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On the Interaction between Aggregators,

Electricity Markets and Residential Demand

Response Providers
K. Bruninx, Member, IEEE, H. Pandžić, Senior Member, IEEE, H. Le Cadre and E. Delarue, Member, IEEE

Abstract—To decarbonize the heating sector, residential con-
sumers may install heat pumps. Coupled with heating loads
with high thermal inertia, these thermostatically controlled loads
may provide a significant source of demand side flexibility.
Since the capacity of residential consumers is typically insuffi-
cient to take part in the day-ahead electricity market (DAM),
aggregators act as mediators that monetize the flexibility of
these loads through demand response (DR). In this paper,
we study the strategic interactions between an aggregator, its
consumers and the DAM using a bilevel optimization framework.
The aggregator-consumer interaction is captured either as a
Stackelberg or a Nash Bargaining Game, leveraging chance-
constrained programming to model limited controllability of
residential DR loads. The aggregator takes strategic positions in
the DAM, considering the uncertainty on the market outcome,
represented as a stochastic Stackelberg Game. Results show that
the DR provider-aggregator cooperation may yield significant
monetary benefits. The aggregator cost-effectively manages the
uncertainty on the DAM outcome and the limited controllability
of its consumers. The presented methodology may be used to
assess the value of DR in a deregulated power system or may be
directly integrated in the daily routine of DR aggregators.

Index Terms—Aggregator, Chance-constrained Programming,
Nash Bargaining Game, Stackelberg Game, Demand Response,
Thermostatically Controlled Loads

NOMENCLATURE

Below, we list all sets, parameters, primal variables and

functions used in Section II-C. Dual variables are listed after

a colon in each constraint and are not listed here.

A. Sets

H Set of consumers, indexed by h.

I Set of generators, indexed by i.

SA, SH
h Set of cooperation strategies of the aggregator (A)

or consumer h (H).

SA∗, SH∗
h Set of disagreement strategies of the aggregator (A)

or consumer h (H).
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T Set of time periods, indexed by t.

Ω Set of RES scenarios, indexed by ω.

B. Primal variables

BA Benefit associated with the aggregator - consumer

cooperation, e.

BA, BH
h Benefit associated with the cooperation strategy for

the aggregator (A) or consumer h (H), e.

BA∗, BH∗
h Benefit associated with the disagreement strategy

for the aggregator (A) or consumer h (H), e.

dt,ω Electricity purchased by demand at time period t in

scenario ω, MWh.

dHh,t Electricity demand of consumer h at time period t,

MWh.

DH
t Stochastic electricity demand of all consumers at

time period t, MWh.

gi,t,ω Electricity sold by generator i at time period t in

scenario ω, MWh.

λAh,t Retail electricity price for consumer h at time period

t, e/MWh.

ψt Auxiliary variable.

q
agg
t,ω Electricity purchased by the aggregator at time pe-

riod t in scenario ω, MWh.

Q
agg
t Aggregator’s bidding quantity at time period t,

MWh.

RA
h , RR

h Aggregator (A) or retailer (R) revenue from con-

sumer h, e.

θh,t Temperature in building h at time step t, K.

wt,ω Electricity sold by non-controllable renewable

sources at time period t in scenario ω, MWh.

xA, xHh Division factors governing the split of the benefit B
between the aggregator (A) or consumer h (H).

C. Parameters

Ah State-space model matrix.

Ch Coefficient of performance of heat pump h.

δP, δNP Normally distributed disturbance, i.e., δ ∼ N(0, σ),
proportional (P) or non-proportional (NP), - (P) or

MW (NP).

∆RR
h Lower limit to the decrease in consumer h’s elec-

tricity bill, e.

∆RA
h Lower limit to the aggregator’s profit per consumer

h, e.

Dt Capacity of demand during time period t, MW.

ǫ Characterization of the aggregator’s risk attitude.
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Eh,t Disturbance in building h at time step t, K.

Gi Capacity of generator i, MW.

N Total number of consumers.

NBh Number of buildings of category h.

M Arbitrary large constant.

πω Probability of occurrence of scenario ω.

P agg Aggregator’s bidding price, e/MWh.

P
g
i Offering price of generator i, e/MWh.

P d Bidding price of demand, e/MWh.

Ph Capacity of heat pump and auxiliary heater h, kW.

θh,t Upper temperature bound set by consumer h at time

period t, K.

θh,t Lower temperature bound set by consumer h at time

period t, K.

Wt,ω Available output of non-controllable renewable

sources at time period t in scenario ω, MWh.

yA, yHh Bargaining power of the aggregator (A) or consumer

h (H).

D. Functions

Φ−1 Inverse cumulative probability density function of

the standard Normal distribution.

G Transfer function describing the linear thermal

model, governing the relation between electric heat-

ing demand and temperatures.

I. INTRODUCTION

Residential demand response (DR) resources, such as ther-

mostatically controlled loads (TCLs), may offer the flexibility

to cost-effectively integrate intermittent electricity generation

from renewable energy sources (RES). The whole-system

value of these distributed DR resources has been extensively

studied (e.g., [1]–[3]). This value has been recognized by the

European Commission, which encourages Member States to

open electricity markets for DR resources [4]. To bring this

small-scale flexibility to large-scale markets, aggregators may

be required. System-level studies, however, typically do not

consider these market participants.

Therefore, we study the strategic interactions between a DR

aggregator, DR providers and a day-ahead electricity market

(DAM). This research is motivated by the emergence of DR

aggregators, leveraging residential TCLs to provide system-

level services and/or to participate in electricity markets (e.g.,

[5]–[7]). Furthermore, we consider the transfer of risk from

the DR providers - whose loads may be limitedly controllable

- to the aggregator. By pooling loads and their controllability

characteristics, the risk of the overall portfolio may be easier to

manage, allowing more profitable, less risk-averse positions in

the market without sacrificing the reliability of the end-energy

service for the DR provider.

Two distinct perspectives may be adopted to study the

interaction between a DR aggregator and an electricity market.

First, one may study the aggregator as a price-taking agent

via optimization models, e.g. [8], [9]. Xu et al. [8] study a

risk-averse aggregator of distributed generation and electric

vehicles. Mathieu et al. [9] calculate an upper bound to the

profit a price-taking aggregator of TCLs may attain via arbi-

trage in the intraday electricity market. Alternatively, a bilevel

optimization problem may be used to represent the relation

between a strategic, price-making aggregator and the market

clearing outcome, reflecting a Stackelberg Game [10]–[13].

Kardakos et al. [10] develop optimal bidding strategies for a

virtual power plant consisting of, i.a., DR loads. Similarly,

Nekouei et al. [11] study a strategic aggregator, offering

load reduction, competing with a set of generating companies

in a market environment. Kazempour et al. [12] optimize

bidding curves for a single large consumer under uncertainty

on the offers and demand bids of other non-strategic agents.

In addition, Ruhi et al. [13] examine opportunities for price

manipulation by aggregators through strategic curtailment of

generation in a market environment.

Similarly, the relationship between an aggregator and its DR

providers may be represented as a Stackelberg game [14]–[18].

Zugno et al. [14] study the profitability of a retailer with DR

consumers in a joint energy-reserve market. Li et al. [15] study

an aggregator maximizing the social welfare by coordinating

a group of TCLs, subject to a peak demand constraint,

by defining proper retail price signals. Yu and Hong [16]

formulate a single-leader-multiple-follower Stackelberg game

to determine optimal control signals for DR loads. Similarly,

Neyestani et al. [17] study the interaction between, i.a., an

electric vehicle parking lot and an aggregator via a Stackelberg

Game. Yazdani-Damavandi et al. [18] develop a single-leader-

multiple-follower Stackelberg Game representing the interac-

tion between an aggregator serving the natural gas, heat and

electricity demand of local energy communities and the DAM.

Alternatively, several authors have introduced Nash Bargaining

theory [19], [20] to mimic the long-term consumer-aggregator

cooperation [21]–[25]. Contreras et al. [21] study the repeated

interaction between an aggregator, strategically participating

in the DAM, and distributed, perfectly controllable energy

storage systems. Hoa et al. [22] use a Nash Bargaining Game

to study the allocation of power/energy to a number of aggre-

gators managing, i.a., TCLs , represented via virtual battery

models. Ye et al. [23] study the redistribution of the benefits

of sharing energy storage systems and distributed generation

capacity in a residential community. Given a desired load

reduction, Guo et al. [24] use a Nash Bargaining Game to

determine the load reduction of each tenant in a colocation

data center and the reimbursement offered to these tenants

by the data center operator. Nguyen et al. [25] model the

interaction between distributed generation resources offering

reactive power and the electric utility company using Nash

Bargaining Theory.

Typical residential DR models, however, simplify the com-

plex interactions between the supply and demand side, which

may lead to erroneous estimates of the value of DR resources

[26]. Although some researchers study the impact of an

uncertain availability of DR resources [27], they customarily

assume perfect control, i.e., the ability to externally adjust the

state of these loads. In practice, DR providers are unlikely to

perfectly match aggregators’ expectations [28].

