

UNCLASSIFIED

1.1.1

12.2.2.2.2.2

100 Sec. 20

SECURITY CLASSIFICATION OF THIS PAGE

	REPORT DOCUM	ENTATION PAG	ε			
IN REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS				
28. SECURITY CLASSIFICATION AUTHORITY NA 28. DECLASSIFICATION/DOWNGRADING SCHEDULE		3. OISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution Unlimited				
NA A PERFORMING ORGANIZATION REPORT NUMBER(S) Technical Report No. 141		S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR- 87-0122				
LA NAME OF PERFORMING ORGANIZATION BL OFFICE SYMBOL (If applicable) University of North Carolina		AFOSR/NM				
6c. ADDRESS (City, Siete and ZIP Code) Center for Stochastic Processes, Statistics Department, Phillips Hall 039-A, Chapel Hill, NC 27514		7b. ADDRESS (City, State and ZIP Code) Bldg. 410 Bolling AFB, DC 20332-6448				
L. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR	Bb. OFFICE SYMBOL (If applicable)		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Be. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUI	NDING NOS.			
Bldg. 410 Bolling AFB, DC		PROGRAM ELEMENT NO. 6.1102F	PROJECT NO. 2304	TASK NO.	WORK UP NO.	
11. TITLE (Include Security Classification) "On the intensity of crossing 12. PEASONAL AUTHOR(S) Hsing, Ty 13. TYPE OF REPORT		TIA DATE OF REPO	RT (Yr. Ma. Dev)	H S		
technical FROM 16. SUPPLEMENTARY NOTATION	<u>9/84_ 70_8/85_</u>	July 1986		6		
17. COSATI CODES FIELD GROUP SUB. GR. XXXXXXXXXXXXXXXXXXXXXX		BJECT TERMS (Continue on reverse if necessary and identify by block number) Ords: Level crossing; shot noise.				
19. ABSTRACT (Continue on reverse if necessary on The crossing intensity of response is studied. It is sh	f a level by a s nown that the in	hot noise proc tensity can be	e naturally	expressed	in terms	
of a marginal probability. Al probability can be obtained.	lso some example	s are given to	o illustrat	e how the ma	arginal	
			Ø S	FEB 2 5 196		
	20. DISTRIBUTION/AVAILABILITY OF ASSTRACT		21. ABSTRACT SECURITY CLASSIFICATION			
UNCLASSIFIED/UNLIMITED 🖉 SAME AS APT. 🗆 DTIC USERS 🗆			UNCLASSIFIED			
22L NAME OF RESPONSIBLE INDIVIDUAL		225. TELEPHONE NUMBER 20 2 220. OFFICE SYMBOL				

Cran

EDITION OF 1 JAN 73 IS OBSOLETE.

226. TELEPHONE NUMBER 203

AFOSR/NM

UNCLASSIFIED

2

DD FORM 1473, 83 APR

CENTER FOR STOCHASTIC PROCESSES

Second Contraction

CONTRACT CONTRACTOR CONTRACTOR

X. X

and a survey and a survey

Department of Statistics University of North Carolina Chapel Hill, North Carolina

AFOSR-TR- 87-0122

1007077731 [27777779]

226112254 122611226

185

ON THE INTENSITY OF CROSSINGS BY A

SHOT NOISE PROCESS

by

T. Hsing

Technical Report No. 141

July 1986

Approved for public release; distribution unlimited.

87

ON THE INTENSITY OF CROSSINGS BY A SHOT NOISE PROCESS

Tailen Hsing

The University of Texas at Arlington

<u>Summary</u>. The crossing intensity of a level by a shot noise process with a monotone impulse response is studied. It is shown that the intensity can be naturally expressed in terms of a marginal probability. Also some examples are given to illustrate how the marginal probability can be obtained.

	Accesion For		
	NTIS CRA&I SI DTIC TAB Unannounced Justification		
·	By Di. t ib.:tion/		
	Availability Codes		
AMS 1980 Subject Classification: 60K99.	Avaii and/or Dist Special		
Key Words and Phrases: Level crossing, shot noise.	A-1		
Research partially supported by the Air Force Office of a Grant No. AFOSR F49620 82 C 0009.	Scientific Research		

1. Introduction.

Consider the shot noise process

$$X(t) = \sum_{\tau < t} h(t - \tau), \quad t \in \mathbb{R},$$

where the τ 's are the points of a stationary Poisson process on R with mean rate $\lambda > 0$, and h, the impulse response, is a non-negative function on $[0,\infty)$ such that 1446-0455

i) h is non-increasing,

ii) h is finite except possibly at zero, and iii) $\int_{u}^{\infty} h(x)dx < \infty$ for some large u. By Daley (1971), Theorem 1, the conditions (ii) and (iii) ensure that

 $X(t) < \infty$ a.s. for each t.

