GoLp

Intensity functions

Ring Experimental  Theoretical ()
(111)

(200)} 127 156

(220) 87 63-2
(311)

(222)} 422 435
(331)

( 420)} 20-8 206
(422) : _
(333)} 10-2 13-9

The theory as outlined above cannot explain the experimental results
obtained by Mark and Wierl (1930) who made a careful study of the
scattering in the case of foils of silver, gold and aluminium. Since the rings
they obtained were sharp, their crystals must have been comparatively
large, but they found good agreement with the theoretical function E.
which, on the above theory, should be the case only for very small crystals.
Their results for silver do not, however, fit in with the later work of
Ornstein, Brinkman, Hauer and Tol, and at present it is impossible to
decide as to the cause of the discrepancy.

I should like to express my thanks to Professor G. P. Thomson, F.R.S.,
for his interest and advice. I am also indebted to Dr W. Cochrane for many
helpful discussions.

SUMMARY
The reflexion of electrons by a thin film is examined from the point of

view of the dynamical theory in the Laue case. The formulae are used to

Vol. 173. A. 6
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obtain a criterion which determines when the scattering is sufficiently
small to allow the kinematical theory to be applied; it is found that this
theory is not, in general, applicable to the thin films used in work with fast
electrons. The total intensity scattered from a film when it is turned
through its range of reflexion is also found, and the result is used to obtain
an approximate intensity function showing how the intensities of the
diffraction rings from a polycrystalline film will vary when the scattering
is sufficiently large for the kinematical theory to be inapplicable. This
intensity function is tested by comparing it with the experimental intensity
function found for copper and silver. It is found possible to obtain a good
fit with very reasonable assumptions as to the average crystal size.
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