In this paper, we formulate a bilevel optimization problem

mimicking the strategic participation of a price-making aggre-
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Fig. 1. Interaction between the aggregator, the market and the demand
response providers and their objective functions (OF) [29].

gator in the DAM (Stackelberg Game) and the interaction of

said aggregator with its limitedly controllable DR providers

(Stackelberg or Nash Bargaining Game). Leveraging a de-

tailed residential heating system and load model [26], chance-

constrained programming [3] and game theory [19], [20], this

modeling framework allows studying the participation of the

DR aggregator in a DAM while guaranteeing that all user-

defined comfort constraints are met. Our contribution w.r.t. the

scientific literature and our conference paper [29] is twofold:

1) The interaction between the aggregator and its DR

providers is represented as a Stackelberg and a Nash Bargain-

ing Game. In absence of explicit constraints on the formation

of the retail price, the set of solutions of the Stackelberg Game

is shown to be a subset of the set of solutions of the Nash

Bargaining Game. The Nash Bargaining Game allows repre-

senting the DR providers and the aggregator as a single entity

participating in the DAM, simplifying the required model. The

consumer-aggregator Stackelberg Game and the relation of its

solutions with those obtained under the assumption of a Nash

Bargaining Game are not considered in [29].

2) To determine the optimal risk attitude of the aggregator, we

analyze the impact of different bidding strategies and DR load

realizations on the aggregator’s profitability via out-of-sample

day-ahead and intra-day market simulations. By considering

mark-ups on intra-day market prices, we mimic possible risk

premiums and limited liquidity in these markets. The inherent

uncertainty on the DAM outcomes (scenarios) and limited

controllability of DR providers (chance-constraints) is explic-

itly considered during the optimization of the aggregator’s

bids. The chance constraints are analytically reformulated

using convex second-order conic constraints, as in [3], which

preserves computational resources for solving an NP-hard,

stochastic problem. In [29], we did not consider the uncertainty

on the DAM outcome, nor did we perform out-of-sample

simulations to determine the aggregator’s optimal risk policy.

Regulators, policy makers and power system operators may

use the method described below to assess the value of DR

in a deregulated power system, which may inform a detailed

cost-benefit analysis of the deployment of DR infrastructure.

Aggregators may integrate this framework with their daily

routines to account for the limited controllability of the DR

resources and their own risk attitude.

The remainder of this paper is structured as follows. Section

II-A introduces the agents and the interactions between them.

The mathematical formulation is presented in Section II-C. A

case study, inspired on the Belgian power system, is laid out

in Section III. Section IV provides some concluding remarks.

II. METHODOLOGY

First, we provide a brief description of the agents (the

aggregator, the DR providers and the market operator), their

objectives and the interactions between the agents. Second,

we introduce an example to conceptually illustrate the Nash

Bargaining and Stackelberg Game between the aggregator

and the DR providers. Last, the mathematical formulation

of the optimization problem solved by each agent and their

dependencies are discussed in detail.

A. Description of the Game

1) Agents: We consider three types of agents: the aggrega-

tor, the DR providers and the market operator (Fig. 1). The

market operator maximizes social welfare while ensuring the

demand for electricity is met by conventional and renewable

generation. The DR providers each minimize their energy

cost associated with space heating and domestic hot water

consumption, which is governed by user-specified comfort

constraints. The aggregator aims to maximize its operating

profit. Its revenue depends on the consumption of the DR

providers and the retail price it charges the DR providers.

The expenses of the aggregator depend on the DAM clearing

price, which is uncertain due to uncertainty on the available

RES-based generation and is determined endogenously. The

aggregator is risk-neutral w.r.t. uncertainty on market clearing

prices, i.e., it minimizes its expected procurement cost.

2) Interactions between agents: The aggregator (leader)

decides on its bid in the DAM (follower) and the price charged

to the DR providers (followers) based on its expectation of the

DAM clearing and the demand of its DR providers. The un-

certainty in the aggregators expectation of the market clearing

(price), which stems from wind power forecast errors, is rep-

resented via scenario-based stochastic programming, whereas

we leverage chance-constrained programming to reflect the

limited controllability of DR loads, as in [3]. The notion of

limited controllability refers to possible real-time deviations

from an expected DR load profile, e.g., due to sub-rational

consumer behavior or an incomplete DR load model employed

by the aggregator. In contrast to the risk-neutral attitude of

the aggregator w.r.t. the DAM prices, we assume a risk-

averse attitude w.r.t. the possible real-time deviations from the

expected DR load, which is reflected in the chance constraints.

These constraints ensure that the aggregator procures sufficient

energy in the DAM to cover the DR load in a predefined

percentage of all possible load realizations. The ‘risk’ that the

aggregator tolerates defines the amount of energy that needs to

be procured in intraday, real-time or balancing markets. Note

that the associated intraday procurement cost is not explicitly

considered in the aggregator’s day-ahead bid problem. By

adopting this approach based on chance constraints, however,

we avoid a scenario-based representation of the intra-day

electricity market (IDM) in the day-ahead decision problem

of the aggregator. This would require considering a set of

IDM scenarios (representing the aggregator’s position in each

heating demand realization) for each DAM scenario. Hence,

the required number of scenarios may quickly explode, which

may lead to computational intractability.
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The interaction of the aggregator and the DR providers

may take three distinct forms, which we will refer to as

‘Retailer’, ‘Nash Bargaining Game’ and ‘Stackelberg Game’.

In the retailer paradigm, the aggregator provides a flat rate

to its consumers, which removes all incentives to utilize their

flexibility. If the aggregator and the DR providers cooperate,

the game governing the division of the benefits of this interac-

tion may be represented as a Nash Bargaining Game, explicitly

accounting for power relation between the aggregator and

the DR providers. If the aggregator unilaterally decides on

a time-varying rate for the consumer while anticipating its

rational reaction, the interaction between the aggregator and

the consumers may be represented as a Stackelberg game.

3) Assumptions: The aggregator is the only strategic price-

maker in the DAM. Since we consider day-to-day operations,

DR providers may not switch between aggregators or retailers.

This assumption is motivated by the low switching rates ob-

served in European retail markets [30]. In the optimization of

the aggregator’s bids, we only consider the DAM, neglecting

arbitrage opportunities with intra-day and balancing markets.

Transmission constraints are not considered in the market

clearing problem, as in [3], [31]. Although this assumption

masks the location-specific value of DR in congestion-prone

power systems, it will have a limited impact on the results if

transmission constraints are not binding on a regular basis.

The Belgian power system that provides the basis for our

simulations has enough (internal) transmission capacity to

make the effect of congestion essentially negligible [32]. Fur-

thermore, from a market perspective, the Belgian day-ahead

market is cleared as one zonal market (with a single price).

Transmission constraints are checked in a second stage by

the transmission system operator with potential redispatching

to alleviate congestion [33]. The only sources of uncertainty

in the DAM are imperfect wind power forecasts. Demand

response providers may be limitedly controllable. The possible

deviations from their expected demand are represented via

normal distributions (see Eq. (10), which is based on [3]).

B. Illustrative example: Nash Bargaining vs. Stackelberg

Consider a two-period DAM, for which the clearing prices

are known in advance: λt = {20, 40} (e/MWh) with

t ∈ {1, 2}. A single, perfectly controllable DR provider

has a baseline consumption of 1 MWh in each time step:

dHt = {1, 1}. Hence, a profit-neutral retailer will charge the

consumer RR = 60 e or λR = 30 e/MWh to recover its

expenses in the wholesale market.

If this consumer (follower) would engage in a Stackelberg

Game with an aggregator (leader), we may formalize this as:

Max.
∑

t∈1,2

λAt · dHt − λt · d
H
t (1)

subject to
∑

t∈1,2

λAt · dHt ≤ RR (2)

dHt =argmin{
∑

t∈{1,2}

λAt ·d
H
t s.t. dH1 +d

H
2 =2, dH1 , d

H
2 ≥ 0} (3)

The aggregator maximizes the difference between what it

charges to the consumer
∑

t∈1,2 λ
A
t · dHt and its expenses on

the wholesale market
∑

t∈1,2 λt · d
H
t . Constraint (2) ensures

the cost for the consumer is limited to that under the retailer

paradigm. Problem (3) represents the cost minimization prob-

lem of a rational consumer. The aggregator will maximize its

profit by shifting all demand to the first time step. The retail

rate in the first time step is only limited by Eq. (2), which

will always be binding. Hence, λAt = {30, λ}, with λ the

retail price cap, and
∑

t∈1,2 λ
A
t · dHt = RR.

Assuming a Nash Bargaining Game between the aggregator

and the consumer, they may be represented as a single entity

participating in the market [21]. The Nash Bargaining Game

determines how the benefit of this collaboration B, i.e., the

maximum attainable cost savings for the consumer or maxi-

mum profit for the aggregator and defined as RR−
∑

t∈1,2 λt ·

dHt , is split between the aggregator and the consumer1:

Max. (xA · B)y
A

· (xC · B)y
C

(4)

subject to

xA + xC = 1, yA + yC = 1, xA, xC, yA, yC ≥ 0 (5)

dH1 +d
H
2 =2, dH1 , d

H
2 ≥ 0 (6)

with xA and xC the relative share of the benefit the aggregator

and the consumer claim. yA and yC represent their bargaining

power. Assuming the aggregator has all bargaining power

(yA = 1, yC = 0) allows reformulating Objective (4) as

Max. xA · (RR −
∑

t∈1,2

λt · d
H
t ) (7)

In this specific case, the aggregator may claim all the benefits

of the collaboration (xA = 1), as in the Stackelberg Game.

The remaining problem, describing the day-to-day decision

problem faced by the aggregator, is identical to problem (1)-

(3). Hence, the set of solutions of problem (1)-(3) (Stackelberg

Game) is, if it exists, enclosed in the set of solutions to

problem (4)-(6) (Nash Bargaining Game).