Observe that the sample function of X increases only at the points of n. Thus it is unambiguous to define that X upcrosses the level u at t, where $u \ge 0$, if $X(t-) \le u$ and X(t) > u. For $u \ge 0$, write N_u for the point process (cf. Kallenberg (1976)) that consists of the points at which upcrossings of level u by X occur. Thus for each Borel set B, $N_u(B)$ denotes the number of upcrossings of u by X in B. N_u is a stationary point process, which may be viewed as a thinned process of n. The purpose of this paper is to derive the following result.

<u>Theorem 1</u>. For each $u \ge 1$, $EN_u[0,1] = \lambda P[u - h(0) < X(0) \le u]$.

Note that the "downcrossing" intensity of a level by X is also given by Theorem 1.

It is worth mentioning that similar problems were treated by Rice (1944), and Bar-David and Nemirovsky (1972) in other settings. A result in the latter paper can be reduced to one which is similar to Theorem 1. However, our assumptions on h are considerably simpler.

We prove Theorem 1 in Section 2 using an approach which appears to be most natural for the present purpose. In Section 3, we illustrate the manner in which Theorem 1 can be made useful for a number of situations.

2. Derivation.

It is convenient to enumerate the points of η in $(-\infty, 0)$ by letting ρ_i be the *i*th largest point of η to the left of zero for i = 1, 2, ... The ρ_i are well-defined with probability one (w.p.l), and $-\rho_1$, $\rho_1 - \rho_2$, $\rho_2 - \rho_3$,... are independent and identically distributed (i.i.d.) exponential random variables. The following result is useful.

Lemma 2. For each $i = 1, 2, ..., P[X(\rho_i^{-}) = \sum_{\substack{j \ge i+1 \\ j \ge i+1}} h(\rho_i^{-} - \rho_j^{-})] = 1$ where $X(\rho_i^{-})$ denotes the left-hand limit of X at ρ_i^{-} . From this, it follows immediately that $X(\rho_i^{-})$ is independent of ρ_i^{-} , and $X(\rho_i^{-})$ has the same distribution as X(0).

<u>Proof</u>. Let $i \ge 1$ be fixed. Since h is monotone, it is almost everywhere continuous. Using the continuity of $\rho_i - \rho_j$, $j \ge i + 1$, we obtain

 $\lim_{\epsilon \neq 0} h(\rho_i - \rho_j - \epsilon) = h(\rho_i - \rho_j) \text{ w.p.1 for } j \ge i + 1.$

Also by the monotonicity of h, $h(\rho_i - \rho_j - \epsilon) \leq h(\rho_{i+1} - \rho_j)$ for

 $0 < \varepsilon < \rho_i - \rho_{i+1}, \quad j \ge i+2$, where $\sum_{\substack{j \ge i+2}} h(\rho_{i+1} - \rho_j)$ is equal in distribution to X(0) which is finite w.p.l. Thus it follows from dominated convergence that w.p.l,

$$\lim_{\varepsilon \neq 0} \chi(\rho_i - \varepsilon) = \lim_{\varepsilon \neq 0} \sum_{j \ge i+1} h(\rho_i - \rho_j - \varepsilon) = \sum_{j \ge i+1} h(\rho_i - \rho_j) . \Box$$

<u>Proof of Theorem 1</u>. By stationarity, it apparently suffices to show that $EN_{u}(B)$ equals $\lambda m(B)P[u - h(0) < X(0) \le u]$ for each Borel set B in $(-\infty, 0)$, where m(B) denotes the Lebesgue measure of B. Since $X(\rho_{i}) = h(0) + \sum_{j \ge i+1} h(\rho_{i} - \rho_{j})$, it follows from Lemma 2 that w.p.1,

$$N_{u}(B) = \sum_{i \ge 1} 1(u - h(0) < X(\rho_{i}) \le u, \rho_{i} \in B),$$

where $l(\cdot)$ is the indicator function. Applying the facts that $X(\rho_i - i)$ is independent of ρ_i and $X(\rho_i - i)$ is equal in distribution to X(0), we get