C. Mathematical Formulation

First, the optimization problems faced by each of the agents

are introduced (Sections II-C1, II-C2 and II-C3). Second,

we describe the interaction between the aggregator and the

market operator (Section II-C4) and the aggregator and the DR

providers (Section II-C5). Third, the resulting mathematical

problems with equilibrium constraints (MPECs) are reformu-

lated (using KKT conditions, the strong duality theorem and

linearization techniques) as equivalent mixed integer quadrati-

cally constrained programming (MIQCP) problems in Section

II-C6.

1) Aggregator’s Perspective: The aggregator aims to max-

imize its profit, which is the difference between the revenue it

obtains from its consumers and the cost of procuring electricity

in the DAM (Eq. (8)):

Max.
∑

t∈T

[

∑

h∈H

NBh ·R
A
h (λ

A
h,t, d

H
h,t)−

∑

ω∈Ω

πω ·λt,ω ·q
agg
t,ω

]

(8)

1We introduce the Nash Bargaining Game without formalizing the asso-
ciated cooperation and disagreement strategies. For the specific consumer-
aggregator problem at hand, the Nash Bargaining Game is formalized in
Section II-C5c. For a more general background, we refer the interested reader
to Osborne and Rubinstein [20].
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subject to

P
(

Q
agg
t ≥DH

t , ∀t∈T
)

≥1−ǫ (9)

The aggregrator charges consumers a retail rate λAh,t, resulting

in a revenue
∑

h∈HNBh · RA
h (λ

A
h,t, d

H
h,t), required to cover

its expected expenses in the DAM
∑

ω∈Ωπω ·λt,ω ·q
agg
t,ω . Note

that the retail tariff λAh,t and the revenue RA
h (λ

A
h,t, d

H
h,t) depend

on the mechanism governing the interaction between the DR

providers and the aggregator (Section II-C5). Likewise, the

interaction between the aggregator and the market clearing

will determine the DAM price λt,ω , hence the aggregator’s

expenses (Section II-C4). Chance constraint (9) forces the

aggregator to procure sufficient electricity in the DAM to

cover the demand of its consumers DH
t at each time step

with a probability of (1 − ǫ) ·100%. If the energy procured

in the DAM does not suffice to meet the real-time heating

load, the aggregator may procure additional energy in intraday

and real-time markets, possibly at a premium (see Section

III). Parameter ǫ can be interpreted as the risk-attitude of

the aggregator, following [34]. Smaller values of ǫ reflect a

more risk-averse aggregator, whereas setting ǫ equal to 0.5

is a strategy pursued by a risk-neutral aggregator. Recall that

the risk-attitude of the aggregator only relates to the volume

procured in the DAM (Section II-A2).

In this paper, we assume that this limitedly controllable,

stochastic demand can be characterized by a proportional (δP)

and a non-proportional (δNP) deviation – designed to reflect

the possible limited controllability of the DR load – from an

expected demand profile
∑

h∈HNBh·d
H
h,t, with NBh as scale

factor, indicating the number of consumers of type h, and dHh,t
governed by Eqs. (19)–(21):

DH
t = (1 + δP) ·

∑

h∈H

NBh · dHh,t+δ
NP (10)

This representation of the stochastic demand DH
t stems from

[3], in which we analyzed the difference between the expected

and actual demand of a set of controllable heat pumps. This

analysis revealed a weak correlation between this difference

and the expected demand, which suggested that stochastic

variable DH
t can be characterized by a proportional (δP)

and a non-proportional (δNP) disturbance to the expected,

aggregated demand profile
∑

h∈HNBh·d
H
h,t. Note that δNP is

an absolute term, expressed in MW, whereas δP is a relative

term expressed as a percentage of the expected demand.

The disturbances δP and δNP are assumed to follow a

Normal distribution, i.e., δP ∼ N(0, (σP)2) and δNP ∼
N(0, (σNP)2), as in [3]. Under these assumptions, chance

constraint (9) can be analytically recast as [3], [34]

Q
agg
t =

∑

h∈H

NBh ·d
H
h,t +Φ−1(1−ǫ)·(ψt+σ

NP), ∀t∈T (11)

ψ2
t ≥

(

σP ·
∑

h∈H

NBh ·d
H
h,t

)2
, ∀t∈T (12)

where ψt is an auxiliary decision variable, Φ−1 is the inverse

cumulative probability density function of the standard Normal

distribution and Eq. (12) is a second order conic constraint.

The decision variables of the aggregator are the retail tariff λAh,t
and the demand bid Q

agg
t . The risk attitude of the aggregator,

reflected by parameter ǫ, is assumed to be known and exoge-

nous to the model. For more information on the reformulation,

interpretation and application of chance constraints, we refer

the interested reader to Bienstock et al. [34].

2) Market Operator’s Perspective: The market operator

aims to maximize the total surplus with respect to the bids

and offers of the market participants. We assume that the only

source of uncertainty (from the perspective of the aggregator)

is the available RES-based generation, as offered by other

market participants. For each scenario ω of the available RES-

based generation Wt,ω , the problem is formulated as follows,

based on Pandžić et al. [35] (dual variables of each constraint

are listed after a colon):

Max.
∑

t∈T

[

P d ·dt,ω+P
agg ·qaggt,ω −

∑

i∈I

P
g
i · gi,t,ω

]

(13)

subject to:

−wt,ω−
∑

i∈I

gi,t,ω+dt,ω+q
agg
t,ω =0, ∀t ∈ T : λt,ω (14)

0 ≤ gi,t,ω ≤ Gi, ∀i ∈ I, t ∈ T : δi,t,ω, δi,t,ω (15)

0 ≤ dt,ω ≤ Dt, ∀t ∈ T : ǫt,ω, ǫt,ω (16)

0 ≤ wt,ω ≤Wt,ω, ∀t ∈ T : ζt,ω, ζt,ω (17)

0 ≤ q
agg
t,ω ≤ Q

agg
t , ∀t ∈ T : κt,ω, κt,ω (18)

Conventional demand and the aggregator bid into the market

at P d and P agg. Conventional generation is offered at average

generation cost P
g
i . Renewable generation is offered at 0

e/MWh to ensure it is accepted. Constraint (14) is the power

balance equation and includes injections of RES-based genera-

tion wt,ω and conventional generators gi,t,ω , as well as demand

dt,ω and aggregator q
agg
t,ω quantities. Constraint (15) ensures a

generator i (set I) cannot sell electricity above its capacity

Gi, while Constraint (16) limits the electricity purchased

by the demand to Dt. Constraint (17) limits the electricity

sold by non-controllable renewable sources to their available

generation Wt,ω . Electricity purchased by the aggregator q
agg
t,ω

is limited by its bidding quantity Q
agg
t in Constraint (18).

Note that the aggregator is the only market participant offering

demand flexibility.

3) Demand Response Provider’s Perspective: Each residen-

tial DR provider h (set H) minimizes the cost of electric space

heating and hot water production while maintaining thermal

comfort, leveraging the inherent thermal inertia of the building

shell and the hot water tank to shift its electricity consumption

dHh,t to periods of low electricity prices λAh,t:

Min.
∑

t∈T

λAh,t ·d
H
h,t (19)

subject to

θh,t − θh,t−1 = G(dHh,t, Ch, Ph, Ah, Eh,t), ∀t∈T (20)

θh,t≤θh,t≤θh,t, ∀t∈T (21)

Each building is equipped with a heat pump and an auxiliary

heater. For sake of brevity, and to allow the reader to focus on

the interaction between the agents, we summarize the linear

model relating the electricity demand dHh,t to the change in

hot water and indoor air temperatures θh,t as G in Eq. (20).

This set of linear equations depends on, i.a., the state-space

model Ah, the nameplate capacity Ph of the electric heating

systems, their coefficient of performance Ch and external
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disturbances Eh,t, such as the ambient temperature. Constraint

(21) enforces the user-defined comfort constraints (θh,t, θh,t)

imposed on, i.a., the indoor air temperature. A full description

of the demand response provider model is available in [3],

[29], [36].
4) Aggregator - Market Interaction: The aggregator acts as

a price-maker in the market by bidding strategically, leveraging

the flexibility of its consumers to minimize its electricity

procurement cost. Given this relation and neglecting the inter-

action with the DR providers, the problem can be represented

as a bilevel optimization problem:

Max. (8)

subject to

Aggregator constraints: (11) − (12)

Market clearing: Max. (13) s.t. (14) − (18)

The MPEC equivalent of the bilevel model above is obtained

by extending the lower-level market clearing problem (Eq. (13)

- (18)) with its KKT conditions (Eq. (22)-(33), ∀ω ∈ Ω):

Stationarity conditions:

P d − λt,ω − ǫt,ω + ǫt,ω = 0, ∀t∈T (22)

P agg − λt,ω − κt,ω + κt,ω = 0, ∀t∈T (23)

− P
g
i +λt,ω−δi,t,ω+δi,t,ω=0, ∀i ∈ I, t ∈ T (24)

λt,ω − ζt,ω + ζt,ω = 0, ∀t ∈ T (25)

Complementary slackness conditions:

0 ≤ gi,t,ω ⊥ δi,t,ω ≥ 0, ∀i ∈ I, t ∈ T (26)

0 ≤ (Gi − gi,t,ω) ⊥ δi,t,ω ≥ 0, ∀i ∈ I, t ∈ T (27)

0 ≤ dt,ω ⊥ ǫt,ω ≥ 0, ∀t ∈ T (28)

0 ≤ (Dt − dt,ω) ⊥ ǫt,ω ≥ 0, ∀t ∈ T (29)