$$EN_{u}(B) = \sum_{i \ge 1} E1(u - h(0) < X(\rho_{i}) \le u)E1(\rho_{i} \in B)$$

$$i \ge 1$$

$$= P[u - h(0) < X(0) \leq u]\lambda m(B). \square$$

3. Marginal Distribution.

A DESCRIPTION AND A DESCRIPTION OF A DES

The usefulness of Theorem 1 obviously depends on the availability of the marginal probability $P[u - h(0) < X(0) \le u]$. The Laplace transform of X(0) is (cf. Gilbert and Pollak (1960))

(3.1)
$$L(s) = Ee^{-sX(0)} = exp\{-\lambda \int_0^\infty (1 - e^{-sh(x)})dx\}, s \ge 0.$$

For some impulse responses h, the distribution of X(0) can be expressed analytically, while for a class of others, a recursive method due to Gilbert and Pollak (1960) is applicable. If it is of interest to study the asymptotic crossing intensity for increasingly high levels, certain Tauberian theorems (cf. Embrechts et. al. (1985)) are useful. We consider three examples.

(a) Suppose $h(x) = \begin{cases} \infty, & x = 0 \\ -\log x, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$. Then

$$L(s) = exp\{-\lambda \int_0^\infty (1 - e^{-sx})e^{-x}dx\}, \quad s \ge 0,$$

which is the Laplace transform of the Bessel density (cf. Feller (1971)):

$$f(x) = e^{-(x+\lambda)} \sqrt{\frac{\lambda}{x}} I_1(2\sqrt{\lambda x}), \quad x > 0.$$

(b) For $h(x) = e^{-x}$, $x \ge 0$, Gilbert and Pollak (1960) showed that the density f of X(0) can be obtained recursively as follows:

$$f(x) = \begin{cases} \frac{e^{-\lambda \gamma}}{\Gamma(\lambda)} x^{\lambda-1}, & 0 < x < 1, \\\\\\ x^{\lambda-1} \left[\frac{e^{-\lambda \gamma}}{\Gamma(\lambda)} -\lambda \int_{1}^{x} f(y-1) y^{-\lambda} dy \right], & x \ge 1, \end{cases}$$

where γ is Euler's constant.

(c) Assume that h is boundedly supported, say, on [0,1]. Then by a change-of-variable, (3.1) becomes

$$L(s) = exp\{-\lambda + \lambda f_{[0,\infty)} e^{-sy} \mu(dy)\}$$

where μ is a probability measure on $[0,\infty)$ such that

 $\mu(B)$ = Lebesgue measure of $\{0 \le x \le 1 : h(x) \in B\}$

for each Borel set B in $[0,\infty)$. Thus X(0) has a compound Poisson distribution. For h satisfying certain regularity conditions, Embrecht et. al. (1985) showed that

Â,

パント・シート

$$P[X(0) > x] \sim \frac{exp\{-\lambda[1 - \psi(t)] - e^{-\lambda} - t(x - 1)\}}{t\sqrt{2\pi\lambda\psi''(t)}} \text{ as } x \neq \infty$$

where $\psi(s) = \int e^{-Su} \mu(du)$, and t satisfies $\lambda \psi'(t) = x$.

REFERENCES

Bar-David, I. and Nemirovsky, A. (1972). Level crossings of nondifferentiable shot process. IEEE Trans. Inform. Theory, Vol. IT-18, No. 1, 27-34. 2012年1月1日 100月1日

Particulars (

- Daley, D.J. (1971). The definition of a multi-dimensional generalization of shot noise. J. Appl. Prob. 8, 128-135.
- Embrechts, P., Jensen, J. L., Maejima, M., and Teugels, J. L. (1985). Approximation for compound Poisson and Polya process. <u>Adv. Appl. Prob</u>. 17, 623-637.
- Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2, Second Ed. New York: Wiley.
- Gilbert, E. N. and Pollak, H. O. (1960). Amplitude distribution of shot noise. <u>Bell System Tech. J.</u> 30, 333-350.

Kallengberg, O. (1976). <u>Random Measures</u>. Berlin: Akademie-Verlag, London-New York: Academic Press.

Rice, S. O. (1944). Mathematical analysis of random noise. <u>Bell System</u> <u>Tech. J.</u> 24, 46-156.