0 ≤ wt,ω ⊥ ζt,ω ≥ 0, ∀t ∈ T (30)

0 ≤ (Wt − wt,ω) ⊥ ζt,ω ≥ 0, ∀t ∈ T (31)

0 ≤ q
agg
t,ω ⊥ κt,ω ≥ 0, ∀t ∈ T (32)

0 ≤ (Qagg
t − q

agg
t,ω ) ⊥ κt,ω ≥ 0, ∀t ∈ T (33)

5) Aggregator – DR Provider Interaction: We distinguish

between three interaction mechanisms:
a) Retailer: The aggregator offers a fixed rate λA to the

DR provider, effectively acting as a conventional retailer. This

leads to a complete decoupling between the retailer’s procure-

ment problem, as described in Section II-C4, and the con-

sumers problem (Eqs. (19)–(21) with λAh,t = λA). Consumers

minimize their energy demand dHh,t, which is considered a

parameter in the retailer’s problem. As a reference case, we

assume that the retailer does not make any profit, i.e., the

consumers are charged a retail rate that allows the retailer to

recover its costs, resulting in energy cost RR
h =

∑

t∈T λ
A ·dHh,t

for consumer h:
∑

h∈H

NBh ·R
R
h =

∑

t∈T

∑

ω∈Ω

πω ·λt,ω ·q
agg
t,ω (34)

b) Stackelberg Game: Alternatively, one can describe

the interaction between the DR provider and the aggregator

as a Stackelberg Game, governed by the time-varying and

consumer-specific retail rate λAh,t offered by the aggregator:

Maximize
∑

t∈T

∑

h∈H

NBh·λ
A
h,t·d

H
h,t−

∑

t∈T

∑

ω∈Ω

πω·λt,ω·q
agg
t,ω (35)

subject to
∑

t∈T

λAh,t ·d
H
h,t≤R

R
h −∆RR

h , ∀h∈H (36)

Aggregator constraints: (11) − (12)

Market clearing: (14) − (18), (22) − (33)

Demand response problem: Min. (19) s.t. (20) − (21)

Constraint (36) ensures that the cost for the consumer is at least

∆RR
h lower than that under the profit-neutral retailer paradigm.

∆RR
h may be interpreted as the required monetary benefit, i.e.,

the expected savings, for a consumer h to sign a contract with

an aggregator. In this paper, we obtain RR
h by first solving the

retailer problem (Section II-C5a) to inform Constraint (36). In

practice, consumers may provide (an estimate of) this number

based on, e.g., the previous billing period.

Note furthermore that we do not make any assumptions

w.r.t. the ownership of the infrastructure that unlocks the

flexibility of the DR loads (e.g., the smart thermostat). Higher

degrees of consumer-ownership may however lead to higher

lower limits on the required cost savings ∆RR
h .

The resulting bilevel problem can be recast as an MPEC

by replacing each of the lower-level DR providers’ problems

(19)–(21) with their KKT conditions, but solving the resulting

MPEC may come at a significant computational cost. However,

as we will show below, if a solution of this Stackelberg Game

exists, it belongs to the set of solutions of the Nash Bargaining

Game under specific assumptions w.r.t. the bargaining power

of the consumers and the aggregator. Determining the condi-

tions under which these Stackelberg equilibria exist is however

out of the scope of this paper.

c) Nash Bargaining: In this paradigm, DR providers

engage in a long-term cooperation with the aggregator. The

monetary benefits of this cooperation are split according to

the outcome of a Nash Bargaining Game, which explicitly

captures the power relations between the aggregator and the

consumers. Although this cooperative game is played well

ahead of day-to-day operations described in this paper, this

paradigm allows representing the DR providers and the aggre-

gator as a single entity participating in the electricity market,

following [21]. To formalize this cooperative game, we define

the cooperation and disagreement strategies for the aggregator

and the DR providers [19], [20]:

• Cooperation strategies: A DR provider will sign a contract

with an aggregator if this reduces its current electricity bill

RR
h by at least ∆RR

h , i.e., if
∑

t∈T λ
A
h,t ·d

H
h,t≤R

R
h − ∆RR

h .

In this case, each consumer plays its cooperation strategy

SH
h = (dHh ), defined by the set of inequalities in Eq. (20)-

(21). The DR provider’s benefit BH
h is defined as the change

in the consumer’s electricity bill, i.e.,

BH
h = RR

h −
∑

t∈T

λAh,t ·d
H
h,t, ∀h∈H (37)

As before, we obtain RR
h by solving the retailer problem

(Section II-C5a). Similarly, an aggregator will play its coop-

eration strategy SA = (λAh,t) if this results in a profit that

exceeds a certain lower bound, i.e., if
∑

h∈HNBh·(
∑

t∈T λ
A
h,t·

dHh,t−∆RA
h )≥

∑

t∈T

∑

ω∈Ωπω · λt,ω · qaggt,ω . The aggregator’s
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benefit BA resulting from this cooperation is defined as

BA =
∑

h∈H

NBh ·
∑

t∈T

λAh,t ·d
H
h,t −

∑

t∈T

∑

ω∈Ω

πω ·λt,ω ·q
agg
t,ω (38)

• Disagreement strategies: If the offered retail rate λAh,t would

not decrease the DR provider’s electricity bill RR
h by at least

∆RR
h , a consumer will not sign a contract with the aggregator.

Hence, the DR provider plays its disagreement strategy SH∗
h =

(0), which results in net benefit BH∗
h = 0. Similarly, if the

retail rate required by the consumer to engage in a cooperation

would not result in a profit of at least ∆RA
h for the aggregator,

the aggregator will not engage in a contract with said consumer

(disagreement strategy SA∗ = (0) and BA∗ = 0).

• Benefit split based on Nash Bargaining: If a bargaining

solution (dHh,t, λ
A
h,t) ∈ 〈[SH

h , S
A], [SH∗

h , SA∗]〉 exists in which

the previous conditions hold, the benefit of this cooperation is

split according to the solution of the following optimization

problem [19], [20]:

Max.
∏

h∈H

[

BH
h − BH∗

h

]yH

h ·
[

BA − BA∗
]yA

(39)

with yHh and yA the exogenous bargaining power of consumer

h and the aggregator (yHh , y
A ∈ [0, 1],

∑

h∈H yHh + yA = 1).

The bargaining power of a consumer and the aggregator may

depend on, e.g., the information each entity has available

and the ownership structure of the DR infrastructure. Using

the Pareto-efficiency axiom, this objective may be recast

as the division of the maximum attainable benefit B [21].

Assuming the aggregator engages in bilateral negotiations with

each DR provider and all actors are risk-neutral [21], the

overall monetary benefits B of the aggregator - DR provider

cooperation are given by

B = BA+
∑

h∈H

NBh · B
H
h (40)

=
∑

h∈H

NBh ·R
R
h −

∑

t∈T

∑

ω∈Ω

πω · λt,ω ·q
agg
t,ω

With division factors xHh and xA (
∑

h∈H xHh + xA = 1,

xHh , x
A ∈ [0, 1], BH

h := xHh · B, ∀h ∈ H, BA := xA · B) and

the zero benefit associated with the disagreement strategies

(BH∗
h = 0, ∀h ∈ H, BA∗ = 0), the Bargaining Game (Eq.

(39)) can be formally described by the following optimization

problem [19]–[21]:

Max.
∏

h∈H

[

xHh ·B
]yH

h ·
[

xA ·B
]yA

(41)

In this paper, we assume that the aggregator treats all DR

providers nondiscriminatory (xHh = xH) and that all consumers

(N in total) have equal bargaining power (yHh = yH). Objective

(41) can be recast as:

Max. (xH)y
H·N ·(1−xH ·N)1−y

H·N ·B (42)

Furthermore, the bargaining process on the formation of

retail rates, i.e., the division factors xHh and xA, governing the

split of the overall benefit of DR, takes place well before the

aggregator offers demand in the DAM2. For a given benefit B

2The bargaining game may be played based on an estimate of B, since the
benefit of the aggregator–DR provider cooperation is only revealed in real
time. The outcome of the bargaining game entails some restrictions on the
retail tariff (i.e., such that

∑
t∈T

λA

h,t
·dH

h,t
= xH

h
·B), but does not prescribe

its time-varying magnitude. In addition to the distribution of the benefits of

and assuming N consumers with the same bargaining power

yH, it is trivial to show that the Nash Bargaining Game (42)

allows three solutions:

1) xH = 0, i.e., all benefits go to the aggregator;

2) xH = 1
N

, i.e., all benefits go to the consumers and are

distributed proportionally;

3) xH = yH = 1−yA

N
, i.e., the benefit is split between

the aggregator and consumers according to their bargaining

powers.

Note that solution 3) coincides with solution 2) if the aggre-

gator has no bargaining power (yA = 0), whereas solution 3)

is identical to solution 1) when yA = 1. Solution 1) reflects

the outcome of the Stackelberg Game between consumers and

the aggregator (see below).

Hence, assuming a solution to this Bargaining Game exists,

the only term the aggregator can optimize in objective (42)

on a daily basis is B (Eq. (40)), which yields the following

optimization problem governing the aggregator’s day-to-day

operations:

Max.
∑

h∈H

NBh ·R
R
h −

∑

t∈T

∑

ω∈Ω

πω · λt,ω ·q
agg
t,ω (43)

subject to

Aggregator constraints: (11) − (12)

Demand response constraints: (20) − (21)

Market clearing: (14) − (18), (22) − (33)

The inclusion of constraints (20)-(21) must be interpreted as

a description of the pre-agreed set of DR providers’ strategies

dHh,t. Similarly, explicit constraints on the price charged to the

DR providers (the aggregator’s strategy) may be enforced.

Note that, in the specific, hypothetical case that consumers

do not have bargaining power (yHh = 0, yA = 1), the

aggregator may claim all the benefits of the cooperation with

the DR providers up to the point that the conditions of the con-

sumers to play their agreement strategies are strictly binding

(xA = 1−
∑

h∈H

NBh·∆RR

h

B ). Without explicit constraints on

the formation of the retail rate λAh,t, the aggregator is always

able to define a retail rate such that its revenue is maximized

and, consequently, Constraint (36) is binding. Under these

assumptions, (i) Objectives (43) and (35) are identical and

(ii) the objectives of the demand providers problems (Eq.

(19)) are fixed. Hence, the optimization problems describing

the Stackelberg Game and the Nash Bargaining Game are

effectively solved on the same feasibility sets, given by Eq.

(11)–(12), (20)–(21), (14)–(18) and (22)–(33). Consequently,

if a solution of the Stackelberg Game between the aggregator

and its consumers exists, it is included in the set of possible

outcomes of the Nash Bargaining Game3.

In what follows, we will therefore focus on (i) the overall

benefit B of the DR provider-aggregator cooperation under the

Nash Bargaining paradigm and (ii) the maximally attainable

benefit per consumer, i.e., solution 2) of the Nash Bargaining

Game above.

DR, the tariff may be used, e.g., as a control signal for the DR loads.
3This statement should not be generalized. For example, if the consumers

own battery energy storage systems, the Stackelberg and Nash Bargaining
Game may lead to different solutions [21]. In this specific case, this statement
holds as consumers must use their heating system to maintain thermal comfort.
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6) Equivalent MIQCP formulations:

a) Retailer: The retailer minimizes its expenses in the

DAM and determines a flat retail rate λA to ensure profit-

neutrality (34):

Max. −
∑

t∈T

∑

ω∈Ω

πω ·λt,ω ·q
agg
t,ω (44)

subject to

Aggregator constraints: (11) − (12), (34)

Market clearing: (14) − (18), (22) − (33)

Recall that dHh,t is a parameter in the retailer’s problem,

obtained from solving the DR provider problems (Eqs. (19)-

(21)) separately, assuming a flat retail rate λA.

b) Stackelberg Game/Nash Bargaining Game: Neglect-

ing the first, fixed term in objective (43), the aggregator’s

problem can described as

Max. −
∑

t∈T

∑

ω∈Ω

πω ·λt,ω ·q
agg
t,ω (45)

subject to

Aggregator constraints: (11) − (12)

Demand response constraints: (20) − (21)

Market clearing: (14) − (18), (22) − (33)

Each MPEC above contains non-linearities in (i) the ob-

jective of the aggregator/retailer and (ii) the complementary

slackness conditions (Eqs. (26)–(33)). Via stationarity condi-

tion (23) and complementary slackness conditions (32)–(33),

we recast the non-linear term λt,ω ·q
agg
t,ω in the objective as:

∑

t∈T

λt,ω ·q
agg
t,ω =

∑

t∈T

[

P agg ·qaggt,ω −Q
agg
t ·κt,ω

]

, ∀ω∈Ω (46)

The last term in the equation above is non-linear, but can be

expressed as a sum of linear terms by applying the strong

duality theorem on the market clearing problem [37]. This

theorem states that, under certain conditions which are satisfied

for linear optimization problems such as market clearing

problem (13)-(18), optimal solutions to the primal and the

associated dual problem yield the same objective value [37].

This equality is expressed in Eq. (47), which, after isolating
∑

t∈T κt,ω ·Qagg
t , reads:

∑

t∈T

κt,ω ·Qagg
t =

∑

t∈T

(

P d ·dt,ω+P
agg ·qaggt,ω −

∑

i∈I

P
g
i ·gi,t,ω

−
∑

i∈I

Gi ·δi,t,ω−Dt ·ǫt,ω−Wt,ω ·ζt,ω
)

, ∀ω∈Ω (47)

The non-linearities in the complementary slackness conditions

(26)–(33) can be linearized using the method of Fortuny-Amat

and McCarl [38]. For example, Eq. (26) can be linearized as

follows, with M an arbitrary, sufficiently large constant:

0 ≤ δi,t,ω ≤M · δ∗i,t,ω, ∀i∈I, t∈T , ω∈Ω (48)

0≤gi,t,ω≤M ·(1−δ∗i,t,ω), ∀i∈I, t∈T , ω∈Ω (49)

δ∗i,t,ω ∈ {0, 1}, ∀i∈I, t∈T , ω∈Ω (50)

Leveraging the reformulation of the chance constraint and

these linearizations, one obtains two MIQCP problems that

can be solved with commercial solvers (Cplex, Gurobi) [34].

III. CASE STUDY

We study DR with residential electric heating systems using

a model inspired by the current Belgian power system. Wind

energy, the only source of uncertainty in the DAM, is assumed

to cover 50% of the annual energy demand prior to the

introduction of electric space heating. Seven GW of gas-fired

(six GW CCGTs, one GW OCGTs) and one GW of oil-fired

generation are added to the system to cover the additional

heating demand. Grid constraints and interconnections with

neighboring countries are neglected. The number of buildings

is set to
∑

h∈HNBh = 106 and the building portfolio is

represented by an average 2030 low-energy building described

in [26]. The temperature bounds (θh,t, θh,t) aim to represent

possible occupant behavior (see [26] and references therein).

Conventional generation is assumed to offer its entire capacity

at average generation cost. The aggregator and conventional

demand bid at 1000 e/MWh (i.e., the price cap). To ensure

consistency, all time series (e.g., demand, weather data) are

based on data for the year 2013.

Wind power scenarios, describing the uncertainty of avail-

able wind power in the DAM, are generated using a data-

driven scenario generation technique [36]. Using a modified

fast forward scenario reduction inspired by [36], sets of

30 scenarios are selected from a large set, which yield in-

and out-of-sample stable solutions. To calculate an expected

procurement cost in the DAM, out-of-sample evaluations are

executed as Monte Carlo market clearing simulations for a

new, large set of possible wind power scenarios, taking the

bids of the aggregator and the available wind power as given.

We execute an additional set of Monte Carlo market clearing

simulations for each DAM outcome to test the ability of an

aggregator to adapt its day-ahead position in intra-day, real-

time and balancing markets to mitigate DR controllability

issues. The day-ahead position of the aggregator and the day-

ahead expected heating demand schedule
∑

h∈HNBh ·d
H
h,t,

corrected for a disturbance sampled from the distributions

considered in the chance constraints to mimic the impact

of limited controllability4, are assumed to be fixed. The

aggregator acts as a price-taker in the IDM. If the aggregator

procured too much (little) energy on the DAM, the aggregator

must sell (buy) the excess (deficit) on the IDM. Only RES-

based generation and flexible gas/oil-fired generation assets are

capable of adapting their output intra-day. To mimic possible

divergence between intraday and day-ahead prices, we perform

a sensitivity analysis in which the aggregator pays 110% of the

intraday price for deficits and sells a possible surplus at 90% of

the intraday price. In all cases, sufficient capacity is available

in the IDM to ensure that the aggregator can meet the real-

time heating load, in order to avoid thermal discomfort for the

DR provider. As such, these simulations yield an estimate of

the operating costs an aggregator may save (incur) by selling

(buying) excess (deficits) in intra-day, real-time and balancing

markets, which allows estimating the optimal risk behavior (ǫ)

of the aggregator and its robustness to our IDM assumptions.

The DAM and IDM results are obtained from large sets of

market clearing problems, formulated as in Eq. (13)–(18).

4We will refer to these demand profiles as the real-time heating load.
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Fig. 2. The average (solid lines) and range of DAM clearing prices (Fig. 2a and 2d), heating demand (Fig. 2b and 2e), the expected day-zone (solid lines)
and hot water (dashed lines) temperatures for two DR providers (‘DRP’) under the aggregator paradigm (Fig. 2c) and the average and range of IDM clearing
prices (no mark-ups considered) (Fig. 2f) on day 316. The lower and upper bound of the range in Fig. 2a, 2d and 2f indicate the the expected market clearing
price plus or minus one standard deviation of the observed market clearing prices at each time step. The grey lines in Fig. 2c indicate the lower and upper
comfort constraints of the two DR providers. In the top row, the DR loads are assumed to be perfectly controllable. In the bottom row, the DR loads control
error is assumed to be characterized by δNP = N(0, 100 MW) and δP = N(0, 0.1). The resulting heating demand bid (solid lines, Fig. 2e) and range of
possible heating demand realizations (shaded areas, Fig. 2e) is dependent on the risk attitude of the aggregator (ǫ). By definition, setting ǫ equal to 0.5 yields
the same day-ahead heating bid and market outcome as under the assumption of perfect controllability.

In Section III-A, we show how an aggregator participates

in the DAM and IDM on day 316 of the calendar year with

perfectly and imperfectly controllable DR loads. Subsequently,

we provide a sensitivity analysis of these metrics w.r.t. our

assumptions on σP, σNP and ǫ, based on simulations for seven

days throughout the heating season, selected based on the daily

average ambient temperature. The 16th, 40th, 48th, 316th,

262th, 105th and 295th day of the calendar year, corresponding

to the 1st, 10th, 25th, 50th (median), 75th, 90th and 99th

percentile of the distribution of the average daily ambient

temperature, were selected5.

A. Managing market uncertainty & limited DR controllability

As a reference case, we study the retailer’s and aggregator’s

bidding behavior assuming perfectly controllable DR resources

(Fig. 2). On this particular day, low demand periods during

the night coincide with abundant wind power output, resulting

in low market clearing prices (Fig. 2a). Under the retailer

paradigm, consumers minimize their own energy use, which

results in a strong peak in the heating demand in the morning

(Fig. 2b). This in turn triggers possible price peaks in the

DAM in hours 7-10 (light red area in Fig. 2a). Despite the

significantly lower heating demand during the rest of the day

and considerable wind power uncertainty, prices remain stable

at around 42 e/MWh (i.e., the assumed average generation

cost of gas-fired power plants).

If the aggregator is allowed to shift the heating demand

within the user-specified comfort constraints, the morning

price peaks are mitigated (Fig. 2a). This is the result of shifting

50ther methods exist to select ‘representative’ days, e.g., [39], [40].

the heating demand to earlier hours (Fig. 2b), which results

in significant preheating of the considered dwellings (Fig.

2c). This is evident from the difference between, e.g., the

expected day-zone temperature (solid) and hot water temper-

atures (dashed) and the associated comfort constraints (grey

lines, Fig. 2c). The shift in demand leads to higher average

prices during the night (Fig. 2a). The aggregator succeeds in

limiting the expected price well below 42 e/MWh, whereas

the retailer must tolerate an expected price of approximately

42 e/MWh during the morning peak. Overall, this leads to

a monetary benefit B (Eq. (40)) between 0.33 Me and 2.49

Me, depending on the DAM outcome, with an expected value

of 1.66 Me (which is to be shared by the aggregator and the

DR providers). If consumers have all bargaining power, the

expected saving per consumer equals 1.66e on this particular

day.

If the DR resource is limitedly controllable, the DR aggre-

gator may procure more than the expected heating demand to

deal with unexpected real-time deviations from the expected

heating demand and to avoid buying significant volumes of

energy in the IDM at a premium. Based on the distributions

describing the DR resources’ limited controllability and its

risk parameter ǫ, the aggregator is able to define a heating

demand bid (solid lines, Fig. 2e) and a range of possible

realizations of the heating demand at each time step (shaded

areas, Fig. 2e). By tolerating a higher heating demand during

most of the day, the risk-averse aggregator (ǫ = 0.1) is able to

approximately maintain its heating bid and expected market

prices during the night (Fig. 2d). Note that, by definition,

the risk-neutral aggregator and the aggregator not considering

limited controllability provide the same heating bids (Fig. 2b



10

and 2e) and anticipate the same market clearing outcomes

(Fig. 2a and 2d). Compared to a retailer with a perfectly

controllable and predictable heating load, the overall benefit

B (Eq. (40)) in the DAM is limited to 0.70 Me or at most

0.7 e per consumer if the aggregator is risk-averse. Note that

the risk-averse aggregator may incur a loss under some DAM

outcomes: the benefit B ranges between -0.70 Me and 1.72

Me.

After closure of the DAM, the aggregator may sell excess

and buy shortages of electrical energy on intra-day and balanc-

ing markets to match the heating demand of its consumers. The

risk-neutral aggregator faces higher intra-day prices during off-

peak periods (green line, Fig. 2f) and must procure larger

volumes compared to the risk-averse aggregator. The risk-

averse aggregator may sell excess energy, but is more likely

to receive a lower price for this energy in the IDM (black

line, Fig. 2f). In absence of premiums on intra-day prices, the

expected net procurement cost in the IDM equals 0.08 Me for

the risk-neutral aggregator, which leads to an overall expected

benefit B of 1.58 Me compared to the risk-neutral retailer

with a perfectly controllable heating load. The risk-averse

aggregator secures an expected intraday profit of 0.72 Me and

a combined expected benefit of 1.42 Me. Note, however, that

these intra-day profits may exhibit a significant spread: e.g., the

risk-averse aggregator’s intra-day profit ranges from 0.49 Me

to 1.04 Me, depending on the real-time heating load. With

a 10% mark-up (if the aggregator buys energy in the IDM)

or mark-down (if the aggregator sells energy in the IDM)

on IDM prices, the expected procurement cost in the IDM

increases to 0.12 Me for the risk-neutral aggregator, whereas

the risk-averse aggregator secures a lower profit of 0.65 Me.

Indeed, premiums on IDM prices lead to (i) higher expenses

to cover deficits and (ii) lower revenues if the aggregator has

procured too much energy in the DAM. Overall, however, the

aggregator still secures an operating profit of 1.34 Me (risk-

averse aggregator) to 1.51 Me (risk-neutral aggregator). In

very extreme conditions (e.g., low wind power availability and

high heating demand), insufficient capacity may be available

intra-day to meet the load. In this case study, this does not

occur. Consequently, the consumer attains savings of at most

1.58 e on this particular day (risk-neutral aggregator, no IDM

price mark-ups).

This example shows that a DR aggregator may secure oper-

ating profits by performing price arbitrage in uncertain DAM,

even if the DR resource exhibits some limited controllablity.

In the next section, we examine whether some optimal trade-

off exists between the risk parameter ǫ, and thus the procured

volume in the DAM, and the volume procured in the IDM as

a function of the degree of limited controllability of the DR

resource (σP, σNP).

B. Aggregator profitability

Table I summarizes the results of extensive numerical simu-

lations for seven days selected across the heating season based

on the average outside temperature, for three sets of σ-values

(σNP and σP) describing the degree of limited controllability

of the DR providers and six ǫ-values as a measure of the risk

attitude of the aggregator. Larger σ-values indicate DR loads

with poorer controllability. Smaller ǫ-values represent more

risk-averse aggregator behavior. The values indicated with an

asterisk (B∗, ID∗) are obtained considering a 10% mark-up (if

the aggregator buys energy) or mark-down (if the aggregator

sells energy) on IDM prices. Several trends can be identified.

First, the overall benefit of DR remains, in the majority of

cases, approximately unchanged. Only if the DR providers be-

come less controllable and/or the aggregator becomes strongly

risk-averse (ǫ → 0), the benefits decrease. A risk-averse

aggregator procures more electricity in the DAM, driving down

its benefit w.r.t. the retailer in the DAM (‘DA’ in Table I). In

most heating demand realizations, part of this procured volume

must be sold in the IDM. These IDM revenues compensate

for the higher expenses of risk-averse aggregators in the

DAM, especially if prices between IDM and DAM are well

correlated. However, if we impose premiums on IDM prices,

which may be the case in less liquid IDMs, we observe, as

expected, an overall reduction in the attainable benefit from B
to B∗. In this case, aggregators face lower (while selling) or

higher (while buying energy) prices in the IDM. Risk-averse

aggregators, who have to compensate for their higher expenses

in the DAM by (predominantly) selling surplus energy in the

IDM, see lower revenues in the IDM. This, in turn, reduces the

overall attainable benefit B∗. However, the expected volumes

traded in the IDM by the aggregator are typically an order

of magnitude smaller than those traded in the DAM. Only if

the heating load is low (e.g., on day 105 and day 295), the

non-proportional limited controllability term δNP dominates

the aggregator’s bidding strategy and the IDM volumes are

similar to the DAM volumes. On these days, the aggregator’s

bid represents a very low share of the total DAM volume. High

volumes sold in the IDM may drive down IDM clearing prices,

which may result in insufficient intra-day revenues to fully

compensate the day-ahead loss (‘ID’ in Table I). Nevertheless,

in most cases, the aggregator succeeds in securing a profit

(B ≥ 0, B∗ ≥ 0).

Second, as the aggregator becomes more risk-averse, the

share of intra-day revenues in the overall benefits strongly

increases. Securing these profits requires liquid and well-

functioning intra-day and real-time markets (see above). As-

suming a less liquid IDM, these revenues ID∗, which are

highest on days with a high heating demand and for risk-

averse aggregators, decrease significantly, thereby reducing the

attainable benefit B∗. Note that we assume that the amount of

generation capacity available in the IDM is significantly larger

than the deficits/excesses the aggregator must compensate in

all cases. If insufficient generation capacity would be available

in the IDM, this may lead to thermal discomfort for consumers,

which in turn may need to be financially compensated.

Third, as the heating demand decreases, as indicated by the

increasing percentiles in Table I, the overall benefit B typically

decreases. In these cases, the non-proportional limited control-

lability term δNP gains relative importance (see above) and the

overall benefit may turn negative for risk-averse aggregators.

As expected, the aforementioned effect is more pronounced

if the IDM is less liquid, which offers the aggregator less

opportunities to balance its portfolio.
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TABLE I. Change in the benefit of the DR provider-aggregator cooperation B for different ǫ and σP, σNP-values, split between the day-ahead (DA) benefit
(as defined in Eq. (40)) and the intra-day (ID) correction. The values indicated with an asterisk (B∗, ID∗) are obtained considering a 10% mark-up (if
the aggregator buys energy) or mark-down (if the aggregator sells energy) on IDM prices. The corresponding percentile in the daily average of the ambient
temperature – as an approximation of the heating demand on that day – is indicated between parentheses. Day 16 is the coldest considered day, day 295 the
hottest. The green cells indicate the maximum benefit B. Red cells indicate negative operating profits (B ≤ 0).

Day σ
P
= 0.05 & σ

NP
= 50 MW σ

P
= 0.1 & σ

NP
= 100 MW σ

P
= 0.15 & σ

NP
= 150 MW

↓ ǫ → 0.5 0.4 0.3 0.2 0.1 0.01 0.5 0.4 0.3 0.2 0.1 0.01 0.5 0.4 0.3 0.2 0.1 0.01

16 (1%)

B (Me) 2.63 2.63 2.62 2.60 2.61 2.54 2.63 2.64 2.56 2.53 2.54 2.32 2.61 2.58 2.57 2.52 2.40 1.84
B∗ (Me) 2.59 2.57 2.55 2.52 2.51 2.36 2.56 2.54 2.44 2.38 2.33 1.96 2.49 2.43 2.39 2.30 2.09 1.29
DA (Me) 2.64 2.43 2.21 1.94 1.61 0.73 2.64 2.25 1.75 1.22 0.54 -1.31 2.64 2.01 1.36 0.57 -0.60 -3.64
ID (Me) -0.002 0.20 0.41 0.66 1.00 1.81 -0.01 0.39 0.81 1.31 2.00 3.63 -0.03 0.57 1.21 1.95 3.00 5.48
ID∗ (Me) -0.05 0.14 0.35 0.58 0.90 1.63 -0.11 0.28 0.69 1.16 1.79 3.27 -0.18 0.41 1.03 1.73 2.70 4.93

40 (10%)

B (Me) 1.74 1.71 1.70 1.70 1.67 1.61 1.73 1.69 1.66 1.64 1.59 1.46 1.71 1.65 1.65 1.60 1.53 1.35
B∗ (Me) 1.70 1.67 1.65 1.65 1.59 1.47 1.66 1.62 1.57 1.53 1.44 1.19 1.60 1.54 1.52 1.43 1.30 0.94
DA (Me) 1.74 1.57 1.40 1.21 0.92 0.25 1.74 1.41 1.06 0.67 0.11 -1.26 1.74 1.24 0.75 0.14 -0.71 -2.75
ID (Me) -0.004 0.14 0.30 0.49 0.75 1.36 -0.01 0.28 0.60 0.97 1.48 2.72 -0.03 0.41 0.90 1.46 2.24 4.10
ID∗ (Me) -0.04 0.11 0.26 0.43 0.67 1.22 -0.08 0.21 0.52 0.86 1.33 2.45 -0.14 0.30 0.77 1.29 2.01 3.69

92 (25%)

B (Me) 0.98 0.98 0.98 0.97 0.96 0.94 0.97 0.98 0.97 0.95 0.93 0.86 0.96 0.97 0.97 0.93 0.90 0.84
B∗ (Me) 0.95 0.95 0.95 0.94 0.91 0.85 0.92 0.93 0.92 0.88 0.83 0.69 0.89 0.89 0.86 0.82 0.75 0.57
DA (Me) 0.98 0.89 0.79 0.66 0.48 0.07 0.98 0.79 0.58 0.32 -0.03 -0.87 0.98 0.70 0.39 -0.01 -0.53 -1.77
ID (Me) -0.004 0.09 0.19 0.31 0.48 0.87 -0.008 0.19 0.39 0.63 0.96 1.74 -0.02 0.27 0.58 0.94 1.43 2.61
ID∗ (Me) -0.03 0.07 0.17 0.28 0.43 0.79 -0.06 0.14 0.34 0.56 0.86 1.56 -0.09 0.20 0.49 0.83 1.28 2.35

316 (50%)

B (Me) 1.62 1.67 1.62 1.62 1.59 1.47 1.58 1.59 1.57 1.52 1.42 1.17 1.53 1.52 1.48 1.40 1.25 0.90
B∗ (Me) 1.60 1.65 1.59 1.59 1.55 1.40 1.51 1.55 1.53 1.45 1.34 1.04 1.46 1.46 1.41 1.33 1.13 0.69
DA (Me) 1.66 1.62 1.48 1.38 1.22 0.79 1.66 1.50 1.30 1.04 0.70 -0.16 1.66 1.39 1.09 0.71 0.17 -1.12
ID (Me) -0.04 0.05 0.14 0.24 0.37 0.68 -0.08 0.09 0.27 0.46 0.72 1.33 -0.13 0.13 0.39 0.69 1.08 2.02
ID∗ (Me) -0.06 0.03 0.12 0.21 0.33 0.61 -0.12 0.05 0.23 0.41 0.65 1.19 -0.19 0.07 0.33 0.61 0.97 1.82

262 (75%)

B (Me) 0.13 0.15 0.16 0.16 0.15 0.11 0.04 0.08 0.10 0.10 0.09 -0.02 -0.05 0.01 0.04 0.05 0.01 -0.17
B∗ (Me) 0.12 0.14 0.16 0.16 0.15 0.11 0.02 0.06 0.09 0.10 0.08 -0.02 -0.08 -0.01 0.03 0.04 0.01 -0.18
DA (Me) 0.22 0.20 0.19 0.17 0.15 0.08 0.22 0.19 0.16 0.12 0.07 -0.06 0.22 0.17 0.13 0.07 -0.01 -0.24
ID (Me) -0.09 -0.06 -0.03 -0.01 0.01 0.02 -0.18 -0.11 -0.06 -0.02 0.01 0.05 -0.27 -0.16 -0.09 -0.03 0.02 0.07
ID∗ (Me) -0.10 -0.06 -0.03 -0.01 0.01 0.02 -0.20 -0.13 -0.07 -0.02 0.01 0.04 -0.30 -0.18 -0.10 -0.03 0.02 0.06

105 (90%)

B (Me) 0.12 0.12 0.11 0.11 0.11 0.08 0.09 0.09 0.09 0.07 0.04 -0.08 0.05 0.06 0.04 0.03 -0.04 -0.23
B∗ (Me) 0.11 0.11 0.09 0.09 0.08 0.03 0.06 0.06 0.05 0.03 -0.01 -0.16 0.01 0.02 0.00 -0.03 -0.11 -0.35
DA (Me) 0.15 0.10 0.03 -0.02 -0.11 -0.32 0.15 0.05 -0.06 -0.20 -0.38 -0.85 0.15 0.00 -0.18 -0.37 -0.67 -1.40
ID (Me) -0.03 0.02 0.08 0.14 0.22 0.40 -0.06 0.04 0.15 0.27 0.42 0.78 -0.10 0.06 0.22 0.40 0.63 1.17
ID∗ (Me) -0.04 0.01 0.06 0.12 0.19 0.36 -0.09 0.01 0.12 0.23 0.38 0.70 -0.14 0.02 0.17 0.34 0.56 1.05

295 (99%)

B (Me) 0.38 0.39 0.40 0.39 0.39 0.38 0.34 0.36 0.37 0.37 0.35 0.30 0.30 0.36 0.33 0.33 0.31 0.20
B∗ (Me) 0.37 0.38 0.38 0.38 0.38 0.35 0.32 0.33 0.34 0.33 0.32 0.25 0.26 0.28 0.29 0.29 0.26 0.12
DA (Me) 0.42 0.38 0.35 0.30 0.24 0.10 0.42 0.35 0.28 0.19 0.06 -0.24 0.42 0.32 0.20 0.07 -0.12 -0.61
ID (Me) -0.04 0.005 0.05 0.09 0.15 0.28 -0.08 0.005 0.09 0.17 0.29 0.54 -0.12 0.04 0.13 0.26 0.43 0.81
ID∗ (Me) -0.05 -0.01 0.03 0.08 0.13 0.25 -0.10 -0.02 0.06 0.15 0.26 0.49 -0.15 -0.03 0.09 0.22 0.38 0.73

Last, the attainable savings for consumers are modest in all

cases. At most, a consumer may be able to reduce its energy

bill by 2.64 e/day. However, such savings are only attainable

on days with a high heating load. During the rest of the heating

season, savings may be limited to, on average, 0.72 e/day

(IDM price mark-ups, σP = 0.15, σNP = 150 MW) to 0.84

e/day (no IDM price mark-ups, σP = 0.05, σNP = 50 MW).

These savings further decrease and may even turn negative if

the aggregator is unable to select an optimal risk attitude ǫ.

In the last case, the aggregator may need to absorb the entire

monetary loss to keep consumers engaged.

In summary, the aggregator must find an optimal risk-

attitude ǫ, i.e., an optimal balance between the volume pro-

cured in the DAM and the IDM, in order to secure the maximal

benefit B. Remarkably, although a less liquid IDM reduces the

overall attainable benefit B∗, the highest benefits are observed

for similar risk-attitudes ǫ, regardless of the liquidity of the

IDM. However, reduced liquidity of the IDM increases the

importance of selecting an optimal risk-attitude, since benefit

B∗ decreases more strongly for non-optimal ǫ-values than the

attainable benefit B considering a liquid IDM.

C. Computational effort

The aggregator’s day-ahead decision problem, considering

the Nash Bargaining paradigm, contains 318,241 constraints

(of which 96 are quadratic constraints) and 176,160 vari-

ables (of which 107,040 are continuous and 69,120 binary).

All models are implemented in GAMS v24.4 and solved

using Gurobi v8.0. The stopping tolerance was set to 1%.

Simulations are performed using a 2.8GHz machine with 4

cores and 8GB of RAM. On average, an instance is solved

in 770 seconds (median value: 497 seconds). The minimum

computation time we recorded was 60 seconds, whereas the

solver timed out for a single instance after 3,600 seconds. In

all cases, however, the observed MIP gap is below 1%.

IV. CONCLUSION

Demand response (DR) resources, such as thermostatically

controlled loads, may provide the required flexibility to com-

pensate from variations and unexpected deviations in, e.g., the

expected electricity generated from renewable energy sources

and other loads. Aggregators may be needed to bring these
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distributed, low-capacity resources to day-ahead (DAM) and

intra-day electricity markets (IDM).

We study the interaction between (i) an aggregator and

a DAM via a Stackelberg game and (ii) an aggregator and

its DR providers via a Stackelberg and a Nash Bargaining

Game. To manage the limited controllability of DR loads, we

propose chance constraints. The uncertainty in the aggregator’s

anticipation on the DAM outcome is represented via scenarios.

For the specific case of DR with electric heating systems

and guaranteed thermal comfort, we show that, assuming

DR providers without bargaining power, the outcome of a

Stackelberg Game between the aggregator and its consumers,

if it exists, is a subset of the set of possible outcomes of a Nash

Bargaining Game, which allows representing the aggregator

and DR providers as a single entity participating in the DAM.

In a case study, inspired by the Belgian power system,

we illustrate how the aggregator may lower day-ahead prices

and how it may manage limitedly controllable resources. As

the DR resource becomes less controllable and the aggregator

becomes more risk-averse, the attainable profits in the DAM

decrease, which may not be fully compensated in the IDM.

Nevertheless, assuming a well-functioning and liquid IDM,

an aggregator is able to attain an operating profit w.r.t. a

retailer throughout the heating season. Only when the limited

controllability of the DR resource increases and the DR aggre-

gator becomes strongly risk-averse, operating profits may turn

negative. A reduced liquidity of the IDM reduces the attainable

benefits and increases the importance of selecting an optimal

risk-attitude. The attainable benefits for consumers may be

limited, which may threaten the viability of the aggregator-

consumer interaction model.

The presented methodology may be used by regulators,

policy makers and power system operators to assess the value

of DR in a deregulated power system or may be directly

integrated in the daily routine of DR aggregators.

Our research may be strengthened by introducing multiple

segments of consumers, each with a specific bargaining power.

Second, alternative assumptions on the capabilities of the DR

aggregator to adapt its position in the IDM could change the

results above. Similarly, explicitly representing the IDM in

the aggregator’s day-ahead bid problem may lead to more

efficient bid strategies. Third, the interaction between (1)

limited controllability of DR loads, (2) IDMs and (3) operating

reserve requirements and balancing markets may be a subject

worthy of investigation. Fourth, our work would benefit from

an analysis of how, e.g., ownership structures affect the bar-

gaining power and hence the outcomes of the Nash Bargaining

Game. Last, introducing transmission and distribution grid

constraints may lead to interesting insights in the location-

specific value of DR resources and the coordination of these

resources to meet flexibility needs in the distribution and

transmission grid.

ACKNOWLEDGMENT

The computational resources and services used in this work

were provided by the VSC (Flemish Supercomputer Center),

funded by the Research Foundation - Flanders (FWO) and the

Flemish Government - department EWI.

REFERENCES

[1] D. Wang, S. Parkinson, W. Miao, H. Jia, C. Crawford, and N. Dji-
lali, “Hierarchical market integration of responsive loads as spinning
reserve,” Applied Energy, vol. 104, pp. 229–238, 2013.

[2] D. S. Callaway, “Tapping the energy storage potential in electric loads to
deliver load following and regulation, with application to wind energy,”
Energy Conversion & Management, vol. 50, no. 5, pp. 1389–1400, 2009.

[3] K. Bruninx, Y. Dvorkin, E. Delarue, W. D’haeseleer, and D. S. Kirschen,
“Valuing demand response controllability via chance constrained pro-
gramming,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 178–187,
2018.

[4] P. Bertoldi, P. Zancanella, and B. Boza-Kiss, “Demand Response status
in EU Member States,” EUR 27998 EN, JRC, Tech. Rep., 2016.

[5] CAISO, “Demand response - proxy de-
mand resource,” [Online]. Available at:
www.caiso.com/informed/Pages/StakeholderProcesses/CompletedClosed-
StakeholderInitiatives/DemandResponse-ProxyDemandResource.aspx,
2018.

[6] Portland General Electric, “Keep cozy and earn cash with a
nest thermostat and rush hour rewards,” [Online]. Available at:
https://www.portlandgeneral.com/promotions/have-a-heat-pump-and-a-
nest-thermostat, 2018.

[7] RESTORE, “Company website,” [Online]. Available at:
https://restore.energy/en/about-us/company, 2018.

[8] Z. Xu, Z. Hu, Y. Song, and J. Wang, “Risk-Averse Optimal Bidding
Strategy for Demand-Side Resource Aggregators in Day-Ahead Electric-
ity Markets under Uncertainty,” IEEE Trans. Smart Grid, vol. 8, no. 1,
pp. 96–105, 2017.

[9] J. L. Mathieu, M. Kamgarpour, J. Lygeros, G. Andersson, and D. S.
Callaway, “Arbitraging intraday wholesale energy market prices with
aggregations of thermostatic loads,” IEEE Trans. Power Syst., vol. 30,
no. 2, pp. 763–772, 2015.

[10] E. G. Kardakos, C. K. Simoglou, and A. G. Bakirtzis, “Optimal Offering
Strategy of a Virtual Power Plant: A Stochastic Bi-Level Approach,”
IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 794–806, 2016.

[11] E. Nekouei, T. Alpcan, and D. Chattopadhyay, “Game-theoretic frame-
works for demand response in electricity markets,” IEEE Trans. Smart

Grid, vol. 6, no. 2, pp. 748–758, 2015.

[12] S. J. Kazempour, A. J. Conejo, and C. Ruiz, “Strategic bidding for a
large consumer,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 848–856,
2015.

[13] N. A. Ruhi, K. Dvijotham, N. Chen, and A. Wierman, “Opportunities for
price manipulation by aggregators in electricity markets,” IEEE Trans.

Smart Grid, vol. PP, no. 99, pp. 1–1, 2017.

[14] M. Zugno, J. M. Morales, P. Pinson, and H. Madsen, “A bilevel
model for electricity retailers’ participation in a demand response market
environment,” Energy Economics, vol. 36, pp. 182–197, 2013.

[15] S. Li, W. Zhang, J. Lian, and K. Kalsi, “Market-Based Coordination
of Thermostatically Controlled Loads-Part I: A Mechanism Design
Formulation,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1170–1178,
2016.

[16] M. Yu and S. H. Hong, “A Real-Time Demand-Response Algorithm for
Smart Grids: A Stackelberg Game Approach,” IEEE Trans. Smart Grid,
vol. 7, no. 2, pp. 879–888, 2016.

[17] N. Neyestani, M. Y. Damavandi, M. Shafie-khah, A. G. Bakirtzis, and
J. P. S. Catalo, “Plug-in electric vehicles parking lot equilibria with
energy and reserve markets,” IEEE Trans. Power Syst., vol. 32, no. 3,
pp. 2001–2016, 2017.

[18] M. Yazdani-Damavandi, N. Neyestani, M. Shafie-khah, J. Contreras,
and J. P. S. Catalo, “Strategic behavior of multi-energy players in
electricity markets as aggregators of demand side resources using a bi-
level approach,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 397–411,
2018.

[19] K. Binmore, A. Rubinstein, and A. Wolinsky, “The nash bargaining
solution in economic modelling,” The RAND Journal of Economics,
vol. 17, no. 2, pp. 176–188, 1986.

[20] M. J. Osborne and A. Rubinstein, Bargaining and Markets. New York,
NY, USA: Academic Press, 1990.

[21] J. E. Contreras-Ocana, M. A. Ortega-Vazquez, and B. Zhang, “Partici-
pation of an Energy Storage Aggregator in Electricity Markets,” IEEE

Trans. Smart Grid, vol. PP, no. 99, pp. 1–14, 2017.

[22] H. Hao, A. Somani, J. Lian, and T. E. Carroll, “Generalized aggregation
and coordination of residential loads in a smart community,” SmartGrid-

Comm 2015, Miama, FL, USA, November 2-5, 2015.



13

[23] G. Ye, G. Li, D. Wu, X. Chen, and Y. Zhou, “Towards Cost Minimization
with Renewable Energy Sharing in Cooperative Residential Communi-
ties,” IEEE Access, vol. 5, pp. 11 688–11 699, 2017.

[24] Y. Guo, H. Li, and M. Pan, “Colocation Data Center Demand Response
using Nash Bargaining Theory,” IEEE Trans. Smart Grid, vol. PP, no. 99,
2017.

[25] H. K. Nguyen, H. Mohsenian-Rad, A. Khodaei, and Z. Han, “Decentral-
ized Reactive Power Compensation Using Nash Bargaining Solution,”
IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1–10, 2017.

[26] D. Patteeuw, K. Bruninx, A. Arteconi, E. Delarue, W. D’haeseleer, and
L. Helsen, “Integrated modeling of active demand response with electric
heating systems coupled to thermal energy storage systems,” Applied

Energy, vol. 151, pp. 306–319, 2015.
[27] Y. Zhang, S. Shen, and J. L. Mathieu, “Distributionally Robust Chance-

Constrained Optimal Power Flow with Uncertain Renewables and Un-
certain Reserves Provided by Loads,” IEEE Trans. Power Syst., vol. 32,
no. 2, pp. 1378–1388, 2017.

[28] J. L. Mathieu, M. G. Vaya, and G. Andersson, “Uncertainty in the
flexibility of aggregations of demand response resources,” IECON 2013,
Vienna, Austria, November 10-13, 2013.
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